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1. INTRODUCTION

Gompertz distribution was first introduced by Gompertz (1825) and plays an important

role in analyzing lifetime data and modeling data in some areas such as engineering, actuarial,

environmental, medical sciences, biological studies, demography, economics, finance, and

insurance. The Gompertz distribution has an increasing hazard rate. A study on Gompertz

distribution was done by Pollard and Valkovics (1992) in 1992. Marshall and Olkin (2007)

considered a negative Gompertz distribution. This distribution has been studied by many

authors. For more details refer to references Chen (1997), Franses (1994), Garg et al. (1970),

Minimol and Thomas (2014), Lenart (2014), Lenart and Missov (2016), Rao et al. (1992) Wu

and Lee (1999), Wu et al. (2003), and Wu et al. (2004).

Although classical distributions are simple and flexible in practical situations, classical

distributions do not always provide adequate fits to real data. Hence, to increase the flexibil-

ity of existing statistical distributions, for modeling data sets, different generalizations of the

classical distributions have been proposed in the statistical literature recently. A new gen-

eralization of Gompertz distribution which includes exponential (E), generalized exponential

(GE), and Gompertz (G) distributions as special cases were proposed by El-Gohary et al.

(2013) that is called generalized Gompertz (GG) distribution. Jafari et al. (2014) introduced

Beta-Gompertz (BG) distribution as another generalization of the Gompertz distribution.

The transmuted Gompertz (TG) distribution was introduced by Abdul-Moniem and Seham

(2015). El-Damcese et al. (2015) also proposed another generalization of Gompertz dis-

tribution for modeling lifetime, which is known as odd generalized exponential Gompertz

(OGEG) distribution. Yari et al. (2020) studied a new generalization called Marshall Olkin

Gompertz Makeham (MOGM) distribution. Karimi Ezmareh and Yari (2022a) introduced

Kumaraswamy-G Generalized Gompertz distribution with application to lifetime data. In-

ference and prediction for modified Weibull distribution based on doubly censored samples

presented by Karimi Ezmareh and Yari (2022b).

One of the most important issues in statistical analysis is finding the suitable distribu-

tion for data set modeling. Knowing the appropriate distribution in the modeling of data sets

leads to an accurate analysis of the data. Consequently, the main purpose of this paper is to

introduce a new generalization of Gompertz distribution called as exponentiated generalized

exponential Gompertz (EGEG) distribution.

The rest of the paper is organized as follows: in Section 2, the new model and its

sub-models are introduced. In Section 3, some of the statistical properties of the introduced

distribution are calculated. Section 4 estimates the unknown parameters of this distribution

using the maximum likelihood (MLE), least square (LS), and Bayes methods, and related

simulation studies are presented. In Section 5, the criteria for evaluating the appropriate

model are presented. Finally, Section 6 illustrates the application of the new model by means

of a real data set.
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2. NEW MODEL

Before introducing the new model, the exponentiated generalized exponential family

and Gompertz distribution are defined.

Definition 2.1. Let T be an exponential random variable with probability density

function (pdf) f(t) = λe−λt, t, λ > 0 and X be a continuous random variable with pdf F ,

where f and F are pdf and cumulative distribution function (cdf) respectively. Then the

cdf of the exponentiated generalized exponential EGE-X family of distributions is written as

follows

(2.1) G(x) =

∫ − log[1−(1−F̄ d(x))c]

0
λe−λtdt = 1− {1− [1− (1− F (x))d]c}λ, λ, x, c, d > 0,

where F̄ (x) = 1− F (x) (Nasiru et al., 2017).

Definition 2.2. A random variable X has a Gompertz distribution with positive

parameters γ and β , i.e., X ∼ Go(γ, β), if its cdf and pdf are given as follows

FGo(x) = 1− e
−β

γ
(eγx−1)

, x > 0,(2.2)

fGo(x) = βeγxe
−β

γ
(eγx−1)

, x > 0.(2.3)

Now by replacing expression (2.2) into expression (2.1), the cdf of the new EGEG

distribution for x, β, γ > 0 is obtained by

(2.4) G(x) = 1−
[
1−

(
1− e

−βd
γ
(eγx−1))c]λ

, d, c, λ > 0.

The pdf of the EGEG distribution is as follows

(2.5) g(x) = βλcdeγxe
−βd

γ
(eγx−1)(

1− e
−βd

γ
(eγx−1))c−1[

1−
(
1− e

−βd
γ
(eγx−1))c]λ−1

.

