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1. INTRODUCTION

Routinely statisticians start on analysis of data estimating PDF (commonly called
histogram) or plotting empirical CDF on an appropriate probability paper. It depends on
the sample size they possess. It may happen that a solid evidence emerges from the obtained
figures suggesting bimodality of the population distribution as it is shown in Figure 1.

Figure 1: Bimodality of the population distribution.

In such a situation the statisticians as a rule employ the mixed (also called compound)
theoretical distribution that has a general form:

(1.1) fm(x;ω, Θ1, σ1, Θ2, σ2) = ωf1(x;Θ1, σ1) + (1− ω)f2(x;Θ2, σ2).

Let us denote such a distribution as mixed bimodal distribution (MBD). In (1.1) ω is the
fraction parameter whereas Θ1, σ1 and Θ2, σ2 are pairs of location — scale or scale — shape
parameters depending on sorts of distributions being mixed.

The MBD can be made bimodal and fitted to data of the sort we say about. However,
employing MBD the statisticians unambiguously state that the population is nonhomoge-
neous. Wide applicability of the MBD comes from its clarity and interpretability of parame-
ters. Nevertheless, it is hard to believe that non-homogeneity is a sole cause of distribution
bimodality. It is hard to believe because many factors other than intentional or unintentional
mixing sample items play a role in shaping population distribution. Thus, we see that a vital
necessity arises to develop non-mixed bimodal distribution (nMBD) arises. What makes our
task more difficult is that parameters of such distribution should be relatively clearly inter-
pretable. In order that nMBD be a worthy challenger to MBD. However, we are fully aware
that the parameters in question will never be so clearly interpretable as parameters of the
MBD are, which is easy to explain. The MBD comes into being due to one factor, which
causes mixing in particular proportion items belonging to two different subpopulations. In
contrast nMBD comes into being due to many factors. And effects of “activity” of all these
many factors have to be expressed also by means of only five parameters as estimators of
parameters consume information.
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Let us recall the Johnson family of probability distributions (JFD). All the distributions
that belong to JFD have the following general form

(1.2) F (x) = Φ

[
c + ρϕ

(
x− a

b

)
; 0, 1

]
,

where ϕ(x) can be any non-decreasing function of x, Φ(x;u, v) is CDF of N(u, v). Literature
related to JFD is numerous (see e.g. [14], [15], [3]).

Before defining the new members of the JFD, it is worth taking a look at the distribu-
tions that belong to this family.

The normal (N) distribution with location parameter a ∈ R and scale parameter b > 0
is defined as

(1.3) FN (x; a, b) = Φ

[
ϕ

(
x− a

b

)
; 0, 1

]
.

We obtain (1.3) from (1.2) by considering c = 0, δ = 1, ϕ(y) = y and y = (x− a)/b.

The Birnbaum–Saunders (BS) distribution with location parameter a ∈ R, scale pa-
rameter b > 0 and shape parameter α > 0, is defined as [7]

(1.4) FBS(x;α, a, b) = Φ

[
1
α

(√
x− a

b
−
√

b

x− a

)
; 0, 1

]
(x > a).

We obtain (1.4) from (1.2) by considering c = 0, δ = 1/α, ϕ(y) =
√

y−
√

1/y and y = (x−a)/b.

The generalization of the Birnbaum–Saunders (GBS) distribution with location pa-
rameter a ∈ R, scale parameter b > 0 and shape parameters α > 0, β > 0, is defined as [18]

(1.5) FGBS(x;α, a, b, β) = Φ

[
1
α

((
x− a

β

)β

−
(

β

x− a

)β
)

; 0, 1

]
(x > a).

The BS distribution is a special case of the GBS distribution for β = 0.5. We obtain (1.5)
from (1.2) by considering c = 0, δ = 1/α, ϕ(y) = yβ − y−β and y = (x− a)/b.

The Four-Parameter BS (FBS) distribution with location parameter a ∈ R, scale pa-
rameter b > 0, shape parameter δ > 0 and non-centrality parameter c ∈ R, is given by [2]

(1.6) FFBS(x; c, δ, a, b) = Φ

[
c + δ

(√
x− a

b
−
√

b

x− a

)
; 0, 1

]
(x > a).

Formula (1.4) is a special case of (1.6) for c = 0, δ = 1/α. We obtain (1.6) from (1.2) by
considering ϕ(y) =

√
y −

√
1/y and y = (x− a)/b.

The sinh-normal (SN) distribution with the location parameter a ∈ R, the scale param-
eter b > 0 and the shape parameter α > 0, is given by [19]

(1.7) FSN (x;α, a, b) = Φ

[
2
α

sinh
(

x− a

b

)
; 0, 1

]
.
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This distribution is symmetric about the location parameter a ∈ R. We obtain (1.7) from
(1.2) by considering c = 0, δ = 2/α, ϕ(y) = sinh(y) and y = (x− a)/b.

The lognormal or SL distribution with location parameter a ∈ R, scale parameter b > 0
and shape parameters c1 ∈ R, δ > 0, is defined as [14]

(1.8) FSL(x; c1, δ, a, b) = Φ

[
c1 + δ ln

(
x− a

b

)
; 0, 1

]
(x > a).

Formula (1.8) can be written using three parameters, namely:

(1.9) FSL(x; c1, δ, a, b) = Φ[c + δ ln(x− a); 0, 1] (x > a),

where c = c1 − δ ln(b), c ∈ R. We obtain (1.9) from (1.2) by considering b = 1, ϕ(y) =
ln(y) and y = (x− a). Please notice that the lognormal distribution with the CDF [11]
F̆SL(x; e1, e2) = Φ

[
ln(x)−e1

e2
; 0, 1

]
(x > 0) widely used in practice can be treated as a special

case of (1.8) when a = 0, δ = 1/e2 and c = −e1/e2.

The SB distribution with the location parameter a ∈ R, the scale parameter b > 0 and
the shape parameters c ∈ R, δ > 0, is defined as [14]

(1.10) FSB(x; c, δ, a, b) = Φ

[
c + δ ln

(
x− a

b + a− x

)
; 0, 1

]
(a < x < a + b).

