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1. INTRODUCTION

In many practical applications such as materials testing, meteorology and hydrology,
only record data is available for statistical analysis. Then, for a sequence of successive,
increasing record values, an appropriate model are upper record values, first studied in [5].
Suppose that X1, X2, ... is an infinite sequence of independent and identically distributed
(i.i.d.) continuous random variables with cumulative distribution function (cdf) F . An obser-
vation is called an (upper) record value provided it is greater than all previously observed
values. More specifically, defining the record times as

L(1) = 1, L(n + 1) = min{j > L(n) | Xj > XL(n)}, n ∈ N,

the sequence (Rn)n∈N = (XL(n))n∈N is referred to as the sequence of (upper) record values
based on (Xn)n∈N; see [1], [15]. The structure of record values also appears in the context of
minimal repair of a system, and, under mild conditions, the epoch times of a non-homogeneous
Poisson process and upper record values are equal in distribution; see [11]. If not the record
values themselves, but the successively k-th largest values (R(k)

n )n∈N, k ∈ N, in an i.i.d. se-
quence of random variables are of interest, the appropriate description is provided by the
model of k-th record values introduced in [9].

We consider the problem of providing a prediction value for the occurrence of a future
Weibull record value Rs based on the first r, r < s, (observed) Weibull record values R? =
(R1, ..., Rr). In addition to the modeling of repairable systems mentioned above, the Weibull
record values model has been used in the literature to model reliability growth (see [7]) and
software reliability (see [13]). The point prediction problem for Weibull record values has
recently been studied in [16], where, in particular, the maximum likelihood predictor of Rs

based on R? was derived. In fact, predictive analysis of Weibull record values dates as back
as [14] and [10], where exact prediction intervals for Rs were constructed. For Bayesian
predictive analysis of Weibull record values, the reader is referred to, e.g., [3], [21], [22].
For statistical inference based on record values from Weibull distributions and application,
we also refer to [23] and [20].

The maximum likelihood prediction procedure is frequently examined in the literature
and commonly applied in the context of an ordered data model such as the model of upper
record values; see [12]. The maximum likelihood prediction procedure derives a predictor of
a r.v. Y based on a possibly p-dimensional random vector X with joint pdf fX,Y

θ , θ ∈ Θ, by
maximizing the predictive likelihood function Lrv of Y and θ given that X = x, which takes
the form

Lrv(y, θ|x) = fX,Y
θ (x, y),

with respect to θ and y. The functions πMLP and θ̂ML are called, respectively, maximum
likelihood predictor (MLP) of Y and predictive maximum likelihood estimator (PMLE) of θ,
if, for any x ∈ Rp,

Lrv(πMLP(x), θ̂ML(x)) = max
(y,θ)∈R×Θ

Lrv(y, θ|x).

Recently, a new likelihood-based general-purpose prediction procedure, the so-called maximum
observed likelihood prediction method has been introduced and studied in [19]; see also [18].
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By means of this procedure, a predictor of Y based on X is obtained by maximizing the
observed predictive likelihood function Lobs defined by

Lobs(y, θ|x) = f
X|Y
θ (x|y)

with respect to θ and y. Then, any functions πMOLP and θ̂MOL are referred to, respectively,
as maximum observed likelihood predictor (MOLP) of Y and predictive maximum observed
likelihood estimator (PMOLE) of θ, provided that, for any x ∈ Rp,

Lobs(πMOLP(x), θ̂MOL(x)) = max
(y,θ)∈R×Θ

Lobs(y, θ|x).

If, in a general parametric family {Fθ | θ ∈ Θ} of continuous cdfs, the s-th record Rs is
predicted based on R? = (R1, ..., Rr), then the maximum observed likelihood predictor is
given by

π
(s)
MOLP = F−1

θ̂(R?)