The pdf and cdf plots of the EGEG distribution for different parameter values are shown in

Figure 2.

2.1. Expansion for the density function

In the following Lemma, the EGEG pdf expansion is obtained.

Lemma 2.1. The EGEG distribution pdf is a linear combination of Gompertz dis-

tribution with different parameters as

(2.6) g(x) = λcd
∞∑
i=0

∞∑
j=0

ωij.λfGo(x; γ, β
′),
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Figure 1: The pdf and cdf plots of the EGEG distribution for some pa-
rameter values

where β′ = βd(j + 1), Γ represents the gamma function, and

(2.7) ωij.λ =

(
λ− 1

i

)(
ci+ c− 1

j

)
(−1)i+j

d(j + 1)
,

where, for k a non-negative integer and r a real number(
r

k

)
=

r(r − 1)...(r − k + 1)

k!
=

(r)k
k!

,

where ()k reprsents the Pochhammer symbol.

Proof: For a real non-integer η > 0 and |z| < 1

(2.8) (1− z)η−1 =
∞∑
i=0

(−1)iΓ(η)

i!Γ(η − i)
zi.

By using expansion (2.8) and the fact that 0 < e
−β

γ
(eγx−1)

< 1 implies that

g(x) = βλcdeγxAd,β,γ

(
1−Ad,β,γ

)c−1[
1−

(
1−Ad,β,γ

)c]λ−1
,

= βλcdeγxAd,β,γ

(
1−Ad,β,γ

)c−1
∞∑
i=0

(−1)iΓ(λ)

i!Γ(λ− i)

(
1−Ad,β,γ

)ci
,

= βλcdeγxAd,β,γ

∞∑
i=0

(−1)iΓ(λ)

i!Γ(λ− i)

(
1−Ad,β,γ

)ci+c−1
,

= βλcdeγxAd,β,γ

∞∑
i=0

(−1)iΓ(λ)

i!Γ(λ− i)

∞∑
j=0

(−1)jΓ(ci+ c)

j!Γ(ci+ c− j)
e
−βdj

γ
(eγx−1)

,

= λcd
∞∑
i=0

∞∑
j=0

(−1)i+jΓ(λ)Γ(ci+ c)

i!j!Γ(λ− i)Γ(ci+ c− j)d(j + 1)
× βd(j + 1)eγxe

−βd(j+1)
γ

(eγx−1)︸ ︷︷ ︸
fGo(x;γ,βd(j+1))

,

= λcd
∞∑
i=0

∞∑
j=0

ωij.λfGo(x; γ, β
′),

where Ad,β,γ = exp
[
− βd

γ

(
exp(γx)− 1

)]
, and fGo is the pdf of Gompetrz distribution.
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2.2. Sub-models

1) If we set λ = c = d = 1, Gompertz distribution is obtained with two parameters of β

and γ.

2) If we set λ = 1, exponentiated generalized Gompertz distribution is obtained with four

parameters of β, γ, c and d.

3. SOME STATISTICAL PROPERTIES

Now, some of the statistical properties of the EGEG distribution are studied.

3.1. Survival and hazard rate function

The survival function (S) and hazard rate function (H) of the EGEG distribution, for

non-negative x and β, γ, d, c, λ > 0, are defined as follows, respectively,

S(x) =
[
1−

(
1− e

−βd
γ
(eγx−1))c]λ

, β, γ, d, c, λ > 0(3.1)

H(x) =
βλcdeγxe

−βd
γ
(eγx−1)(

1− e
−βd

γ
(eγx−1))c−1

1−
(
1− e

−βd
γ
(eγx−1))c , β, γ, d, c, λ > 0·(3.2)

3.2. Moments

The moments play a very important role in statistical analysis. They are used to study

the properties of distributions such as tendency, dispersion, skewness, and kurtosis. Hence,

the rth moment of the EGEG distribution is presented in Theorem 3.1.

Theorem 3.1. The rth non-central moment of the EGEG distribution is given by

(3.3) µ′
r = λcd

∞∑
i=0

∞∑
j=0

ωij.λ
r!

γr
e

β′
γ Er−1

1 (
β′

γ
), β′, γ, d, c, λ > 0,

where ωij.λ is defined by (2.7), β′ = βd(j + 1) and

(3.4) Er−1
1 (

β′

γ
) =

1

(r − 1)!

∫ ∞

1
(log x)r−1x−1e

−β′
γ
x
dx.

