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inferential methods are extended to the cases of a three-parameter Burr XII model, and a covariate-
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the inferential results to a prediction issue is discussed with an illustration.
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1. INTRODUCTION

The Burr system of distributions was proposed by Burr, for modelling a wide variety of
data observed in real life [8]. Subsequently, among this system of distributions, the Burr XII
distribution received special attention by researchers, see Tadikamalla [22] and the references
therein. The Burr XII distribution is given by the cumulative distribution function (CDF)

(1.1) FY (y;α, β) = 1− (1 + yβ)−α, y > 0,

with corresponding probability density function (PDF)

(1.2) fY (y;α, β) = αβyβ−1(1 + yβ)−(α+1), y > 0.

with α > 0 and β > 0, both of which are shape parameters. The Burr XII distribution gets
its flexibility through the shape parameters β and α. Figures 1 and 2 display the PDF of
the Burr XII distribution for different values of β (keeping α fixed), and α (keeping β fixed),
respectively. Note that for β ≤ 1, the distribution is L-shaped, while it is unimodal for β > 1,
as observed by Beirlant et al. [6].
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Figure 1: Density function of the Burr XII model for different values of β when α = 1.
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Figure 2: Density function of the Burr XII model for different values of α when β = 1.

Zimmer et al. [24] advocated for the use of the Burr XII distribution as an alternative
to lognormal and Weibull distributions, and mentioned the many advantages this model has.
The log-logistic distribution, which is another important lifetime model, is a special case of
the Burr XII distribution; this also is a motivation to use the Burr XII distribution to model
failure-time data [24].

Despite its great flexibility, however, the Burr XII distribution was relatively less used
in survival and reliability studies, especially compared to the well-known models like Weibull,
gamma etc. Recently, some researchers have used the Burr XII model in the context of
failure-time data. For example, Soliman [21] modelled progressively type-II censored data by
the Burr XII distribution. Silva et al. [19] and Silva et al. [20] discussed regression models
for the Burr XII distribution based on censored data.

Left truncated right censored (LTRC) data are commonly observed in studies involving
lifetimes of experimental units [14]. For example, in many reliability and survival experiments,
the main event of interest is the failure of experimental units. Due to practical time constraints
on sample collection in such experiments, the observed samples are often either left truncated,
or right censored, or both. In medical studies, for example, groups of subjects are often
followed over time for observing the occurrence of certain disease or event such as death.
LTRC data arise naturally in situations of this type. Another example of LTRC data may
be found in oraganisational or social science studies where start-up businesses are observed
over a time-window during which they may fail.

As left truncation and right censoring are quite commonly observed features among
data arising out of survival and reliability studies, it is of natural importance to develop
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inferential methods for the Burr XII distribution based on LTRC data, especially as due
to its flexible nature the Burr XII model has been posed as a general purpose model for
failure-time data by Zimmer et al. [24]. To use the Burr XII distribution as a general purpose
failure-time model, it is important to develop inferential methods for the model based on
LTRC data which is one of the most common and general structures among incomplete data
formats in lifetime studies. However, so far, no researcher has attempted modelling LTRC
data by using the Burr XII distribution.

In this article, we discuss modelling LTRC failure-time data by the Burr XII distri-
bution in detail. First, we consider the two-parameter version of the Burr XII distribution,
as it is the more frequently used version. The stochastic expectation maximization (St-EM)
algorithm has emerged as a stable, efficient, and convenient method for parameter estimation
for incomplete data problems. For estimating the parameters of the Burr XII model, we
develop the steps of the St-EM algorithm based on LTRC data. We discuss two approaches
for constructing confidence intervals, one of them being based on an adaptation of the miss-
ing information principle of Louis [15], and the other being based on parametric bootstrap
approach. For comparison purposes, we also use the Newton-Raphson (NR) method which
is a direct approach to obtain maximum likelihood estimates by optimizing the observed
likelihood function. Through detailed Monte Carlo simulations, we study the performance of
the proposed methods of inferences. Further, we extend our discussion of inferential methods
to the cases for a covariate-included model, and the three-parameter Burr XII distribution.
These are the main contributions of these paper.

The article is organized as follows. A brief introduction to LTRC data is provided
in Section 2. The St-EM algorithm for the two-parameter Burr XII model based on LTRC
data is discussed in detail in Section 3; both point and interval estimation procedures are
presented. The direct method of obtaining MLEs is presented in this section too. This
section also contains a discussion of inferential methods for a covariate-included model. The
detailed results of the numerical experiments are presented in Section 4. Then, in Section 5,
discussion of the St-EM algorithm is extended to a three-parameter Burr XII model with a
scale parameter in addition to the two shape parameters α and β. This three-parameter model
is also used in failure-time data modelling [24]. An application of the inferential methods in
predicting the expected number of failures in a future time interval is presented in Section
6. Along with an estimate of the expected number of failures in a future time interval, we
provide asymptotic confidence intervals for this expected number of failures. This is of direct
practical relevance, as in many situations like maintenance, the researcher may want to have
an estimate of the expected number of future failures during a certain time period. In Section
7, a numerical illustration based on a real data is provided. Finally, mentioning some future
directions of research in this area, the paper is concluded with some remarks in Section 8.