(
1− (1− Fθ̂(R?)(Rr))

s−1
r

)
,(1.1)

where the function θ̂ is such that

Ψ(θ̂(r?), r?) = max
θ∈Θ:

(θ,r?)∈Zr

Ψ(θ, r?);(1.2)

see [19, Theorem 3.3], [18, Theorem 5.3]. In equation (1.2), the function Ψ is given by

Ψ(θ, r?) =
r∏

i=1

fθ(ri)/(1− Fθ(ri))
ln(1− Fθ(rr))

, (θ, r?) ∈ Zr,(1.3)

with Zr = {(θ, r1, ..., rr) ∈ Θ×Rr
< | (r1, ..., rr) ∈ (α(Fθ), ω(Fθ))r

<}, where, for an interval I ⊆R
and n ∈ N, In

< = {(x1, ..., xn) ∈ In | x1 < x2 < ··· < xn}, and α(F ) and ω(F ) denote the left
and right endpoints of the support of a cdf F .

In order to facilitate building some intuition for the difference between the predictive
likelihood and the observed predictive likelihood function-based prediction procedures, let us
slightly rewrite the associated likelihood functions. First, observe that the predictive likeli-
hood function can be constructed by taking the product of the conditional density function
of Y given X and the density function of X, that is

Lrv(y, θ|x) = f
Y |X
θ (y|x) fX

θ (x).

Thus, in maximizing the predictive likelihood function the information on the variability
in Y as described by the conditional density function f

Y |X
θ is reduced to the mode of the

conditional density of Y given X yielding a prediction value, which, given the observed data,
is the most probable value of Y under a model that best fits the observed data as well as the
prediction value. In principal, any functional of the conditional density of Y given X could be
used to derive a prediction value of Y but the choice of the mode has the appealing advantage
of allowing to formally extend the maximum likelihood method from the parametric to the
predictive inference setup. Next, we have that

Lobs(y, θ|x) = fX
θ (x)

f
Y |X
θ (y|x)
fY

θ (y)
,
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which shows that the maximum observed likelihood prediction procedure excludes the vari-
ability in Y from consideration and effectively turns the prediction problem into an estimation
problem for the model f

X|Y
θ (x|y), θ ∈ Θ, y > xp. In this model the variability of the observed

data depends on the value of the quantity of interest, that is Y , which allows to draw in-
ference on Y purely within the classical maximum likelihood framework that is to perform
optimization with respect to quantities that are model parameters. Alternatively, the above
representation can be interpreted to suggest that the prediction procedure yields a prediction
value, which is associated with the highest relative increase in the conditional density of Y

given X compared to the unconditional density of Y .

In contrast to the MOLP, a general expression such as in (1.1) does not seem to exist
for the MLP. Moreover, from expression (1.1), we find when predicting the very next record
value (s = r + 1) that the MOLP becomes trivial in the sense that the last observed record
value serves as predictor for the next one.

We examine the MLP and the MOLP of future Weibull record values, derive represen-
tations and compare their performance via the mean squared error and the Pitman closeness
criterion. A predictor π1 of Rs is said to be Pitman closer to Y than a predictor π2 if

P (|π1 −Rs| < |π2 −Rs|) >
1
2
,(1.4)

and, if (1.4) holds, π1 is said to be preferable to π2 in Pitman closeness sense.

2. LIKELIHOOD-BASED PREDICTORS FOR WEIBULL RECORD VALUES

Let (Rn)n∈N be the sequence of Weibull record values. The density, cumulative distri-
bution and quantile functions of the two-parameter Weibull distribution Weibull(σ, p) with
scale parameter σ ∈ R+ and shape parameter p ∈ R+ are given by

(2.1)

fθ(x) =
p

σ

(x

σ

)p−1
exp
{
−
(x

σ

)p}
, x ∈ R+,

Fθ(x) = 1− exp
{
−
(x

σ

)p}
, x ∈ R+,

F−1
θ (x) = σ(− ln(1− x))