Proof: It is known that if X ∼ Go(γ, β), then E(Xr) = r!
γr e

β
γ Er−1

1 (βγ ). Thus, based
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on expression (2.6), we have

µ′
r = E(Xr) =

∫ ∞

0
xrg(x)dx,

=

∫ ∞

0
xrλcd

∞∑
i=0

∞∑
j=0

ωij.λfGo(x; γ, β
′)dx,

= λcd

∞∑
i=0

∞∑
j=0

ωij.λ

∫ ∞

0
xrfGo(x; γ, β

′)dx,

= λcd

∞∑
i=0

∞∑
j=0

ωij.λ
r!

γr
e

β′
γ Er−1

1 (
β′

γ
)·

3.3. Quantile function

The quantile function plays an important role in specifying a distribution, generating

a sample from a distribution, and calculating quartiles, skewness, and kurtosis.

Lemma 3.1. The EGEG distribution quantile function is given by

(3.5) Qx(τ) =
1

γ
log

{
1− γ

βd
log

[
1−

(
1− (1− τ)

1
λ
) 1

c
]}
,

where 0 < τ < 1.

Proof: In order to obtain the quantile function, it is sufficient to solve the following

equation

(3.6) G(xτ ) = P (X ≤ xτ ) = τ.

Thus

(3.7) 1−
{
1−

[
1−

(
e
−β

γ
(eγxτ−1))d]c}λ

= τ.

Let xτ = Qx(τ). By solving Equation (3.7) for Qx(τ), yields

Qx(τ) =
1

γ
log

{
1− γ

βd
log

[
1−

(
1− (1− τ)

1
λ
) 1

c
]}

·

When τ = 0.25, 0.5 and 0.75, the first quartile (Q1), median and third quartile (Q3) of the

EGEG distribution are obtained, respectively.

Skewness is a measure indicating the presence or absence of symmetry and kurtosis de-

scribes the degree to which a probability distribution is peaked and flat. These two measures

are often given by γ1 =
µ3

σ3 and γ2 =
µ4

σ4 respectively, where µr = E(X −µ)r. When the third



Using the “revstat-v4.sty” package 7

and fourth moments do not exist, these two criteria can be approximated based on quantile

function by Galton (1883) and Moors (1988) as follows

Skewness =
Q(68)− 2Q(48) +Q(28)

Q(68)−Q(28)
,(3.8)

Kurtosis =
Q(78)−Q(58) +Q(38) +Q(18)

Q(68)−Q(28)
·(3.9)

Since the exact value of this new distribution moments can not be calculated, using

relations (3.8) and (3.9), the skewness and kurtosis of the EGEG distribution can be obtained.

The median, quartiles, skewness and kurtosis values for β = 1.1, γ = 2, c = 4, d = 6

and for different values of observation x and λ are listed in Table 1.

Table 1: The median, Q1, Q3, skewness, and kurtosis for different values
of x and λ.

Statistics x1 = 1.5 x2 = 3 x3 = 2 x4 = 5 x5 = 8
λ1 = 1.2 λ2 = 2 λ3 = 3.2 λ4 = 4.5 λ5 = 6

Median 0.2059 0.1694 0.1429 0.1225 0.1152
Q1 0.1481 0.1240 0.1061 0.0919 0.0868
Q3 0.2737 0.2214 0.1842 0.1561 0.1462
Skewness 1.7193 1.8075 1.8862 1.9570 1.9845
Kurtosis 1.2250 1.2247 1.2235 1.2220 1.2214

3.4. Order statistics

Consider n a positive integer, a random sample (X1, ..., Xn) from a EGEG distribution

and X(p) the pth order statistics. The pdf of X(p) is given by

(3.10) gX(p)(x) =
1

B(p, n− p+ 1)
[G(x)]p−1[1−G(x)]n−pg(x),

where G and g are the pdf and cdf of the EGEG distribution and B is the beta function,

defined for positive υ1 and υ2 by (B(υ1, υ2) =
Γ(υ1)Γ(υ2)
Γ(υ1+υ2)

).