2. LEFT TRUNCATED RIGHT CENSORED DATA

Hong et al. [13] analyzed LTRC data obtained from an electrical industry in the US.
Following the setup used by Hong et al. [13], Balakrishnan and Mitra [1, 2, 3, 4, 5] discussed
the EM algorithm based on LTRC data for some commonly used failure-time models such as
lognormal, Weibull, gamma, and generalized gamma; see also Mitra et al. [16].
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Consider a life-test involving n industrial units. Let T denote the underlying failure-
time variable. Let L and R denote points of left truncation and right censoring, respectively;
that is, we suppose that the study starts at time point L and continues till time point R.
Some units start operating before L, while some start after L. No information are available
for units that fail before L, making the data left truncated. Some units may not have failed
when the study ends at R, and those units become right censored at R. A unit that starts
operating before L, has to live through a threshold time, say κL, before its failure become
an observable event. We call κL the left truncation time. An indicator variable ν indicates
whether a unit is left truncated or not; for a left truncated unit ν is 0, otherwise it is 1.
Note that failures are observable only in the window from L to R. As a result, for each
operating unit, there is a time κR depending on the starting point of the unit, such that the
unit is right censored if T > κR. As different units may have different starting points, values
of κL and κR may be differ from unit to unit. Thus in effect, for each unit we can define the
observed lifetime as Y =Min(T, κR), provided Y > κL. Let δ denote an indicator variable for
censoring; δ is 0 for a right censored unit, and 1 otherwise.

For subsequent formulation of the problem, let S1 and S2 denote index sets for untrun-
cated and truncated units, respectively, that is,

S1 = {i : νi = 1}, and S2 = {i : νi = 0},

where νi is the truncation indicator for the i−th unit, i = 1, ..., n. Incorporating the censoring
indicator δ, we define the index sets

S11 = {i : i ∈ S1, δi = 1}, S10 = {i : i ∈ S1, δi = 0},

S21 = {i : i ∈ S2, δi = 1}, S20 = {i : i ∈ S2, δi = 0}.

We further define Scen:
Scen = S10 ∪ S20.

We assume that the underlying lifetime T follows the Burr XII distribution with parameters
α and β, i.e., T ∼ Burr(α, β).

Figure 3: Illustration of LTRC Data.
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In Figure 3, we present an illustration of the structure of LTRC data we consider here.
We would also like to point out that this is a very general structure that can accommodate
units with different combinations of truncation and censoring: left truncated and right cen-
sored, left truncated and uncensored, untruncated and right censored, and untruncated and
uncensored. This enhances the scope of this model greatly, to be applied to a wide array of
observational studies involving failure-times.

3. INFERENCE VIA THE STOCHASTIC EM ALGORITHM

The St-EM algorithm has emerged as a strong tool for analyzing incomplete data. Com-
pared to the traditional EM algorithm, the St-EM algorithm has some distinct advantages.
For example, in the EM algorithm, one needs to analytically calculate the conditional expec-
tation of the complete data log-likelihood given the observed data and the current parameter
values. Analytical calculation of this conditional expectation may be very difficult, or even
intractable, for complex problems. However, in St-EM algorithm, one does not require the
analytic calculation of the conditional expectations unlike the EM algorithm. Moreover, in
the EM algorithm, the sequence of estimated parameters may get trapped in saddle points
depending on the nature of the likelihood surface. But in the St-EM algorithm, due to its
stochastic nature, one does not encounter such a problem [23].

The St-EM algorithm has been used for various incomplete data problems in statistical
literature; see [9], [23], for example. The asymptotic properties of the St-EM algorithm have
been explored by Nielsen [17], among others. Bordes and Chauveau [7] and Ng and Ye [18]
recommended the use of the St-EM algorithm for LTRC data.

In St-EM algorithm, for each censored failure-time, a randomly drawn observation from
an appropriate conditional distribution is obtained given the observed data and the current
value of the parameter. By replacing all censored failure times by such randomly drawn obser-
vations, a pseudo-complete dataset is obtained and the pseudo-complete likelihood function is
constructed. Then, the pseudo-complete likelihood is optimized to obtain updated parameter
estimates. The whole process is then iterated large number of times, to get a sequence of
estimates corresponding to each stage of the algorithm. Finally, after discarding some initial
values of the estimates for burn-in, the remaining values are averaged to obtain the final
estimates.

Note that corresponding to the underlying failure-time variable T , the observed data
can be written as

t = Υ ∪ Γ,

where Υ = {ti : δi = 1} and Γ = {ti : δi = 0} contain the observed and right censored failure-
times, respectively. For each unit in Γ, we generate a random observation from the conditional
distribution

fTi|Ti>yi
(ti|ti > yi;θ) =

fT (ti;θ)
1− FT (yi;θ)

= αβtβ−1
i (1 + tβi )−(α+1)(1 + yβ

i )α, ti > yi,(3.1)

where θ = (α, β), and yi is the censored failure-time. By replacing the censored failure-times
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by these randomly drawn observations, we obtain the pseudo-complete data

tPC = Υ ∪ ΓPC .

In the EM algorithm, the complete data likelihood is constructed considering the situation
where there would be no incompleteness in the data. In case of the St-EM algorithm, having
imputed the censored lifetimes by randomly generated observations from the above condi-
tional distributions, the pseudo-complete data tPC will now be used in a similar fashion, i.e.,
as if there was no censoring in the data. For a unit that belongs to the untruncated group, the
contribution to the likelihood would be fT (ti;θ); and for a unit that belongs to the left trun-
cated group, the contribution would be fT (ti;θ)

1−FT (κLi;θ) . Therefore, by using the pseudo-complete
data, the pseudo-complete likelihood is constructed as

LPC(θ) =
∏
i∈S1

{fT (ti;θ)} ×
∏
i∈S2

{
fT (ti;θ)

1− FT (κLi;θ)

}

=
n∏

i=1

{αβtβ−1
i (1 + tβi )−(α+1)} ×

∏
i∈S2

{(1 + κβ
Li)

α}.(3.2)

The pseudo-complete log-likelihood function, given by

log LPC(θ) = n(log α + log β) +
n∑

i=1

[
(β − 1) log ti − (α + 1) log(1 + tβi )

]
+ α

∑
i∈S2

log(1 + κβ
Li),(3.3)

which we shall denote by QPC(θ), essentially serves as the pseudo-Q function in this setup,
where the Q-function in the traditional EM algorithm is defined as

Q(θ,θ(k)) = Eθ(k) [log LC(θ)|Γ],

with log LC(θ) as the complete data log-likelihood, and θ(k) as the available value of the
parameter vector at the k-th stage of iteration.