We obtain (1.10) from (1.2) by considering ϕ(y) = ln(y)− ln(1− y) and y = (x− a)/b. Let
a = 0, b = 1, δ = 1/e2 and c = −e1/e2, then we obtain the special case of (1.10) widely used
in practice defined as

F̆SB(x; e1, e2) = Φ

 ln
(

x
1−x

)
− e1

e2
; 0, 1

.

The SU distribution with the location parameter a ∈ R, the scale parameter b > 0 and the
shape parameters c ∈ R, δ > 0, is defined as [14]

(1.11) FSU (x; c, δ, a, b) = Φ

[
c + δ asinh

(
x− a

b

)
; 0, 1

]
.

We obtain (1.11) from (1.2) by considering ϕ(y) = asinh(y) and y = (x− a)/b.

This paper introduces two new members of the JFD, namely SC and SD. In the SU
distribution Johnson employed asinh(x) = ln

(
x +

√
1 + x2

)
. In the SC and SD distributions

we will employ sinh(x) = exp(x)−exp(−x)
2 .

The SC distribution with location parameter a ∈ R, the scale parameter b > 0 and
shape parameter c ∈ R, is defined as

(1.12) FSC(x; c, a, b) = Φ

[
c + 2 sinh

(
x− a

b

)
; 0, 1

]
.

Please notice that ρ parameter appearing in (1.2) has been in (1.12) replaced with a constant
equal to 2. This constant compensates denominator in definition of the sinh(x) function. For
c = 0 in (1.12) and α = 1 in (1.7), the SN distribution is equivalent to the SC distribution.
We obtain (1.12) from (1.2) by considering δ = 2, ϕ(y) = sinh(y) and y = (x− a)/b.
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The SD distribution with multipurpose parameters a1, a2 ∈ R, b1, b2 > 0 and semi-
fraction parameter c > 0 (see Figure 2), is defined as

(1.13) FSD(x; c, a1, b1, a2, b2) = Φ

[
c− exp

(
a1 − x

b1

)
+ exp

(
x− a2

b2

)
; 0, 1

]
.

The SD distribution is obtained from SC by adding the second exponential function. The
CDF FSD(x; c, a1, b1, a1, b1) is equal to the CDF FSC(x; c, a1, b1), so the SC is a special case
of the SD.

Although SD cannot be acknowledged as a special case of (1.2), it seems reasonable to
treat SD as a member of the JFD, which can be justified by appearing as a generalization or
extension of an element of the SN distribution family obviously belonging to the JFD family.
The mentioned element is the SC distribution. The FSD involves two exponential components
that can be independently movable on the x axis. Owing to this we are able to obtain bimodal
distribution provided we locate the components sufficiently far from one another on the x

axis as it is exemplified in Figure 2 (left). This figure shows examples of CDFs of the SD
distribution plotted on the Normal probability paper. The reader is prompted to compare
Figure 2 (left) with Figure 1 (left). Figure 2 (right) shows examples of PDFs of the SD
distribution with exemplifying a role of c parameter. No doubt, c parameter can be called
the semi-fraction parameter.

Let

P (x; c, a1, b1, a2, b2) = c− exp
(

a1 − x

b1

)
+ exp

(
x− a2

b2

)
.

Figure 2: Bimodality in the SD distribution.

If we subject a random variable to a linear transformation, the skewness and kurtosis retain
their values. This fact was also confirmed by a simulation study. To simplify the study of
the skewness and kurtosis of the SD distribution, let us standardize a random variable x:
z = x−a1

b1
⇒ x = b1z + a1. As a result of simple transformation the CDF (1.13) has the form

FSD(x; c, a0, b0) = Φ

[
c− exp(−z) + exp

(
x− a0

b0

)
; 0, 1

]
,

where a0 = a2−a1
b1

, b0 = b2
b1

.
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Let (γ1, γ2) be coordinate of a point described by skewness and kurtosis, respectively.
The normal distribution (ND) is characterized by only one point (0, 3), obviously. For every
distribution from the JFD (except the ND), values of (γ1, γ2) are calculated for 104 randomly
determined values of parameters influencing skewness and kurtosis in the Malakhov area (MA)
10≥ γ2 ≥ γ2

1 +1 (Table 1). In the MA γ2 ∈ [1, 10], then γ1 ∈ [−3, 3] (see Figure 3). The param-
eter value ranges are selected to maximize MA filling according to the SKS measure (1.14).
To make the calculations more reliable (without the so called outliers) the normalization
conditions were checked.

Table 1: Ranges of parameter values influencing skewness and kurtosis
as well as skewness and kurtosis values for the JDF in the
Malakhov area 10 ≥ γ2 ≥ γ2

1 + 1.

JFD Parameter ranges Skewness range Kurtosis range

BS α ∈ (0, 0.46) γ1 ∈ (0, 2.22) γ2 ∈ (3, 5.92)

GBS α ∈ (0, 7), β ∈ (0, 1.75) γ1 ∈ (0.07, 2.38) γ2 ∈ (2.03, 10)

FBS c ∈ (−6.25, 6.25), δ ∈ (0, 2.75) γ1 ∈ (0.44, 2.23) γ2 ∈ (3.27, 10)

SN α ∈ (0.1, 180.4) γ1 = 0 γ2 ∈ (1.15, 3)

SL δ ∈ (1.88, 100) γ1 ∈ (0.03, 1.89) γ2 ∈ (3, 9.98)

SB c ∈ (−3.35, 3.39), δ ∈ (0.1, 1.2) γ1 ∈ (−2.84, 2.91) γ2 ∈ (1.13, 10)

SU c ∈ (−2.05, 2.05), δ ∈ (1.31, 1.9) γ1 ∈ (−1.8, 1.79) γ2 ∈ (4.76, 10)

SC c ∈ (−89.94, 89.97) γ1 ∈ (−0.69, 0.69) γ2 ∈ (2.52, 3.90)

SD
c ∈ (−4.1, 4.1), a0 ∈ (−4.3, 4.3),

γ1 ∈ (−2.79, 2.46) γ2 ∈ (1.26, 10)
b0 ∈ (0.1, 0.9)

Figure 3 presents sets of points (γ1, γ2) and the MP γ2 = γ2
1 + 1 in the MA 10 ≥ γ2 ≥

γ2
1 + 1 related to the SB, SU, SC, SD distributions. The SD and SU distributions are the best

filling the MA. The SD distribution has common areas of skewness and kurtosis with the SB
and SU distributions. Sets of points (γ1, γ2) and the MP γ2 = γ2

1 + 1 in the MA 10 ≥ γ2 ≥
γ2

1 + 1 related to the BS, GBS, FBS, SL distributions are presented in the supplementary
material.