Theorem 3.2. The pth order statistics of the EGEG distribution can be expressed

by

(3.11) gX(p)(x) =
λcd

B(p, n− p+ 1)

n−p∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

ωijklfG(x; γ, β
′′),

where β′′ = βd(l+1) and

(3.12) ωijkl =
(−1)i+j+k+lΓ(n− p+ 1)Γ(i+ p)Γ(λj + λ)Γ(ck + c)

i!j!k!l!Γ(n− p− i+ 1)Γ(i+ p− j)Γ(λj + λ− k)Γ(ck + c− l)d(l + 1)
·
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Proof: At first, by using the binomial extension and the fact that 0 < G(x) < 1 for

x > 0, [1−G(x)]n−p can be written as follows

(3.13) [1−G(x)]n−p =

n−p∑
i=0

(−1)i
(
n− p

i

)
[G(x)]i.

Substituting expression (3.13) into expression (3.10), we get

(3.14) gX(p)(x) =
1

B(p, n− p+ 1)

n−p∑
i=0

(−1)i
(
n− p

i

)
[G(x)]i+p−1g(x).

By replacing expressions (2.4) and (2.5) into expression (3.14), yields

gX(p)(x) =
1

B(p, n− p+ 1)

n−p∑
i=0

(−1)i
(
n− p

i

){
1−

[
1−

(
1−Ad,β,γ

)c]λ}i+p−1

× βλcdAd,β,γ

(
1−Ad,β,γ

)c−1[
1−

(
1−Ad,β,γ

)c]λ−1
.(3.15)

By using expansion (2.8), we obtain{
1−

[
1−

(
1−Ad,β,γ

)c]λ}i+p−1

=

∞∑
j=0

(−1)jΓ(i+ p)

j!Γ(i+ p− j)

[
1−

(
1−Ad,β,γ

)c]λj
,(3.16)

[
1−

(
1−Ad,β,γ

)c]λj+λ−1
=

∞∑
k=0

(−1)kΓ(λj + λ)

k!Γ(λj + λ− k)

(
1−Ad,β,γ

)ck
,(3.17)

(
1−Ad,β,γ

)ck+c−1
=

∞∑
l=0

(−1)lΓ(ck + c)

l!Γ(ck + c− l)
e
−βdl

γ
(eγx−1)

.(3.18)

Finally, by substituting expressions (3.16), (3.17), and (3.18) into expression (3.15), the pth

order statistics pdf is obtained as follows

gX(p)(x) =
λcd

B(p, n− p+ 1)

n−p∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

βd(l + 1)eγxe
−βd(l+1)

γ
(eγx−1)

× (−1)i+j+k+lΓ(n− p+ 1)Γ(i+ p)Γ(λj + λ)Γ(ck + c)

i!j!k!l!Γ(n− p− i+ 1)Γ(i+ p− j)Γ(λj + λ− k)Γ(ck + c− l)d(l + 1)
,

=
λcd

B(p, n− p+ 1)

n−p∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

fG(x; γ, β
′′)ωijkl.

4. PARAMETERS ESTIMATION

In this section, the parameters of EGEG distribution are estimated using three methods

maximum likelihood (MLE), least square (LS), and Bayes.
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4.1. MLE method

Let X1, X2, ..., Xn be a random sample that has EGEG distribution with positive pa-

rameters Θ = (β, γ, λ, c, d), then the likelihood function is as follows

l(Θ|x) = (βλcd)neγ
∑n

i=1 xi

n∏
i=1

e
−βd

γ
(eγxi−1)(

1− e
−βd

γ
(eγxi−1))c−1

×
[
1−

(
1− e

−βd
γ
(eγxi−1))c]λ−1

, x > 0.(4.1)

The log-likelihood function is given by

L(Θ | x) = n log β + n log λ+ n log c+ n log d+
βnd

γ
+ γ

n∑
i=1

xi −
βd

γ

n∑
i=1

eγxi

+ (c− 1)
n∑

i=1

log
(
1− e

−βd
γ
(eγxi−1))

+ (λ− 1)
n∑

i=1

log
[
1−

(
1− e

−βd
γ
(eγxi−1))c]

.

To calculate the MLE estimators of the EGEG distribution parameters, it is enough

to maximize the log-likelihood function concerning the parameters. For this purpose, the

partial derivative of the log-likelihood function for each of the parameters is obtained and is

set equal to zero. Partial derivatives to parameters are

∂L(Θ | x)
∂β

=
n

β
+

nd

γ
− d

γ

n∑
i=1

eγxi +
(c− 1)d

γ

n∑
i=1

(eγxi − 1)zi
1− zi

− (λ− 1)cd

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1

1− (1− zi)c
= 0,

∂L(Θ | x)
∂γ

=

n∑
i=1

xi −
βnd

γ2
+

βd

γ

n∑
i=1

eγxi(
1

γ
− xi)− d(c− 1)

n∑
i=1

Azi
1− zi

+ (λ− 1)cd

n∑
i=1

Azi(1− zi)
c−1

1− (1− zi)c
= 0,

∂L(Θ | x)
∂d

=
n

d
+

βn

γ
− β

γ

n∑
i=1

eγxi +
(c− 1)β

γ

n∑
i=1

(eγxi − 1)zi
1− zi

− (λ− 1)cβ

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1

1− (1− zi)c
= 0,

∂L(Θ | x)
∂c

=
n

c
+

n∑
i=1

log(1− zi)− (λ− 1)

n∑
i=1

(1− zi)
c log(1− zi)