To optimize QPC(θ), for fixed β, equating the first derivative of QPC(θ) with respect
to α to zero we obtain

(3.4) α =
n∑n

i=1 log(1 + tβi )−
∑

i∈S2
log(1 + κβ

Li)
= α(β).

Substituting (3.4) in (3.3), we obtain the pseudo-profile log-likelihood in β as

pPC(β) = n log β + β

n∑
i=1

log ti − n log
{ n∑

i=1

log(1 + tβi )−
∑
i∈S2

log(1 + κβ
Li)
}

−
n∑

i=1

log(1 + tβi ).(3.5)

Note that maximizing pPC(β) in (3.5) is a one-dimensional optimization problem, and can be
achieved by using any routine optimizer of a statistical software, for example, the maxNR()
function in the “maxLik” package [12] available in R software.
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The following algorithm implements the St-EM algorithm for obtaining estimates of
the model parameters.

Algorithm 1: At the k-th stage of the algorithm:

Stochastic Expectation (St-E) step:

Step 1: The available parameter value is θ(k) = (α(k), β(k));

Step 2: Replace each unit in Γ by generating observations from fTi|Ti>yi
(ti|ti>yi;θ(k))

to obtain pseudo-complete data tPC ;

Step 3: With tPC thus obtained in Step 2, construct QPC(θ(k)) following (3.3);

Maximization (M) step:

Step 4: Choose an initial value β
(k)
init;

Step 5: Optimize pPC(β) in (3.5) to get β̂(k+1) subject to a tolerance level;

Step 6: Using (3.4), calculate α̂(k+1) = α(β̂(k+1));

Step 7: With the updated estimate θ(k+1) = (α(k+1), β(k+1)), go back to Step 2.

These steps are iterated N times to get a sequence of estimates θ(0), θ(1), θ(2), ..., θ(N).
After discarding first M of these estimates for burn-in, the remaining ones are averaged to
get estimates of α and β. As mentioned in Ye and Ng [23], sufficiently large values of N and
M must be chosen for very complex data, while the values as 1000 and 100, respectively may
be good enough for most problems.

The algorithm starts with an initial value for the parameter vector θ(0) = (α(0), β(0)).
For such optimization problems to numerically estimate the parameters, moments estimates
may be used as the initial values, provided the moments of the concerned distribution exist
and are easily available, for example, in closed form expressions. For the Burr XII distribution,
however, moments estimates based on left truncated data are not available in closed form.
A practical solution to the problem of selecting initial values for the parameters α and β in
this case would be to use a two-dimensional grid search approach. However, it may be noted
here that use of a two-dimensional grid search approach followed by the St-EM algorithm
will be computationally costly. In this work, for given sets of true values of the parameters
α and β, we have tried different arbitrarily chosen initial values for the St-EM algorithm.
And we have noticed that the St-EM algorithm as described above is reasonably robust to
the choice of initial values. That is, the final estimates obtained from the algorithm by using
different choices of initial values are quite close. In this connection, it may be noted here
that the direct method of optimization, for example, the Newton-Raphson method, is heavily
dependent on the choice of initial parameters in general.
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3.1. Regression

In many applications, failure-times of experimental units depend on covariates. For
example, failure-time of electrical machines may depend on temperature and humidity of
the place of operation; failure-time of patients may depend on their respective demographic
conditions etc. In view of this, it is of interest to consider a failure-time model that can
accommodate relevant covariate information.

Regression models for Burr XII distribution have been considered by some authors.
Beirlant et al. [6], in the context of a financial application involving portfolio segmentation,
discussed different strategies for accommodating covariate information in the Burr XII model
through the shape and scale parameters. Regression model for the log-Burr XII distribution
was considered by Silva et al. [19], where covariate information was modelled as a linear
function of the location parameter of the log-transformed model.

In this paper, we use an approach suggested in Beirlant et al. [6]. However, for param-
eter estimation, instead of using the observed likelihood based estimation approach which
may not be computationally stable for complex models, we indicate the use of stochastic EM
algorithm which is more reliable for its convergence.

We allow the shape parameter β in (1.1) to vary with covariates. Thus, when the x

represent the vector of covariates, we assume the model

(3.6) β(x) = exp(γ ′x),

where γ is the vector of regression parameters. Under this assumption, our model for the
failure-time variable Y becomes

(3.7) Yi|xi ∼ Burr(α, βi), with βi = exp(γ ′xi), i = 1, ..., n.

The conditional distributions for generating observations are given in this case by

fTi|Ti>yi
(ti|ti > yi;α, γ,xi) = α exp(γ ′xi)t

exp(γ′xi)−1
i (1 + t

exp(γ′xi)
i )−(α+1)

× (1 + y
exp(γ′xi)
i )α, ti > yi.(3.8)

Corresponding to the censored failure-times, given the covariates, observations are generated
from (3.8). Based on the pseudo-complete data, the pseudo-complete likelihood function is

LPC(α, γ) =
n∏

i=1

{
α exp(γ ′xi)t

exp(γ′xi)−1
i (1 + t

exp(γ′xi)
i )−(α+1)

}
×
∏
i∈S2

{
(1 + κ

exp(γ′xi)
Li )α

}
.(3.9)

The corresponding pseudo-complete log-likelihood function is given by

log LPC(α, γ) = n log α +
n∑

i=1

γ ′xi +
n∑

i=1

(exp(γ ′xi)− 1) log ti

− (α + 1)
n∑

i=1

log(1 + t
exp(γ′xi)
i ) + α

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li ),(3.10)
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which is also the pseudo-Q function, denoted by QPC(α, γ). Equating the first derivative of
(3.10) with respect to α to zero, we have

(3.11) α =
n∑n

i=1 log(1 + t
exp(γ′xi)
i )−

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li )

= α(γ).