In addition to visual assessment, the skewness-kurtosis-square (SKS) measure [22] is
used to compare the flexibility of distributions. Colored circles of diameter and coordinates
of their centers determined by skewness γ1 and kurtosis γ2 are placed within the MA that is
described by inequality γ2 ≥ γ2

1 + 1 [17]. Then colored area fraction is calculated. Squares
of sides equal to η seem a reasonable alternative to circles since they simplify calculation of
the total colored area. Obviously, when some squares overlap, only one is taken into account.
The SKS measure is given by [22]

(1.14) SKS =
SI

ST
,

where ST denotes a total number of squares within the MA, SI — a number of squares to
which the point (γ1, γ2) has fallen. The SKS measure takes values in [0, 1]. The maximum
value denotes a perfect dispersal of points (γ1, γ2) in the MA. The R codes for calculating
the SKS measure are presented in the supplementary material.
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Figure 3: Skewness and kurtosis for the SB, SU, SC, SD distributions.

Table 2 presents values of SKS measures (1.14) obtained for square side η = 0.05, 0.1,

0.15, 0.20. The best dispersion of points (γ1, γ2), taking into account the accuracy expressed
by η, occurs for the SD, SU and SB distribution (see bold).

Table 2: SKS measure values for JFD in the MA 10 ≥ γ2 ≥ γ2
1 + 1 for square side η.

JFD η = 0.05 η = 0.1 η = 0.15 η = 0.2

BS 0.0070 0.0140 0.0203 0.0271
GBS 0.0778 0.1051 0.1277 0.1333
FBS 0.0561 0.0694 0.0794 0.0906
SL 0.0111 0.0237 0.0346 0.0458
SB 0.2410 0.3401 0.3813 0.4052
SU 0.2375 0.3433 0.3693 0.3740
SC 0.0092 0.0175 0.0274 0.0323
SD 0.2185 0.4102 0.4994 0.5469

New distributions, modelled on the SL, SB, SU distributions, was named as SC and SD
distributions. The SC is a special cases of the SD, so the remainder of the paper is devoted
to the SD distribution. The lognormal distribution is defined with the log function and the
SD distribution is defined with the exp function, therefore the SD distribution is also called
the expnormal (EN) distribution.
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This paper is organized as follows. Section 2 presents properties of the SD distribution.
The unknown parameters are estimated in Section 3 and entropies are calculated in Section 4.
Examples are presented in Section 5. Section 6 deals with conclusions. Due to the size of the
paper, the selected figures and tables as well as the main R codes have been transferred to
the supplementary material.

2. MAIN PROPERTIES OF INTRODUCED DISTRIBUTION

2.1. Distribution and density function

Definition 2.1. The distribution of the random variable X with PDF given by

(2.1) f(x; a1, b1, a2, b2, c) =
(

1
b1

e−z1(x) +
1
b2

ez2(x)

)
φ[c− exp(−z1(x)) + exp(z2(x)); 0, 1],

where φ(x;u, v) is PDF of N(u, v), z1(x) = x−a1
b1

and z2(x) = x−a2
b2

, is called the expnormal
(EN) distribution. In (2.1) a1, a2 ∈ R are position parameters, b1, b2 > 0 are scale parameters
and c ∈ R is the semi-fraction parameter (see Figure 2). For these parameter values, the
main argument of φ in (2.1) is an increasing function, hence∫ +∞

−∞
f(x; a1, b1, a2, b2, c) = 1.

PDF of the EN distribution is calculated using the R function dEN (see supplementary
material).

If a1 = a2, b1 = b2, c = 0, then EN(a1, b1, a2, b2, c) is very similar to the N
(
a1,

b1
2

)
.

According to the similarity measure between two distributions defined in [23], we have for
a1 ∈ R, b1 > 0.

(2.2)
∫ +∞

−∞
min

[
f(x; a1, b1.a1, b1, 0), φ

(
x; a1,

b1

2

)]
= 0.966.

Thus the EN(0, 2, 0, 2, 0) is similar to the N(0, 1) in 96.6%. The distribution with
multipurpose parameter a1, b1, a2, b2 = b1 is symmetrical for c = 0 (see Table 4 and Figure 4,
series D1,D2). If X ∼ EN(a1, b1, a2, b2 = b1, c = 0) then E(X) = a1+a2

2 . In this case the
modes are at the same height. The mean value formula is also confirmed by numerical
methods. The EN(a1, b1, a2, b2, c > 0) is positively skewed (Figure 4, series A1, A2, E1, E2)
and the EN(a1, b1, a2, b2, c≤ 0) is negatively skewed (Figure 4, series B1, B2, F1, F2). The
EN distribution can be unimodal (Figure 4, series A1, B1, D1, E1, F1) and bimodal (Figure 4,
series A2, B2, D2, E2, F2). See Table 4 for more information.

Table 3 presents the division of distributions by their skewness and excess kurtosis [22].
The ND obviously does not belong to this family. Selecting appropriate parameter values
of the EN distribution, we can obtain skewness and excess kurtosis values belonging to the
analyzed groups A1–B2 and D1–F2 (Table 4).
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Table 3: Groups of distributions according to their skewness and excess kurtosis [23].
Denote: * unimodal distribution, ** bimodal distribution.