1− (1− zi)c
= 0,

∂L(Θ | x)
∂λ

=
n

λ
+

n∑
i=1

log
[
1− (1− zi)

c
]
= 0,

where

zi = e
−βd

γ
(eγxi−1)

,(4.2)

A =
β

γ2
(eγxi − 1)− β

γ
xie

γxi .(4.3)

The parameter estimators can not be calculated by analytical methods. Consequently, the

Monte Carlo simulation is used to obtain estimators.
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4.1.1. Asymptotic confidence bounds

For large samples, the MLEs (β̂, γ̂, λ̂, ĉ, d̂) have approximately multivariate normal dis-

tribution with mean (β, γ, λ, c, d) and the covariance matrix I−1(Θ), where Θ = (β, γ, λ, c, d)

and I−1(Θ) is the inverse of the observed information matrix which is defined as follows

(4.4) Iij(Θ) =
∂2L(Θ | x)
∂θi∂θj

(4.5)
(
I−1(Θ | x)

)
ij
= Cov(θ̂i, θ̂j), i, j = 1, 2, 3, 4, 5,

where Θ = (θ1, θ2, θ3, θ4, θ5) = (β, γ, λ, c, d). Thus, we have

∂2L(Θ | x)
∂β2

= − n

β2
− (c− 1)d2

γ2

n∑
i=1

(eγxi − 1)2zi
(1− zi)2

− (λ− 1)cd2

γ2

n∑
i=1

(eγxi − 1)2zi(1− zi)
c−1C

[1− (1− zi)c]2
,

∂2L(Θ | x)
∂γ2

=
2βnd

γ3
+ d

n∑
i=1

B − d(c− 1)

n∑
i=1

Bzi(1− zi) + dA2zi(2− zi)

(1− zi)2

+ cd(λ− 1)

n∑
i=1

1

[1− (1− zi)c]2
×
{[

Bzi(1− zi)
c−1 + dA2zi(1− zi)

c−1

− (c− 1)dA2z2i (1− zi)
c−2

][
1− (1− zi)

c
]
− cdA2z2i (1− zi)

2c−2
}
,

∂2L(Θ | x)
∂d2

= − n

d2
− (c− 1)β2

γ2

n∑
i=1

(eγxi − 1)2zi
(1− zi)2

− (λ− 1)cβ2

γ2

n∑
i=1

(eγxi − 1)2zi(1− zi)
c−1C

[1− (1− zi)c]2
,

∂2L(Θ | x)
∂c2

= − n

c2
− (λ− 1)

n∑
i=1

[log(1− zi)]
2(1− zi)

c(
1− (1− zi)c

)2 ,

∂2L(Θ | x)
∂λ2

= − n

λ2
,

∂2L(Θ | x)
∂β∂λ

= −cd

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1

1− (1− zi)c
,

∂2L(Θ | x)
∂γ∂λ

= cd

n∑
i=1

Azi(1− zi)
c−1

1− (1− zi)c
,

∂2L(Θ | x)
∂d∂λ

= −cβ

γ

n∑
i=1

(eγxi − 1)zi[1− zi]
c−1

1− (1− zi)c
,

∂2L(Θ | x)
∂c∂λ

= −
n∑

i=1

(1− zi)
c log(1− zi)

1− (1− zi)c
,

∂2L(Θ | x)
∂β∂c

=
d

γ

n∑
i=1

(eγxi − 1)zi
1− zi

− (λ− 1)d

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1

{ 1

1− (1− zi)c
+

c log(1− zi)

[1− (1− zi)c]2

}
,

∂2L(Θ | x)
∂γ∂c

= −d
n∑

i=1

Azi
1− zi

+ cd(λ− 1)
n∑

i=1

Azi(1− zi)
c−1 log(1− zi)