Substituting (3.11) in (3.10), the profile-likelihood in γ is obtained as

pPC(γ) =
n∑

i=1

γ ′xi +
n∑

i=1

exp(γ ′xi) log ti −
n∑

i=1

log(1 + t
exp(γ′xi)
i )

− n log

{
n∑

i=1

log(1 + t
exp(γ′xi)
i )−

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li )

}
.(3.12)

The profile log-likelihood in the regression parameters γ can be maximized first using some
numerical approach such as Newton-Raphson or Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. Then, the α can be estimated using (3.11). An algorithm similar to Algorithm 1
can be easily constructed for this purpose.

3.2. Asymptotic confidence intervals

For obtaining asymptotic confidence intervals for the parameters, we use the missing
information principle of Louis [15] that says

(3.13) Observed Information = Complete Information−Missing Information.

For the traditional EM algorithm, Louis’ principle is used to obtain the asymptotic variances
of the estimates. For the St-EM algorithm also, an adaptation of the Louis’ principle is
possible, see Ye and Ng [23]. Mitra et al. [16] used the same approach in connection to the
Lehmann family of distributions. The approach of Ye and Ng [23] is as follows.

Let S(θ, tPC) and H(θ, tPC) denote the first, and negative of the second derivatives
of QPC(θ) given in (3.3) with respect to θ. Then, by the missing information principle,
following Ye and Ng [23], the observed information matrix is given by

(3.14) I(θ) = E[H(θ, t)|y]− E[S2(θ, t)|y] + {E[S(θ, t)|y]}2.

For evaluating I(θ) in (3.14) for a given a LTRC data, multiple samples Γ(m)
PC , m = 1, ...,M

are imputed corresponding to the censored data Γ = {i : δi = 0}, thus obtaining multiple
pseudo-complete datasets t

(m)
PC , m = 1, ...,M . Then, I(θ) is estimated as

(3.15) Î(θ) =
1
M

M∑
m=1

H(θ, t
(m)
PC )− 1

M

M∑
m=1

[S(θ, t
(m)
PC )]2 +

[
1
M

M∑
m=1

S(θ, t
(m)
PC )

]2 ∣∣∣∣∣
θ=bθ

.

Finally, the asymptotic variance-covariance matrix of the estimates is obtained by inverting
Î(θ), and the asymptotic confidence intervals for the parameters can be constructed using
the asymptotic variances.
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A second approach we use here is based on the bootstrap procedure. Bootstrap confi-
dence intervals [11] are widely used in statistical literature. These intervals are particularly
of interest for LTRC data, as the presence of truncation and censoring often tend to bias
the estimates of parameters. We use the following algorithm to obtain parametric bootstrap
confidence intervals. Here, SP is the starting point, and TP is the termination point of units.

Algorithm 2:

Step 1: Based on the given LTRC data, obtain the estimate θ̂ = (α̂, β̂);

Step 2: Construct empirical distribution of SPs for left truncated units;

Step 3: Construct empirical distribution of SPs for untruncated units;

Step 4: To get a bootstrap sample (preserving proportion of truncation):

Step 4.1: Sample SPs for truncated units from empirical distribution of
Step 2;

Step 4.2: Sample SPs for untruncated units from empirical distribution of
Step 3;

Step 4.3: Generate failure-times from Burr(α̂, β̂);
Step 4.4: Add failure-times to SPs, to obtain corresponding TPs;
Step 4.5: Determine censoring status of units according to their TPs;

Step 5: For this bootstrap sample, obtain bootstrap estimate θ̂∗ = (α̂∗, β̂∗);

Step 6: Repeat Steps 4 and 5 B times, to obtain θ̂∗
1, θ̂

∗
2, ..., θ̂

∗
B.

The value of B, i.e., the number of bootstrap samples, should be sufficient to stabilize
the estimated bootstrap bias and variance of θ̂. For constructing parametric bootstrap con-
fidence intervals based on LTRC data from the Burr XII distribution, we recommend using
B ≥ 200.

A 100(1− δ)% parametric bootstrap confidence interval for α is then given by(
α̂− bα − zδ/2

√
vα, α̂− bα + zδ/2

√
vα

)
,

where bα and vα are the bootstrap bias and bootstrap variance, respectively. Here, zδ is
the upper δ-percentile point of standard normal distribution. The 100(1− δ)% parametric
bootstrap confidence intervals for β are constructed in a similar way.

3.3. Direct optimization of observed likelihood

Considering the four different types of units with different combinations of left trunca-
tion and right censoring as mentioned in Figure 3 in Section 2, the observed likelihood for
LTRC data is given by

L(θ|DATA) =
∏
i∈S1

{
f(ti;θ)

}δi
{
1− F (ti;θ)

}1−δi

×
∏
i∈S0

{
f(ti;θ)

1− F (κLi;θ)

}δi
{

1− F (ti;θ)
1− F (κLi;θ)

}1−δi

.(3.16)
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By plugging in the PDF and CDF of the Burr XII distribution in (3.16), we get the spe-
cific likelihood for the Burr XII distribution based on LTRC data. The likelihood (or the
corredponding log-likelihood) function may then be maximized using routine functions in
statistical software. The performance of the estimates obtained by the St-EM algorithm, and
those obtained by the direct method of optimization based on observed likelihood can then
be compared through Monte Carlo simulations. In this paper, we have used the “maxLik”
package in R software for maximizing the observed likelihood provided in (3.16). In par-
ticular, we have used the Newton-Raphson method for direct numerical optimization; the
Newton-Raphson method may be employed by using the maxNR() routine available in the
maxLik package. Details of the numerical results are presented in the next Section.