Group Skewness Ex. kurtosis Group Skewness Ex. kurtosis

A1* positive positive D1* zero negative
A2** positive positive D2** zero negative
B1* negative positive E1* positive negative
B2** negative positive E2** positive negative
C1* zero positive F1* negative negative
C2** zero positive F2** negative negative

Table 4: The EN(a1, b1, a2, b1, 0) distribution with parameter values for groups A1–B2 and D1–F2.

a1 b1 a2 b2 c Skewness Ex. kurtosis Group

0 1 1 1.25 1 0.740 0.268 A1
−1 1 3 1 1 1.239 0.608 A2

1 2 0 1 0 −0.527 0.151 B1
−4 0.5 1 1 −1 −1.298 0.334 B2

0 2 0 2 0 0 −0.479 D1
0 0.5 1 0.5 0 0 −1.024 D2
0 1 1 1 1 0.584 −0.13 E1

−1 1 3 1 0.5 0.601 −0.961 E2
0 1 1 1 −1 −0.584 −0.13 F1

−1 1 3 1 −0.5 −0.601 −0.961 F2

Figure 4 plots the PDF of the EN(a1, b1, a2, b2, c) for groups of parameters presented
in Table 4.

Figure 4: PDF of the EN(a1, b1, a2, b1, 0) for groups from Table 4.

Theorem 2.1. Let X ∼ EN(a1, b1, a2, b2, c), then the CDF of X is given by

(2.3) F (x; a1, b1, a2, b2, c) = Φ

[
c− exp

(
−x− a1

b1

)
+ exp

(
x− a2

b2

)
; 0, 1

]
.

Proof: Obtaining (2.3) based on (2.1) is trivial.

CDFof theENdistribution is calculatedusing theR functionpEN(see supplementarymaterial).
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Figure 5 (left) plots the CDF of the EN(a1, b1, a2, b2, c) for groups A1, A2, B1, B2. The
CDF of the EN(a1, b1 > 0, a2, b2 > 0, c) on the normal Q-Q plot is monotonically increasing
curve (Figure 5, right).

Figure 5: CDF of the EN(a1, b1, a2, b1, 0) (left) and the normal Q-Q plot (right).

Theorem 2.2. The EN(a1, b1, a2, b2, c) with the PDF given by (14) is identifiable in

a parameter space v = (a1, b1, a2, b2, c).

Proof: Let v1 = (a11, b11, a21, b21, c1) and v2 = (a12, b12, a22, b22, c2). Let us suppose
that fv1(x) = fv2(x) for all x. This condition based on (2.3) implies that

Φ

[
c1 − exp

(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
; 0, 1

]
=

= Φ

[
c2 − exp

(
−x− a12

b12

)
+ exp

(
x− a22

b22

)
; 0, 1

]
.

The function Φ is an increasing function which implies that

c1 − exp
(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
= c2 − exp

(
−x− a12

b12

)
+ exp

(
x− a22

b22

)
or

c1 − c2 + exp
(
−x− a12

b12

)
− exp

(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
− exp

(
x− a22

b22

)
= 0.

As a result of simple transformation a11 = a12, b11 = b12, a21 = a22, b21 = b22, c1 = c2.

2.2. Hazard function

Proposition 2.1. Let X ∼ EN(a1, b1, a2, b2, c). The hazard function associated with

the EN distribution is

(2.4) h(x) =

(
1
b1

e
−x−a1

b1 + 1
b2

e
x−a2

b2

)
φ
[
c− exp

(
−x−a1

b1

)
+ exp

(
x−a2

b2

)
; 0, 1

]
1− Φ

[
c− exp

(
−x−a1

b1

)
+ exp

(
x−a2

b2

)
; 0, 1

] .
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The limits of the EN hazard function as x → −∞ and x →∞ are respectively 0 and ∞
(Figure 6).

Figure 6: The EN hazard function for various values of parameters.

2.3. Quantiles

Proposition 2.2. Let X ∼ EN(a1, b1, a2, b2, c). The p-th (0 < p < 1) quantiles are

the solution of the following equation

c− exp
(
−xp − a1

b1

)
+ exp

(
xp − a2

b2

)
− Φ−1(p) = 0.

The value of xp is obtained by the numerical method, e.g. using the R software. Quantile
function of the EN distribution is calculated using the R function qEN (see supplementary
material).

2.4. Moments and moment generating function

Proposition 2.3. Let X ∼ EN(a1, b1, a2, b2, c). The k-th, k ∈ Z non-central mo-

ments from (14) are given by

(2.5) αk =
∫ +∞

−∞
xk

(
1
b1

e−z1 +
1
b2

ez2

)
φ[c− exp(−z1) + exp(z2); 0, 1],

where z1 = x−a1
b1

and z2 = x−a2
b2

, φ(x; a, b) is PDF of N(a, b)

Thus the variance µ2, skewness γ1 and kurtosis γ2 of the EN distribution are defined as

µ2 = α2 − α2
1, γ1 =

α3 − 3α1α2 + 2α3
1

µ1.5
2

, γ2 =
α4 − 4α1α3 + 6α2

1α2 − 3α4
1

µ2
2

.
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Table 5 provides the mode xmod, mean α1, variance µ2, skewness γ1 and kurtosis γ2 of
the EN distribution for various parameter combinations.

Table 5: Mode, mean, variance, skewness and kurtosis of the EN(a1, b1, a2, b2, c).

a1 b1 a2 b2 c xmod α1 µ2 γ1 γ2

0 2 0 2 0 0 0 0.837 0 2.521
1 0.5 0.5 0.538 0 2.643
2 1 1 0.34 0 2.745
3 1.5 1.5 0.212 0 2.826

0 0.5 1 1 0 −0.005 0.444 0.334 0.194 2.532
1 0.5 0.5 0.474 0 2.245

1.5 0.95 0.52 0.622 −0.216 2.455
2 1.077 0.523 0.775 −0.469 2.812

−2 1 −2 1 0 −2 −2 0.209 0 2.521
−1 −1.5 −1.5 0.474 0 2.245
1 −1.946,0.946 −0.5 1.791 0 1.751
2 1.981 0 3.009 0 1.578