[1− (1− zi)c]2
+ d(λ− 1)

n∑
i=1

Azi(1− zi)
c−1

1− (1− zi)c
,
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∂2L(Θ | x)
∂d∂c

=
β

γ

n∑
i=1

(eγxi − 1)zi
1− zi

− (λ− 1)βc

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1 log(1− zi)

[1− (1− zi)c]2

− (λ− 1)β

γ

n∑
i=1

(eγxi − 1)zi(1− zi)
c−1

1− (1− zi)c
,

∂2L(Θ | x)
∂γ∂d

= −βn

γ2
+

β

γ2

n∑
i=1

eγxi − β

γ

n∑
i=1

xie
γxi − (c− 1)

n∑
i=1

Azi
1− zi

+
(c− 1)dβ

γ

n∑
i=1

A(eγxi − 1)zi
(1− zi)2

+ c(λ− 1)
n∑

i=1

Azi(1− zi)
c−1

1− (1− zi)c

− (λ− 1)cdβ

γ

n∑
i=1

A(eγxi − 1)zi(1− zi)
c−1

[1− (1− zi)c]2
(

zi
1− zi

− 1)[1− (1− zi)
c],

∂2L(Θ | x)
∂γ∂β

= − n

γ2
+

d

γ2

n∑
i=1

eγxi − d

γ

n∑
i=1

xie
γxi − d(c− 1)

n∑
i=1

A
β zi(1− zi)− d

γ (e
γxi − 1)Azi

(1− zi)2

+ cd(λ− 1)
n∑

i=1

[Aβ zi(1− zi)
c−1 − d

γ (e
γxi − 1)Azi(1− zi)

c−1][1− (1− zi)
c]

[1− (1− zi)c]2

+
cd2(λ− 1)

γ

n∑
i=1

(eγxi − 1)Az2i (1− zi)
c−2[(c− 1) + (1− zi)

c]

[1− (1− zi)c]2
,

where zi and A are given in expressions (4.2) and (4.3), respectively. In addition

B = −2β

γ3
(eγxi − 1) +

2β

γ2
xie

γxi − β

γ
x2i e

γxi ,

C = (1− zi)
c + zi(1− zi)

c−1 +
(c− 1)zi
1− zi

− 1.

The approximate (1−α)100% confidence intervals for parameters Θ = (θ1, θ2, θ3, θ4, θ5) =

(β, γ, λ, c, d), are

θ̂i ± ξα
2

√
var(θ̂i), i = 1, 2, 3, 4, 5,

where ξα
2
is the upper α

2 percentile of the standard normal distribution.

4.2. LS method

To estimate the new model parameters, it is enough to minimize the following function

with respect to parameters

(4.6) LS(Θ,x) =

n∑
i=1

(
G(x(i))− ui

)2
, x(i) > 0,

where x(i) is i
th order sample, Θ = (β, γ, λ, c, d), and ui =

i
n+1 . By putting expression (2.4)

into expression (4.6), the LS function is given by

(4.7) LS(Θ,x) =
n∑

i=1

(
1−

[
1−

(
1− e

−βd
γ
(e

γx(i)−1))c]λ − ui

)2
.
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Now, partial derivatives of the function (4.7) relative to Θ = (β, γ, λ, c, d) parameters are

obtained and then are set equal to zero.

∂LS

∂β
=

2λcd

γ

n∑
i=1

(eγx(i) − 1)z(i)(1− z(i))
c−1

[
1− (1− z(i))

c
]λ−1

Bi = 0,(4.8)

∂LS

∂γ
= −2λcd

n∑
i=1

z(i)(1− z(i))
c−1AiBi = 0,(4.9)

∂LS

∂d
=

2λcβ

γ

n∑
i=1

z(i) log(z(i))(1− z(i))
c−1

[
1− (1− z(i))

c
]λ−1

Bi = 0,(4.10)

∂LS

∂c
= 2λ

n∑
i=1

(1− z(i))
c log(1− z(i))

[
1− (1− z(i))

c
]λ−1

Bi = 0,(4.11)

∂LS

∂λ
= −2

n∑
i=1

[
1− (1− z(i))

c
]λ

log
(
1− (1− z(i))

c
)
Bi = 0,(4.12)

where z(i) = e
βd
γ
(e

γx(i)−1)
and

Ai =
β

γ2
(eγx(i) − 1)− β

γ
x(i)e

γx(i) ,

Bi = 1−
[
1−

(
1− z(i)

)c]λ − ui.