4. NUMERICAL EXPERIMENTS

The methods of inference are assessed through Monte Carlo simulations using the R
software. For simulating LTRC data, the following process is followed. We consider lifetime
data at the yearly scale. Left truncation and right censoring points are fixed at the years
2000 and 2004, respectively, without loss of generality. That is, in connection to the notations
used in Section 2, we set L = 2000, and R = 2004. The total sample size n is fixed; here, we
consider several values of n, namely, 50, 100, 200, 300, and 500.

First, a truncation percentage p (0 ≤ p ≤ 1) is specified; this implies that in the sample,
there will be np left truncated units, and n(1−p) untruncated units. For this simulation study,
p is chosen as 20, and 30. Two arbitrary sets of years as installation points (IPs), say WLT and
WNT , respectively, are chosen; WLT corresponds to the left truncated group (i.e., less than
2000), and WNT corresponds to the untruncated group (i.e., more than or equal to 2000),
are taken as reference frames from sampling. Then, through equal probability sampling,
two sets of samples of IPs are generated from WLT and WNT according to the pre-specified
truncation percentage; these samples represent the left truncated and the untruncated groups,
respectively. For example, for n = 100, and p = 20, a sample of 20 IPs is taken from WLT ,
and a sample of 80 IPs is taken from WNT .

For generating lifetimes from the Burr XII distributions, two sets of values for the model
parameters are used. A LTRC dataset of size n is generated as follows. Corresponding to each
IP ωi, with ωi ∈ W , i = 1, ..., n, where W = WLT

⋃
WNT , a failure-time yi is generated from

the Burr XII distribution in (1.2), and is added to ωi to obtain the respective termination
point (TP). Left truncation and right censoring, corresponding to L = 2000 and R = 2004,
are incorporated into the generated data through the following mechanism. For i ∈ WLT ,
if ωi + yi < 2000 for a unit, that unit is completely discarded, and is replaced by a new
set of values for ωi, and yi; this process of discarding continues until for that unit we have
ωi + yi > 2000. This ensures that all units have to cross a threshold to be included in the
study, as required by left truncation. For a unit i ∈ W , if ωi + yi > 2004, it is a right-
censored unit; otherwise, it is not censored. The chosen values of the parameters of the Burr
XII distribution ensures that there are enough censored units.

The bias, and mean squared error (MSE) of the point estimates for different simulation
parameter settings are reported in Tables 1–6. The coverage probability and average length of
the asymptotic confidence intervals for the model parameters are also reported in these tables.
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Table 1: Performance of point and interval estimates for truncation percentage 20,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.051 0.123 0.037 0.121 0.960 1.298 0.960 1.335
β 0.014 0.004 0.012 0.004 0.954 0.253 0.956 0.262

100
α 0.028 0.054 0.021 0.053 0.942 0.907 0.950 0.915
β 0.005 0.002 0.004 0.002 0.950 0.177 0.946 0.179

200
α 0.009 0.025 0.005 0.025 0.958 0.633 0.958 0.639
β 0.003 0.001 0.002 0.001 0.958 0.124 0.952 0.125

300
α 0.013 0.018 0.011 0.018 0.952 0.516 0.946 0.519
β 0.004 0.001 0.004 0.001 0.956 0.102 0.956 0.102

500
α 0.002 0.011 0.001 0.011 0.932 0.396 0.948 0.400
β 0.001 0.000 0.001 0.000 0.954 0.078 0.954 0.079

Table 2: Performance of point and interval estimates for truncation percentage 30,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.026 0.103 0.012 0.102 0.966 1.313 0.964 1.342
β 0.017 0.005 0.015 0.005 0.956 0.263 0.956 0.273

100
α 0.013 0.054 0.006 0.053 0.956 0.919 0.950 0.931
β 0.009 0.002 0.008 0.002 0.962 0.183 0.960 0.186

200
α 0.018 0.030 0.015 0.030 0.940 0.649 0.950 0.650
β 0.003 0.001 0.002 0.002 0.952 0.128 0.952 0.128

300
α 0.012 0.019 0.010 0.019 0.962 0.527 0.958 0.529
β 0.000 0.001 −0.000 0.001 0.942 0.104 0.950 0.104

500
α 0.004 0.012 0.003 0.012 0.932 0.401 0.942 0.411
β 0.000 0.000 0.000 0.000 0.934 0.080 0.934 0.081

Table 3: Performance of point and interval estimates for truncation percentage 50,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.027 0.125 0.015 0.124 0.956 1.410 0.956 1.436
β 0.015 0.005 0.013 0.005 0.968 0.287 0.968 0.304

100
α 0.026 0.074 0.019 0.073 0.930 0.989 0.934 1.000
β 0.006 0.003 0.005 0.003 0.948 0.199 0.962 0.204

200
α 0.014 0.030 0.010 0.030 0.946 0.693 0.952 0.701
β 0.001 0.001 0.001 0.001 0.956 0.139 0.956 0.141

300
α 0.012 0.020 0.010 0.020 0.946 0.563 0.952 0.569
β 0.001 0.001 0.001 0.001 0.970 0.114 0.964 0.114