0 0.5 0.5 0.25 1 −0.215 −0.025 0.096 0.019 2.156
0.5 −0.245 −0.08 0.096 0.056 2.87
0.75 −0.281 −0.114 0.101 0.089 3.686
1 −0.308 −0.137 0.107 0.12 4.583

0 1 1 2 0.5 −0.377 0.072 0.597 0.534 3.594
1 −0.615 −0.274 0.427 0.48 4.583

1.5 −0.815 −0.561 0.293 0.367 5.503
2 −0.988 −0.798 0.199 0.252 6.006

−2 2 2 1 −1 2.508 1.721 1.633 −2.662 5.457
0 −1.833,1.99 0.226 3.357 −1.557 2.014
1 −2.949,1.273 −1.604 3.253 1.832 2.271
2 −3.762 −3.097 1.642 2.352 5.387

Table 5 shows that the PDF of EN distribution may be unimodal or bimodal. The EN
is a symmetric distribution for c = 0 and b1 = b2. If c > 0 or c = 0 and b1 < b2, then the EN
distribution is positively skewed. If c < 0 or c = 0 and b1 > b2 — negatively skewed.

Equidispersion occurs when the variance is equal to the mean ([1]). Overdisper-
sion is a situation in which the variance exceeds the mean, underdispersion is the oppo-
site. The mean of the EN(a1, b1, a2, b2, 0) — as mentioned earlier — equals a1+a2

2 , so
the EN(a1, b1, a2 ≤ −a1, b1, 0) has underdispersion property. Figure 7 shows the regions
in which the EN(a1, b1, 0, 1, 2) and EN(a1, b1, 0, 2, 1) distributions are overdispersed and
underdispersed for selected parameter values. The regions for the EN(a1, b1, 1, 1,−2) and
EN(a1, b1, 1, 1, 0) as well as for the EN(0, b1, 0, 1, c) and EN(0, b1, 0, 2, c) are presented
in the supplementary material. The curve connects the points where the distribution is
equidispersed. It is interesting to point out that the relationship between a1 and b1 in the
EN(a1, b1, 0, b2, c > 0) remains linear for b2 = 1, c = 2 and b2 = 2, c = 1 (see Figure 7).

Proposition 2.4. The moment generating function (MGF) of the EN distribution,

based on (2.1), is given by

(2.6) MX(t) =
∫ +∞

−∞
etx

(
1
b1

e−z1 +
1
b2

ez2

)
φ[c− exp(−z1) + exp(z2); 0, 1],

where z1 = x−a1
b1

and z2 = x−a2
b2

.
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Figure 7: Dispersion regions for the EN(a1, b1, 0, 1, 2) and EN(a1, b1, 0, 2, 1).

2.5. Moments of order statistics

Proposition 2.5. Let the random variable Xi,n be the i-th order statistic X1.n ≤
X2,n ≤ ··· ≤ Xn,n in a sample of size n from the EN(a1, b1, a2, b2, c). The PDF of Xk,n is

given by

fi.n(x; ∗) =
n!

(i− 1)!(n− i)!
f(x; ∗)F (x; ∗)i−1[1− F (x; ∗)]n−i,

where ∗ = (a1, b1, a2, b2, c), and f(x; ∗), F (x; ∗) are respectively given by (2.1) and (2.3).

Figure 8 plots the PDF of Xi,20 for some parameter values of the EN distribution. The
k-th moment of the i-th order statistic Xk,n is defined as

E
(
Xk

i.n

)
=
∫ +∞

−∞
xkfi,n(x).

Figure 8: The PDF of the Xi,20 of the EN distribution.
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2.6. Random numbers generator

Proposition 2.6. Let X ∼ EN(a1, b1, a2, b2, c), R ∼ Uniform(0, 1). The formula

for generating X value, using the quantile function qEN of the EN distribution, is given by

X = qEN(R; a1, b1, a2, b2, c).

The R codes for generating n values of X in increasing order are in the supplementary material
as function rEN .

3. ESTIMATION PROCEDURES

Let x∗1, x
∗
2, ..., x

∗
n be a random sample of size n from the EN(a1, b1, a2, b2, c). Our aim is

to estimate the unknown parameter vector Θ = (a1, b1, a2, b2, c). The log-likelihood function
based on (2.1) is given by

(3.1) l(Θ) =
n∑

i=1

ln
(

1
b1

e−z∗1i +
1
b2

ez∗2i

)
+

n∑
i=1

ln
[
φ
(
c− e−z∗1i + ez∗2i

)]
,

where z∗1i = x∗i−a1

b1
, z∗2i = x∗i−a2

b2
. Solving the system of five complicated nonlinear equations in

the form
dl(Θ)
da1

= 0,
dl(Θ)
db1

= 0,
dl(Θ)
da2

= 0,
dl(Θ)
db2

= 0,
dl(Θ)

dc
= 0

is not possible analytically. We had better maximize the log-likelihood function (3.1) in math-
ematical computing environments such as Excel, R and Mathcad. The MLEs of parameters
a1, b1, a2, b2, c were calculated in R software using “optim” function.

The ordinary least square estimators (OLSEs) can be obtained by minimizing

O(Θ) =
n∑

i=1

[
F (xi; a1, b1, a2, b2, c)−

i

n + 1

]2

,

where F (x; Θ) is the CDF of the EN distribution (2.3).

The weighted least square estimators (WLSEs) can be obtained by minimizing

W (Θ) = (n + 1)2(n + 2)
n∑

i=1

1
i(n− i + 1)

[
F (xi; a1, b1, a2, b2, c)−

i

n + 1

]2

,

where F (x; Θ) is the CDF of the EN distribution (2.3).

A simulation study is conducted to assess the properties of the MLEs, OLSEs, WLSEs of
the parameter vector Θ = (a1, b1, a2, b2, c) using sample sizes of 50, 500 and 1000. In each case,
104 samples from the EN distribution with the specified parameters are drawn (see Figure 9).
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Figure 9: PDF of the EN distribution used in the estimation procedures (EPs).

The biases and the root mean squared errors (RMSEs) of the MLEs, OLSEs, WLSEs for
the EN(a1, 1, 0, 1, 0) are presented in Table 6. The biases and the root mean squared errors
(RMSEs) of the MLEs, OLSEs, WLSEs for the EN(0, b1, 1, 1, 1) and EN(1, 1, 0, 2, c) are
presented in the supplementary material.