The LS estimators are obtained by solving Equations (4.8), (4.9), (4.10), (4.11), and (4.12).

4.3. Bayes method

Let Θ = (θ1, θ2, θ3, θ4, θ5) = (β, γ, λ, c, d) be the vector of parameters of the EGEG

distribution and suppose that these have independent Uniform prior distributions, with pdf

given by

(4.13) π(θi) =
1

bi − ai
, ai ≤ θi ≤ bi, i = 1, ..., 5.

The joint posterior pdf is defined as

(4.14) g(Θ | x) = l(x | Θ)π(β)π(γ)π(λ)π(c)π(d)∫ b5
a5

∫ b4
a4

∫ b3
a3

∫ b2
a2

∫ b1
a1

L(x | Θ)π(β)π(γ)π(λ)π(c)π(d)dΘ
·

Since the denominator in equation (4.14) contains a five-fold integral, direct calculation

is challenging. Therefore, we employ the ”important sampling” method (Rubinstein and

Kroese, 2016). The following section outlines this technique.

4.3.1. Important sampling technique

The algorithm of the important sampling technique has the following steps:
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Algorithm 1 Important sampling

1: A large sample of N size, from the prior distributions of the parameters is generated.
This sample is represented by Θ1 = (β1, γ1, λ1, c1, d1), ..., ΘN = (βN , γN , λN , cN , dN ).

2: For i = 1, 2, ..., N , the values of f(x | Θi) are calculated using the x observation vector.

3: For i = 1, 2, ..., N , the values of Ci =
f(x|Θi)∑N
i=1 f(x|Θi)

are calculated.

4: Each function in form E
(
h(Θ | x)

)
can be estimated with the sum of

∑N
i=1Cih(Θi).

In the Bayes method, usually, the mean of the posterior distribution is considered as

the parameter estimators. The relations
∑N

i=1Ciβi,
∑N

i=1Ciγi,
∑N

i=1Ciλi,
∑N

i=1Cici and∑N
i=1Cidi in step 4, are calculated as the β, γ, λ, c and d estimators, respectively.

4.4. Simulation study

For estimating the EGEG distribution parameters using the MLE, LS, and Bayes meth-

ods, we encountered equations that were not solvable by analytical methods. Consequently,

these methods are compared using Monte Carlo simulation and with the help of suitable

numerical methods. Suppose the sample size n = 20, 40, 60, 80, 100, 120 and the number of

repetitionsm = 1000 are considered. In the first step, a random sample of this distribution us-

ing the inverse transform method is generated with parameters β = 5, γ = 3, d = 1.5, c = 2.5,

and λ = 1.28. The inverse transform method is as follows

1. Generate U from Uniform(0,1),

2. Return X = G−1(U),

where X = 1
γ log

{
1 − γ

βd log
[
1 −

(
1 − (1 − U)

1
λ

) 1
c
]}
. Then, the parameter estimators are

obtained using the Monte Carlo simulation. Here, criteria such as variance, bias, and mean

square error (MSE) are used to compare estimators. The formulas for the bias and the MSE

are respectively

Bias(Θ̂) = E(Θ̂)−Θ,(4.15)

MSE(Θ̂) = var(Θ̂)− [Bias(Θ̂)]2.(4.16)

The best estimator is the one with the lowest variance and MSE and its bias close to

zero. The results of simulation studies are summarized in Figures 2, 3, 4, 5, and 6.

Based on these Figures, for large samples, the MLE method is the most appropriate

method of estimation. The criteria bias, variance, and MSE confirm these results.

5. GOODNESS OF FIT TESTS AND MODEL SELECTION CRITERIA

In this section, several criteria have been used to compare different distributions in

terms of the ability to fit into real data. The most widely used criteria are: root mean
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Figure 2: Comparison of the MLE, LS, and Bayes estimators for β.

Figure 3: Comparison of the MLE, LS, and Bayes estimators for γ.

square errors (RMSE), coefficient of determination (R2), Kolmogorov-Simirnov test (KS),

Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike

information criteria (CAIC) and log-likelihood function (L). The formulas for calculating

these criteria are listed in Table 2, where q is the number of parameters, n is the sample size,
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Figure 4: Comparison of the MLE, LS, and Bayes estimators for d.

Figure 5: Comparison of the MLE, LS, and Bayes estimators for c.

and x(i) is the ith ascending order observation.
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Figure 6: Comparison of the MLE, LS, and Bayes estimators for λ.