500
α 0.008 0.012 0.006 0.012 0.960 0.432 0.966 0.441
β 0.001 0.001 0.001 0.001 0.962 0.088 0.958 0.088
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Table 4: Performance of point and interval estimates for truncation percentage 20,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.080 0.231 0.076 0.231 0.946 1.764 0.955 1.875
β 0.024 0.012 0.023 0.012 0.957 0.425 0.955 0.441

100
α 0.032 0.098 0.029 0.098 0.958 1.225 0.952 1.265
β 0.014 0.006 0.014 0.006 0.946 0.298 0.946 0.305

200
α 0.015 0.052 0.014 0.052 0.952 0.862 0.950 0.875
β 0.004 0.003 0.004 0.003 0.948 0.209 0.944 0.211

300
α 0.014 0.030 0.013 0.030 0.962 0.703 0.964 0.705
β 0.006 0.002 0.006 0.002 0.944 0.171 0.952 0.172

500
α −0.005 0.016 −0.005 0.016 0.960 0.541 0.964 0.543
β 0.002 0.001 0.002 0.001 0.958 0.132 0.954 0.132

Table 5: Performance of point and interval estimates for truncation percentage 30,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.110 0.290 0.106 0.209 0.947 1.772 0.937 1.866
β 0.021 0.012 0.020 0.012 0.968 0.428 0.958 0.446

100
α −0.002 0.105 −0.004 0.105 0.944 1.209 0.942 1.239
β 0.010 0.006 0.009 0.006 0.964 0.301 0.958 0.308

200
α 0.013 0.046 0.012 0.046 0.964 0.858 0.966 0.869
β 0.005 0.003 0.005 0.003 0.942 0.211 0.944 0.214

300
α −0.004 0.035 −0.005 0.035 0.946 0.697 0.946 0.701
β 0.004 0.002 0.004 0.002 0.956 0.173 0.948 0.174

500
α 0.008 0.017 0.008 0.017 0.962 0.542 0.968 0.542
β 0.002 0.001 0.002 0.001 0.958 0.133 0.956 0.133

Table 6: Performance of point and interval estimates for truncation percentage 50,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.053 0.234 0.050 0.234 0.946 1.810 0.950 1.873
β 0.027 0.015 0.026 0.015 0.948 0.465 0.954 0.491

100
α 0.027 0.112 0.026 0.112 0.944 1.269 0.948 1.284
β 0.008 0.007 0.007 0.007 0.950 0.323 0.958 0.332

200
α −0.004 0.057 −0.004 0.057 0.944 0.889 0.928 0.891
β 0.013 0.003 0.013 0.003 0.964 0.230 0.970 0.232

300
α 0.009 0.030 0.009 0.030 0.942 0.729 0.944 0.728
β 0.002 0.002 0.002 0.002 0.944 0.185 0.940 0.187

500
α 0.005 0.020 0.005 0.020 0.940 0.564 0.944 0.562
β 0.004 0.001 0.004 0.001 0.946 0.144 0.944 0.145
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The Monte Carlo estimate of coverage probability of an asymptotic confidence interval corre-
sponding to a nominal level of confidence (say, 95%) is the proportion of times the asymptotic
confidence interval includes the true parameter value out of the total number of Monte Carlo
runs of the experiment. The average length of an asymptotic confidence interval is the mean
length of the interval, averaged over the lengths obtained in the Monte Carlo runs.

From Tables 1–6, we notice that the estimates obtained by the St-EM algorithm are
quite efficient in general, with respect to their bias and MSE. As one would expect, with
increase in sample size, the bias and MSE of the estimates reduce. Truncation percentage
does not seem to have a significant effect on the point estimates, as the bias and MSE values
do not change much with change in truncation percentage.

It may also be of interest to compare the results of the St-EM algorithm with that of
the Newton-Raphson method. It is observed from Tables 1–6 that for parameter α, the biases
corresponding to the St-EM algorithm and the Newton-Raphson method are to some extent
different for smaller sample sizes (i.e., n = 50 and 100). However, with increase in sample size
(i.e., for n = 200, 300, 500), the biases become very close. For parameter β, the biases of the
estimates corresponding to the two methods are close for all simulation settings considered
here. Finally, the MSE of the estimates of both α and β are always quite close for the two
methods.

Tables 1–6 also report coverage probabilities (CP) and average lengths (AL) for asymp-
totic 95% confidence intervals. The coverage probability and average length are two important
criteria for assessing the performance of confidence intervals. For a confidence interval to be
reasonable, its coverage probability should be close to the nominal confidence level, and its
average length should not be large. It may be noted that the coverage probabilities cor-
responding to the missing information principle are always very close to the nominal level.
The coverage probabilities corresponding to the parametric bootstrap are also close to the
nominal level. With respect to average length of the intervals, both methods perform closely.
It is also observed that with increase in sample size, though their average lengths reduce as
expected, but the confidence intervals are able to retain the coverage probability close to the
nominal level.

5. THE THREE PARAMETER BURR XII DISTRIBUTION

Considering a scale parameter λ along with the two shape parameters α and β, the
PDF of the three parameter Burr XII distribution is given by (see [24])

fY (y;λ, α, β) =
αβ

λ

(
y

λ

)β−1(
1 +

(
y

λ

)β)−(α+1)

, y > 0, λ, α, β > 0.