1
p , x ∈ [0, 1),

where θ = (σ, p) ∈ R2
+ is the vector of the distributional parameters. For r, s ∈ N, r < s− 1,

we derive the MOLP as well as the MLP of the future record Rs based on R? = (R1, ..., Rr).
The density functions of the distribution of R? as well as of the conditional distribution of
Rs given Rr = rr, rr ∈ (−∞, ω(Fθ)), can be stated in terms of fθ and Fθ as follows (see [1]):

fR?
θ (r1, ..., rr) =

(
r−1∏
i=1

fθ(ri)
1− Fθ(ri)

)
fθ(rr)1[α(Fθ),ω(Fθ))r(r1, ..., rr), (r1, ..., rr) ∈ Rr

<,(2.2)

f
Rs|Rr

θ (rs|rr) =
1

(s− r−1)!
fθ(rs)

1−Fθ(rr)

(
− ln

(
1−Fθ(rs)
1−Fθ(rr)

))s−r−1

1(rr,ω(Fθ))(rs), rs ∈ R.(2.3)
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The MOLP in the Weibull case can be explicitly stated.

Proposition 2.1. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, the unique MOLP of Rs and the PMOLE of p based on R? are given by

π
(s)
MOLP =

(
s− 1

r

)1/p̂MOL

Rr and p̂MOL = − r

ln
(∏r

i=1
Ri
Rr

) .

Proof: With fθ and Fθ as above, the function Ψ(·|r?), r? = (r1, ..., rr) ∈ (0,∞)r
<,

in (1.2) reads

Ψ(θ|r?) = pr

(
r∏

i=1

ri

rr

)p−1
1
rr
r

, σ ∈ R+, p ∈ R+.(2.4)

The function Ψ does not depend on the scale parameter σ, thus, we only need to find a
maximizing function with respect to p. Let

θ̂(r?) =

(
σ̂(r?),−r/ ln

(
r∏

i=1

ri/rr

))
,

where β̂ is an arbitrary measurable function on Rr
< with values in R+. Then, θ̂ satisfies (1.2)

with Ψ(·|r?) given by (2.4). Together with

F−1
θ

(
1− (1− Fθ(Rr))

s−1
r

)
=
(

s− 1
r

) 1
p

Rr,

we find the stated form of the MOLP.

Remark 2.1.

(i) The PMOLE and the MLE of p coincide. For the MLEs of σ and p we refer to
[14].

(ii) The MOLP can also be written as π
(s)
MOLP = (s− 1)1/p̂σ̂, where p̂ and σ̂ are the

MLEs of p and σ, respectively.

The maximum likelihood predictor of a future Weibull record value was derived in [16]
(see also [18, Section 5.3.5]). The respective result is contained in the following theorem.

Proposition 2.2. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, the unique MLP of Rs based on R? is given by

π
(s)
MLP = s−1/p̂ML σ̂ML.

Here, σ̂ML and p̂ML are the PMLEs of σ and p.

The PMLE of σ takes the form

σ̂ML =
(

s + 1/p̂ML − 1
s(r + 1/p̂ML)

)1/p̂ML

Rr,

while the PMLE of p is obtained as the unique positive solution of

p2 ln

(
r−1∏
i=1

Ri

Rr

)
+ (r + 1)p = ln

(
r + 1/p

s + 1/p− 1

)
with respect to p ∈ R+. For s = r + 1, the MLP takes the form π

(s)
MLP = Rr.
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The following remark collects, in particular, some results concerning the existence of
the MOLP and the MLP in the case of the three-parameter Weibull distribution, where, in
(2.1), x is replaced by x− µ for some location parameter µ.

Remark 2.2.

(i) It is straightforward to see that the MLP can also be expressed in the form

π
(s)
MLP =

(
s + 1/p̂ML − 1

r + 1/p̂ML

)1/p̂ML

Rr.

(ii) In case the underlying distribution depends on an unknown location parameter
µ ∈ R, neither the MLP nor the MOLP exists. Indeed, consider first the derivation
of the MOLP. Then, for r? = (r1, ..., rr) ∈ Rr

<, we want to determine the global
maximum of the function

Ψ(µ, p|r?) = pr

(
r−1∏
i=1

ri − µ

rr − µ

)p−1
1

(rr − µ)r
, (µ, σ) ∈ (−∞, r1)× R+.