Table 2: The formulas of criteria for model evaluation.
Criteria Formulas

KS KS = max1≤i≤n{| in − F (x(i))|, |F (x(i))− i−1
n |}

RMSE RMSE =

[∑n
i=1

(
F̂ (x(i)− i

n+1
)
)2

n

] 1
2

R2 R2 = 1−
∑n

i=1

(
F̂ (x(i)− i

n+1
)
)2

∑n
i=1

(
F̂ (x(i)−

¯̂
F (x(i)))

)2
AIC AIC = −2L+ 2q
BIC BIC = −2L+ q log(n)

CAIC CAIC = −2L+ 2qn
n−q−1

6. APPLICATION

This section presents the new model application on real data. The used data are

the windmill data from Kotb and Raqab (2017). This data set has been listed in Table 3.

The EGEG distribution performance is compared with odd generalized Gompertz (OGG),

generalized Gompertz (GG), and Gamma (Ga) distributions. The pdf of these distributions,

defined for positive parameters, are listed in Table 4. Table 5 shows the MLE estimators

of unknown parameters for the selected distributions. In Table 6, the performance of the

proposed model is evaluated against the selected distributions. Figures 7, 8, and 9 show

the empirical density and cumulative distribution, histogram and theoretical densities, and

Empirical and theoretical CDFs on windmill data, respectively.
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Table 3: Windmill data
0.123 0.5 0.558 0.653 1.057 1.137 1.144 1.194 1.501 1.562
1.582 1.737 1.800 1.822 1.866 1.930 2.088 2.112 2.166 2.179
2.236 2.294 2.303 2.310 2.386

Table 4: PDF of the fitted models
Distribution PDF, g(x)

EGEG βλcd
(
e
−β

γ
(eγx−1))d[

1−
(
e
−β

γ
(eγx−1))d]c−1{

1−
[
1−

(
e
−β

γ
(eγx−1))d]c}λ−1

I[0,∞)(x)

OGG abβeγxe
β
γ
(eγx−1)

e−a[e
β
γ (eγx−1)−1]

{
1− e−a[e

β
γ (eγx−1)−1]

}b−1
I[0,∞)(x)

GG bβeγxe
−β

γ
(eγx−1)[

1− e
−β

γ
(eγx−1)]b−1

I[0,∞)(x)

Ga xα−1e
− x

β

βαΓ(α) I[0,∞)(x)

Table 5: MLE
Distribution EGEG OGG GG Ga

MLE β̂ = 2.218e− 05 β̂ = 1.290e− 06 β̂ = 2.992e− 06 α̂ = 3.574639

γ̂ = 6.826e+ 00 γ̂ = 6.612e+ 00 γ̂ = 6.068e+ 00 β̂ = 2.220997

d̂ = 6.961e− 02 â = 1.195e− 01 b̂ = 1.109e− 01

ĉ = 1.949e− 01 b̂ = 1.464e− 01

λ̂ = 8.224e− 01

6.1. Result

According to Table 6 and Figures 8, and 9, the superiority of the EGEG distribution

for modeling real data is shown. This is evident from its highest L, Pvalue, and R2, and its

lowest AIC, BIC, CAIC, and RMSE.

7. CONCLUSION

This study proposed a new family of distributions. This family contains several com-

monly used distributions in statistical analysis as submodels. Some important statistical

properties of the EGEG distribution, such as quantile function, moments, and order statis-

tics were obtained. The distribution parameters were estimated using three methods MLE,

LS, and Bayes. Simulation studies were presented to compare estimation methods. Finally,

an application of this new distribution was presented to prove its suitability and it turns out

that this distribution fits better on windmill data than OGG, GG, and Ga distributions.
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Table 6: Goodness-of-fit statistics for windmill data
Distribution L AIC BIC CAIC KS Pvalue RMSE R2

EGEG −19.70936 49.41872 55.5131 52.5766 0.111 0.8847 0.0465931 0.9768793
OGG −31.76159 71.52318 76.39868 73.52318 0.2061 0.2078 0.08630715 0.851494
GG −24.79431 55.58862 59.24525 56.73148 0.2468 0.07936 0.1459928 0.5862012
Ga −28.95077 61.90153 64.33929 62.44699 7.6624 2.22e− 16 0.09863256 0.8650929

Figure 7: Empirical density and cumulative distribution for windmill data.

Figure 8: Histogram and theoretical densities.
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Figure 9: Empirical and theoretical CDFs.
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