For the St-EM algorithm, the conditional distributions for generating random observations
is given by
(5.1)

fTi|Ti>yi
(ti|ti > yi;λ, α, β) =

αβ

λ

(
ti
λ

)β−1(
1 +

(
ti
λ

)β)−(α+1)(
1 +

(
yi

λ

)β)α

, ti > yi.
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After replacing the right censored failure-times by randomly generated observations from
(5.1), the pseudo-Q function is obtained as

QPC(θ) = n(log α + log β − β log λ) + (β − 1)
n∑

i=1

log ti −
n∑

i=1

log
(

1 +
(

ti
λ

)β)

− α

[
n∑

i=1

log
(

1 +
(

ti
λ

)β)
−
∑
i∈S2

log
(

1 +
(

κLi

λ

)β)]
,(5.2)

with θ = (λ, α, β). For fixed λ and β, equating the first derivative of QPC(θ) with respect to
α to zero, we obtain

(5.3) α =
n

WPC(λ, β)
,

where

WPC(λ, β) =
n∑

i=1

log
(

1 +
(

ti
λ

)β)
−
∑
i∈S2

log
(

1 +
(

κLi

λ

)β)
.

Substituting (5.3) in (5.2), the profile log-likelihood in λ and β is obtained as
(5.4)

pPC(λ, β) = n(log β − β log λ− log WPC(λ, β)) + (β − 1)
n∑

i=1

log ti −
n∑

i=1

log
(

1 +
(

ti
λ

)β)
,

which can then be maximized by a routine two-parameter optimizer.

Starting with an initial value for the parameter vector as θ(0) = (λ(0), α(0), β(0)), to the
choice of which the St-EM algorithm is quite robust, the following are the steps of the St-EM
algorithm for the three-parameter Burr XII distribution based on LTRC data.

Algorithm 3: At the k-th stage of the algorithm:

Stochastic Expectation (St-E) step:

Step 1: The available parameter value is θ(k) = (λ(k), α(k), β(k));

Step 2: Replace each unit in Γ by generating observations from fTi|Ti>yi
(ti|ti>yi;θ(k))

to obtain pseudo-complete data tPC ;

Step 3: With tPC from Step 2, construct QPC(θ(k)) following (5.2);

Maximization (M) step:

Step 4: Choose initial values λ
(k)
init and β

(k)
init based on the pseudo-complete data tPC ;

Step 5: Optimize pPC(λ, β) in (5.4) to get λ̂(k+1) and β̂(k+1) subject to a tolerance
level;

Step 6: Using (5.3), calculate α̂(k+1) = n
WPC(λ(k+1),β(k+1))

;

Step 7: With updated estimate θ(k+1) = (λ(k+1), α(k+1), β(k+1)), go back to Step 2.
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From a sequence of estimates θ(0),θ(1),θ(2), ...,θ(N), after discarding first M estimates
for burn-in, the remaining ones are averaged to get estimates λ̂, α̂, and β̂. The confidence
intervals for the model parameters may be obtained by similar processes as described in
Section 3 for the two-parameter Burr XII distribution.

It may be mentioned here that in case of LTRC data from the three-parameter Burr
XII distribution, based on some limited simulations, we have noticed an indication that the
St-EM algorithm performs better compared to the direct optimization of observed likelihood,
in terms of bias and MSE of the estimates. However, implementation of the St-EM algorithm
in this case is very challenging due to its computational cost; the running time of the St-
EM algorithm for the three-parameter case is significantly longer than that of the direct
optimization method.

6. PREDICTION OF EXPECTED NUMBER OF FAILURES IN A FUTURE
INTERVAL

Consider the right censored units with the i-th unit having right censored lifetime yi,
i ∈ Scen. Consider a future interval (τ1, τ2] with tmax < τ1, where tmax = Max{ti; i ∈ Scen}.
The probability that the i-th unit fails in this interval (τ1, τ2] is given by

(6.1) πi = P (τ1 < Ti ≤ τ2|Ti > yi) =
S(τ1;θ)− S(τ2;θ)

S(yi;θ)
,

where S(t) = P (T > t) is the survival function of the underlying failure-time variable T . Note
that the expression for this probability remains same regardless of the truncation status of
the i-th unit, i ∈ Scen. We are interested in obtaining the expected number of failures in the
future interval (τ1, τ2].

Let us define random variables Ui, i ∈ Scen, such that

Ui =

{
1, if i-th item fails in (τ1, τ2]
0, otherwise.

Note that E[Ui] = P (Ui = 1) = πi. We want to obtain the expected number of failures in the
future interval (τ1, τ2), given by

ζ = E

[ ∑
i∈Scen

Ui

]
=
∑

i∈Scen

πi.

Now, using the expression for πi in (6.1), we obtain

ζ = {(1 + τβ
1 )−α − (1 + τβ

2 )α}
∑

i∈Scen

(1 + yβ
i )α

= h(θ) (say).(6.2)

Clearly, an estimate ζ̂ of the expected number of failures ζ can be obtained by simply plugging-
in the estimated parameters in (6.2). It is also possible to provide an asymptotic confidence
interval for ζ by a straightforward application of the delta-method, by using the asymptotic
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normality and the delta-method. That is, using the fact that
√

n(ζ̂ − ζ) D−→ N(0,Var(ζ̂)),
where the variance can be estimated as

(6.3) V̂ar(ζ̂) =

((
∂h

∂α

)2
Var(α̂) + 2

(
∂h

∂α

)(
∂h

∂β

)
Cov(α̂, β̂) +

(
∂h

∂β

)2
Var(β̂)

)∣∣∣∣∣
θ=bθ

.

Finally, using the estimated variance, an asymptotic 100(1− γ)% confidence interval for ζ

can be easily obtained.

7. ILLUSTRATIVE DATA ANALYSIS

The Channing House data involves lives of residents of a retirement centre in Palo Alto,
California. The dataset contains lifetimes of residents of the centre since it started operations
in 1965 till July, 1975. A person had to be at least 60 years of age to be a resident of the
centre; this fact incorporated left truncation in the data. In fact, due to this restriction on
the entry of individuals to the centre, the entire data (i.e., 100% of the observations) is left
truncated according to the notion of left truncation followed in here.