Table 6: Biases and RMSEs of the MLEs (denoted as 1), OLSEs (denoted as 2),
WLSEs (denoted as 3) for the EN(a1, 1, 0, 1, 0).

a1 EP n
Bias RMSE

ba1
bb1 ba2

bb2 bc ba1
bb1 ba2

bb2 bc

1 0.53 0.16 −0.65 0.15 −0.01 2.48 1.35 2.99 1.44 1.82
2 50 0.56 0.47 −0.76 0.44 −0.12 1.62 1.38 1.97 1.42 1.15
3 0.77 0.57 −1.06 0.57 −0.18 2.04 1.62 2.50 1.51 1.33

1 0.10 0.03 −0.10 0.02 0.01 0.61 0.33 0.65 0.35 1.00
0 2 500 0.24 0.14 −0.26 0.14 0.00 0.76 0.50 0.87 0.55 0.49

3 0.14 0.09 −0.16 0.09 −0.01 0.57 0.37 0.69 0.42 0.44

1 0.07 0.02 −0.05 0.01 0.03 0.47 0.24 0.47 0.25 0.84
2 1e3 0.15 0.09 −0.15 0.09 0.01 0.52 0.36 0.58 0.39 0.37
3 0.07 0.04 −0.06 0.04 0.01 0.33 0.23 0.37 0.25 0.34

1 0.41 0.13 −0.46 0.07 0.06 2.38 1.37 2.79 1.42 1.87
2 50 0.28 0.24 −0.37 0.25 −0.05 1.15 0.94 1.43 1.14 1.07
3 0.51 0.34 −0.62 0.34 −0.08 1.53 1.07 1.79 1.21 1.36

1 0.29 0.10 −0.29 0.10 0.03 1.29 0.60 1.35 0.63 1.15
1 2 500 0.15 0.07 −0.14 0.06 0.02 0.67 0.40 0.72 0.41 0.58

3 0.22 0.09 −0.20 0.08 0.04 0.83 0.45 0.87 0.47 0.69

1 0.19 0.07 −0.14 0.05 0.06 0.86 0.41 0.85 0.42 0.91
2 1e3 0.10 0.05 −0.10 0.04 0.01 0.52 0.31 0.58 0.32 0.48
3 0.16 0.07 −0.13 0.06 0.04 0.64 0.34 0.65 0.36 0.57

1 −0.02 −0.05 0.08 −0.08 0.23 1.63 1.32 1.72 0.97 2.34
2 50 0.09 0.19 −0.13 0.26 0.04 0.93 0.84 1.43 1.60 1.45
3 0.16 0.20 −0.20 0.24 −0.02 1.05 0.92 1.26 1.11 1.53

1 0.11 0.01 −0.09 0.01 0.02 1.07 0.47 0.97 0.44 1.86
2 2 500 0.05 0.03 −0.03 0.04 0.08 0.35 0.20 0.37 0.25 0.84

3 0.06 0.03 −0.04 0.03 0.05 0.50 0.25 0.48 0.25 0.81

1 0.08 0.01 −0.06 0.01 0.02 0.88 0.38 0.75 0.34 1.63
2 1e3 0.03 0.02 −0.02 0.02 0.05 0.26 0.14 0.27 0.17 0.61
3 0.04 0.02 −0.02 0.01 0.03 0.41 0.20 0.39 0.20 0.65
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We observe in Table 6 that the estimates approach true values and RMSEs decrease as
the sample size increases implying the consistency of the estimates. For EN(0, 1, 0, 1, 0) and
EN(1, 1, 0, 1, 0) biases are the smallest for ĉ and the greatest for â2 as well as RMSEs are the
smallest for b̂1 and the greatest for â2 (see Table 6). The smallest biases are for maximum
likelihood estimate (MLE) related to the EN(0, 1, 0, 1, 0).

To examine the accuracy of the coverage probability of the asymptotic confidence in-
tervals (CIs) using MLEe, another simulation study was performed with 104 samples using
sample sizes of 50, 100, 250, 500 and 1000. The study focused on the parameters a1, b1, a2, b2, c

and samples were drawn from the EN(0, 1, 1, 1.25, 1) (see Table 4). The coverage probabili-
ties of the obtained 95% CIs for a1 = 0, b1 = 1, a2 = 1, b2 = 1.25, c = 1 reported in Table 7
are very close to the nominal level. The results suggest that the obtained standard errors
and hence the asymptotic CIs are reliable.

Table 7: Coverage probabilities for the standard asymptotic 95% CIs.

Sample size n a1 b1 a2 b2 c

50 0.9531 0.9521 0.9495 0.9496 0.9500
100 0.9511 0.9517 0.9422 0.9495 0.9455
250 0.9484 0.9507 0.9513 0.9529 0.9495
500 0.9509 0.9522 0.9519 0.9543 0.9522
1000 0.9449 0.9461 0.9495 0.9499 0.9472

4. SHANNON, RENYI AND TSALLIS ENTROPIES

Let f(x, a1, b1, a2, b2, c) be a PDF of the EN distribution (2.1). The Shannon entropy
of the EN distribution is given by [26]

S(a1, b1, a2, b2, c) = −
∫ +∞

−∞
f(x; a1, b1.a1, b1, c) ln f(x; a1, b1.a1, b1, c)dx.

The Renyi entropy of order α for the EN distribution is defined as [21]

Rα(a1, b1, a2, b2, c) =
1

1− α
ln
(∫ +∞

−∞
f(x; a1, b1.a1, b1, c)

αdx

)
(α > 0, α 6= 1).

The Tsallis entropy of order α for the EN distribution has the form [29]

Tα(a1, b1, a2, b2, c) =
1

α− 1

∫ +∞

−∞
f(x; a1, b1.a1, b1, c)

αdx− 1 (α > 0, α 6= 1).

Renyi and Tsallis entropies converge to the Shannon entropy. Table 8 presents values of the
Shannon, Renyi and Tsallis entropies for parameter values from groups A1–B2 and D1–F2
(see Table 4).
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Table 8: Shannon (S), Renyi (Rα) and Tsallis (Tα) entropies.
Groups of parameter values A1–B2, D1–F2.

Group S
Rα Tα

α = 0.5 α = 2 α = 3 α = 0.5 α = 2 α = 3

A1 0.89 1.06 0.727 0.65 −4.39 −0.52 −0.86
A2 1.43 1.64 1.17 1.02 −5.53 −0.69 −0.94
B1 0.65 0.82 0.50 0.43 −4.02 −0.39 −0.79
B2 1.47 1.69 1.19 1.04 −5.66 −0.70 −0.94
D1 1.32 1.45 1.21 1.15 −5.14 −0.70 −0.95
D2 0.65 0.71 0.59 0.57 −3.86 −0.45 −0.84
E1 0.89 1.03 0.75 0.68 −4.35 −0.53 −0.87
E2 1.66 1.76 1.51 1.40 −5.83 −0.78 −0.97
F1 0.89 1.03 0.75 0.68 −4.35 −0.53 −0.87
F2 1.66 1.76 1.51 1.40 −5.83 −0.78 −0.97

5. APPLICATION

The aim of this Section is to demonstrate the flexibility and applicability of the EN
distribution. This section is composed of two real data examples. As mentioned in Introduc-
tion, the EN distribution is bimodal, so the analyzed real data are also bimodal. In papers
devoted to probability distributions, Johnson distributions such as SB and SU are used very
rarely in the examples, perhaps because of their unimodality. The other models selected for
comparison with the new proposal are:

a) compound normal (CN) with PDF:

f(x; a1, b1, a2, b2, c) = ωφ(x; a1, b1) + (1− ω)φ(x; a2, b2);

b) compound Gumbel (CG) with PDF:

fG(x; a, b) =
1
b

exp
[
a− x

b
− exp

(
a− x

b

)]
,

f(x; a1, b1, a2, b2, c) = ωfG(x; a1, b1) + (1− ω)fG(x; a2, b2);

c) two-piece power normal (TPPN) [22] with PDF:

σ = σ1I(x < θ) + σ2I(x ≥ θ),

f(x; θ, σ1, σ2, c) =
c

σ
√

2π

∣∣∣∣x− θ

σ

∣∣∣∣c−1

exp

[
−0.5

∣∣∣∣x− θ

σ

∣∣∣∣2c
]
;

d) bimodal skew-symmetric normal (BSSN) [12] with PDF:

f(x; θ1, θ2, c, d) =
2c1.5

[
d + (x− θ2)

2
]
exp
[
−c(x− θ1)

2
]

√
π
[
1 + 2c

[
d + (θ2 − θ1)

2
]] ;
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e) flexible generalized skew-normal of order 3 (FGSN) [16] with PDF:

u =
x− a

b
,

f(x; a, b, α0, α1) =
2
b
φ(u; 0, 1)Φ

(
α0u + α1u

3; 0, 1
)
;

f) bimodal asymmetric power-normal (BAPN) [8] with PDF:

u =
x− θ

σ
,

f(x;α, β, θ, σ) =
α2α

2α − 1
φ(u; 0, 1)Φ(u; 0, 1)α−1Φ(βu; 0, 1);

g) normal distribution with plasticizing component (NDPC) [24] with PDF:

u =
x− a2

b2
, fpc(x; a2, b2, c) =

c

b2
|u|c−1φ(|u|c; 0, 1),

f(x; a1, b1, a2, b2, c, ω) = ωφ(x; a1, b1) + (1− ω)fpc(x; a2, b2, c).

The estimation of the model parameters is carried out by the maximum likelihood
method. To avoid local maxima of the logarithmic likelihood function, the optimization
routine is run 100 times with several different starting values that are widely scattered in the
parameter space.

Table 9 presents the MLEs, confidence interval (CI), log-likelihood function l, AIC,
BIC and HQIC for the first data sets. Models are sorted by AIC values.

Following the bootstrap method proposed in [5], [4] and [20], we used the obtained
estimates Θ̂ (Table 9) to derive the 95% bootstrap CIs for the parameters of distributions.
We generated 104 samples of size n from the given distribution with values of the parameters
equal to Θ̂. For each obtained sample, we obtained the MLEs Θ̂∗i

(
i = 1, 2, ..., 104

)
using the

true values of estimates as starting values for the maximum likelihood estimation. For the
95% bootstrap CIs, we took the 250-th and 9750-th ordered estimates.

Table 10 shows p-values (sorted by p-value of the KS test) for mentioned GoFTs cal-
culated as follows. First, we obtain the values of the Kolmogorov–Smirnov (KS), Anderson-
Darling (AD) and Cramer-von Mises (CvM) test statistics (denoted ST) for true values of
parameters Θ̂ based on the sample x1, x2, ..., xn. In the next step we simulate 104 samples
x
′
1, x

′
2, ..., x

′
n from the given distribution with true values of parameters Θ̂. For each sample,

we calculate the values of the KS, AD and CvM test statistics (denoted STS). Finally, the
p-value is calculated as p ≈ #

{
i : STS

i ≥ ST
}
10−4.

5.1. Example 1

The first real data present waiting time between eruptions and the duration of the
eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA ([13]).
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The data consist of 272 observations of the variable “eruptions numeric Eruption time in
mins” and are available in the R software with code faithful[1].

As shown in Table 9 the EN model is definitely the best in terms of the −l, AIC, BIC
and HQIC values. The AIC ranking is the same as the BIC and HQIC rankings. The EN
model is definitely distinguished by the p-values (see Table 10). The p-value ranking for the
KS test is, with only one exception, the same as the p-value rankings for the AD and CvM
tests. The information criteria ranking is not the same as the p-value ones. It is worth noting
that the rankings are similar for most models, with the biggest difference in the rankings for
the TPPN model.

Table 9: Results of estimation. Information criteria. Example 1.