Some individuals died as residents of the centre, while some other were still alive when
the collection ended in July, 1975. This incorporated right censoring in the data. The dataset
contains lives of total 462 residents. Out of 462, the number of observed failures is only 176,
and the rest of the units are right censored. A summary of the dataset is presented in Table 7.

Table 7: Summary of Channing House Data.

Group Total number Right censoring Mean lifetime (Years) SD lifetimes (Years)

Male 97 52.58% 82.63 6.14
Female 365 64.38% 82.04 6.15

Combined 462 61.90% 82.17 6.15

Before analyzing the dataset, we change the origin and scale of this data by subtracting
720 from each of the lifetimes (and left truncation times), and by dividing them by 200; this
change of origin and scale of the data will not impact the inferential results in any way. We
assume that the underlying failure-time variable follow a two-parameter Burr XII distribution.
The results of point and interval estimation by the proposed methods are given in Table 8.
The estimated parameters can then be used in further analyses, for example, in predicting
future failures as described below.

Table 8: Point and interval estimates of model parameters for Channing House Data.

Parameter Point Estimate
Interval Estimate

MI BB

α 0.508 (0.354, 0.662) (0.354, 0.655)
β 3.976 (2.915, 5.038) (2.764, 5.002)
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As the estimates of the parameters turn out to be α̂ = 0.508 and β̂ = 3.976, using these,
we can obtain the asymptotic variance-covariance matrix by using the missing information
principle as described in Section 3.2 as

(
Var(α̂) Cov(α̂, β)

Var(β̂)

)
=
(

0.0061 −0.0369
0.2934

)
.

The maximum value among the transformed right censored lifetimes is 2.435. Suppose,
we are interested in predicting the expected number of failures in the interval (2.5, 2.7]. By
plugging-in the estimates α̂ and β̂ in (6.2), we get the expected number of failures in the above
interval as ζ̂ = 13.4000. Finally, upon estimating the variance of ζ̂ by (6.3) to be 0.0490, a
95% confidence interval for the expected number of failures in this future interval is obtained
as (12.9660, 13.8339).

Suppose it is of interest to select an appropriate model for this dataset among many
candidate models. One way to achieve this would be fit different models to the dataset, and
then to choose the model for which the value of the maximized log-likelihood, evaluated at
the MLE, is the largest. Naturally, the distributions which are frequently used to model
lifetime data would be the candidate models. As suggested by a reviewer, here, we consider
Weibull, Gompertz, and Lomax distributions as the candidate models, along with the Burr
XII model. It may be mentioned here that Weibull, Gompertz, and Lomax distributions
belong to a family of distributions known as the Lehmann family of distributions [16].

Table 9 gives the results of the model selection. We fit the Burr XII model to the
Channing House data by using the St-EM algorithm; we also fit Weibull, Gompertz, and
Lomax distributions to the data by using St-EM algorithm. Then, we evaluate the log-
likelihood functions corresponding to the four distributions at the respective MLEs, the log-
likelihood being constructed by using the LTRC data structure. It may be mentioned here
that since all the models considered here have same number of parameters, the process of
using the maximized log-likelihood is essentially equivalent to using the Akaike’s information
criterion (AIC) for model selection.

Table 9: Maximized log-likelihood for different models.

Model Distribution Function Maximized log-likelihood

Weibull FW (t; λ, α) = 1− e−αtλ

, t > 0 −155.9704

Gompertz FG(t; λ, α) = 1− e−α(eλt−1), t > 0 −152.9099

Lomax FL(t; λ, α) = 1−
�

1
1+λt

�α

, t > 0 −189.7542

Burr XII FB(t; α, β) = 1− (1 + tβ)−α, t > 0 −181.7247

It turns out that the maximized log-likelihood is the largest for the Gompertz distri-
bution based on this data. Therefore, the Gompertz distribution turns out to be the most
suitable model for the Channing House data by the above criterion.
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8. CONCLUSION AND FUTURE WORK

In this article, statistical inferential procedures for the Burr XII distribution based on
LTRC data are discused. the two- and the three-parameter Burr XII models are considered.
Detailed steps of the stochastic EM algorithm based on LTRC data are developed for ob-
taining point estimates of the model parameters. Two methods for constructing asymptotic
confidence intervals of the parameters are discussed: one by using the missing information
principle, and the other by using a parametric bootstrap approach. A method for includ-
ing covariates in the Burr XII model in this setup is also discussed. An application of the
estimated parameters in predictive number of failures in a future interval is presented.

From the numerical results of a detailed Monte Carlo simulation study, it is observed
that the stochastic EM algorithm performs reasonably well in estimating the model parame-
ters. The approaches for constructing confidence intervals also perform satisfactorily, as the
coverage probabilities of the confidence intervals remain always close to the nominal confi-
dence level of 95%. It is also observed that the performance of the St-EM algorithm is close
to that of the Newton-Raphson method.

While parametric inference can generate accurate results when the assumptions regard-
ing the underlying distribution of data are appropriate, it may be of interest to verify whether
the distributional assumptions are reasonable or not. In view of this, it will be of interest to
develop a test for goodness of fit for the Burr XII distribution based on LTRC data.

Another problem of interest would be to study Bayesian inference for the Burr XII
distribution based on LTRC data. The Bayesian methods can provide significant information
regarding a model, especially when the prior assumptions are appropriate. In particular, the
Bayesian methods may outperform classical inferential methods when the sample size is not
very large, provided meaningful prior assumptions are made. However, the most critical task
of performing Bayesian inference would be the elicitation of the prior distributions.
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