Model bΘ 95%CI −l AIC BIC HQIC

ba1 −1.453 [−1.486,−1.416] 224.331 456.663 471.086 462.453
bb1 0.185 [0.147, 0.224]

EN ba2 0.820 [0.729, 0.896]
bb2 0.481 [0.405, 0.563]
bc −0.427 [−0.602,−0.264]

ba1 0.508 [0.353, 0.611] 227.238 466.476 488.111 475.161
bb1 0.375 [0.275, 0.444]

NDPC
ba2 −0.173 [−0.210,−0.137]
bb2 1.219 [1.182, 1.256]
bc 4.795 [4.186, 5.786]
bω 0.342 [0.235, 0.432]

ba1 0.688 [0.631, 0.745] 240.394 490.788 508.817 498.026
bb1 0.383 [0.341, 0.423]

CN ba2 −1.287 [−1.328,−1.245]
bb2 0.206 [0.175, 0.237]
bω 0.652 [0.597, 0.706]

bθ1 −0.454 [−0.537,−0.370] 244.651 497.301 511.724 503.092

TPPN
bσ1 0.921 [0.835, 1.007]
bσ2 1.357 [1.267, 1.448]
bc 3.166 [2.891, 3.549]

ba1 −1.367 [−1.405,−1.307] 250.318 510.636 528.665 517.874
bb1 0.180 [0.145, 0.213]

CG ba2 0.532 [0.456, 0.604]
bb2 0.362 [0.218, 0.411]
bω 0.362 [0.305, 0.427]

ba 0.191 [0.153, 0.236] 271.813 551.626 566.049 557.416

FGSN
bb 1.016 [0.930, 1.102]
bα0 4.148 [3.389, 5.351]
bα1 −3.406 [−4.942,−2.460]

bθ1 −0.212 [−0.265,−0.155] 277.255 562.509 576.932 568.300

BSSN
bθ2 1.402 [1.279, 1.625]
bc −0.323 [−0.372,−0.265]
bd 0.003 [−0.045, 0.021]

bα 16.160 [14.243, 18.776] 464.240 936.479 953.675 943.203

BAPN
bβ 0.048 [−0.011, 0.108]
bθ −0.070 [−0.090,−0.040]
bσ 0.543 [0.520, 0.565]
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Table 10: The KS, AD and CvM tests. Example 1.

Model
KS test AD test CvM test

TS p-value TS p-value TS p-value

EN 0.0306 0.935 0.2845 0.9546 0.0414 0.9316
CN 0.049 0.4644 1.063 0.322 0.124 0.4741

NDPC 0.0514 0.4108 1.1111 0.3066 0.1724 0.3336
CG 0.0639 0.1858 2.129 0.0801 0.2636 0.1775

BSSN 0.0751 0.0814 3.896 0.0118 0.5454 0.0302
FGSN 0.0832 0.0404 3.289 0.0195 0.4366 0.0537
BAPN 0.1331 0.0001 8.7874 0.0002 1.0307 0.0019
TPPN 0.1495 0 7.201 0 1.516 0

Concluding, the EN model fits better than the other models analyzed in this case.

The second real data present Intercountry Life-Cycle Savings Data ([27], [6]). A detailed
analysis of this example done identically to Example 1 is presented in the supplementary
material.

6. CONCLUSIONS

Heterogeneity is not the only one cause of population distribution’s bimodality. The
population distribution is shaped by many factors. Therefore, the aim of the paper was to
introduce into a family of the mixed bimodal distributions two distant relatives more. The
relatives in question are distant since they are not of mixture form. So, they was denoted
as non-mixed bimodal distributions. It is author’s duty to give potential user of non-mixed
bimodal distributions warning. Parameters of non-mixed bimodal distributions are not so
clearly interpretable as parameters of mixed bimodal distributions are. Interpretability com-
plication may, in turn, complicate conclusions when statistical reasoning procedure involves
non-mixed bimodal distributions.

As a result of considerations presented in this paper two probability distributions de-
noted SC and SD came into existence. The distributions are members of the Johnson family
of distribution. The SC and SD were tested in great depth, first for flexibility then for
applicability.

In order to test for flexibility the Malachov plot was applied. The Malachov plot is
a rectangular coordinate system with skewness (γ1) as the abscissa and kurtozis (γ2) as the
ordinate. Points located below Malachov parabola γ2 = γ2

1 + 1 are related to obtainable
γ1/γ2 combinations. The more flexible distribution is the wider points are scattered on the
Malachov plot. In this paper the above fact served as a basis for definition of numerical
flexibility measure being a fraction of an area “occupied” by particular distribution. The
skewness-kurtosis-square measure was denoted SKS. Points are dimensionless entities, for a
purpose of SKS measure, they were replaced with micro-squares. The best dispersion of
points (γ1, γ2) occurs for the SD, SU and SB distribution.
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After having flexibility testing completed the EN distribution was tested for applica-
bility. For the purpose of applicability testing two real data sets were used. Empirical pdf’s
estimated from these data sets display bimodality. The EN had seven competitors with re-
spect to applicability. These were already existing distributions that all have a property of
bimodality. The competition consisted in fitting distributions to the data sets. Two types
of rankings were performed. First the EN and its competitors were ranked with respect
to information criteria. The criteria were AIC, BIC and HQIC ones. Then the EN and its
competitors were ranked with respect to results of goodness-of-fit tests. The results were mea-
sured with p-values. The goodness-of-fit test involved in rankings were Kolmogorov-Smirnow,
Anderson-Darling and Crmaer-von Mises ones. Altogether there were three information crite-
ria rankings and three p-value rankings performed. It is interesting that all three information
criteria rankings gave quite the same results. What makes a matter of rankings more in-
teresting is that all three p-value rankings gave quite the same results too! So, one can say
about one joint information criteria ranking and one joint p-value ranking. These rankings
considerably differed from each other. In its essence this fact is not even strange since criteria
differ considerably too. It is of special interest that the EN ranks high in all the rankings.

The content of the paper shows that the EN (including SC) as a new member of the
Johnson family of distributions and simultaneously as a new distribution from the non-mixed
bimodal distribution category, is a competitive model that deserves to be added to the existing
distributions in modeling data.
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