We have

Ψ

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

)∣∣∣∣∣r?

)
∼ h

(
− ln

(
r−1∏
i=1

ri − µ

rr − µ

))
rre−r

(rr − r1)r
,

as µ →
µ<r1

r1, where h(x) = ex/xr, x ∈ R+. Since lim
x→∞

h(x) = ∞,

lim
µ→r1
µ<r1

Ψ

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

)∣∣∣∣∣r?

)
= ∞.

Hence, function Ψ does not possess a finite global maximum.

Next, consider the derivation of the MLP. There, for (r1, ..., rr) ∈ Rr
<, we want,

in particular, to maximize the function

G(µ, p) = pr+1

(
r−1∏
i=1

ri − µ

rr − µ

)p−1
1

(rr − µ)r+1

(r + 1/p)r+1/p

(s + 1/p− 1)s+1/p−1
,

(µ, σ) ∈ (−∞, r1)× R+.

Since

(r + 1/p)r+1/p

(s + 1/p− 1)s+1/p−1
= exp

{
−(s− r − 1) ln(s + 1/p− 1)− (s− r − 1)

rp + 1
+ o(1)

}
,

as p → 0, we have that

G

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

))
∼ g

(
− ln

(
r−1∏
i=1

ri − µ

rr − µ

))
rr+1e−(s−1)

(rr − r1)r+1
,

as µ −→
µ<r1

r1, where g(x) = e
x

 
1−

(s−r−1) ln(x( 1
r+1+ s−1

x ))

x

!/
xr+1, x ∈ R+.

Since lim
x→∞

g(x) = ∞, we conclude that

lim
µ→r1
µ<r1

G

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

))
= ∞.

Hence, function G does not possess a finite global maximum.
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3. EVALUATION IN TERMS OF THE BIAS AND THE MSE

In the following, Gamma(a, b), a, b ∈ R+, denotes the gamma distribution with parame-
ters a, b with density function f(x) = baxa−1 exp{−bx}/Γ(a), x > 0, where Γ(a) is the gamma
function evaluated at a.

Lemma 3.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the bias of the MOLP of Rs based on R? is finite if and only if 1
r ln
(

s−1
r

)
< p,

in which case it is given by

E(Rs − π
(s)
MOLP) = σ

Γ
(
s + 1

p

)
Γ(s)

1−

∏s−1
i=r

(
1 + 1

pi

)−1

(
1− 1

pr ln
(

s−1
r

))r−1

.

If 1
r ln
(

s−1
r

)
≥ p, then E(Rs − π

(s)
MOLP) = −∞.

Proof: To prove the statement, we derive the expression for the expectation of π
(s)
MOLP

and use that the integral is linear if one of the integrand functions is integrable (cf. [17, p. 135]).
By [14, p. 42], Rr and p̂MOL are independent and pr/p̂MOL ∼ Gamma(r− 1, 1). Using results
in [1, section 2.7.1], we conclude that

E(π(s)
MOLP) = E

((
s− 1

r

)1/p̂MOL

Rr

)
= E(Rr)E

((
s− 1

r

)1/p̂MOL
)

= E(Rr)E
(

exp
{

1
pr

ln
(

s− 1
r

)
pr

p̂MOL

})
= E(Rr)

1(
1− 1

pr ln
(

s−1
r

))r−1

= σ
Γ
(
r + 1

p

)
Γ(r)

1(
1− 1

pr ln
(

s−1
r

))r−1 = σ
Γ
(
s + 1

p

)
Γ(s)

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1

= E(Rs)

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1 ,

where in the fourth equality we used the expression for the moment generating function of
the Gamma(r − 1, 1) distribution to evaluate E

(
exp
{

1
pr ln

(
s−1

r

)pr
p̂

})
, which is finite if and

only if 1
pr ln

(
s−1

r

)
< 1, as well as the fact that Γ(x + 1) = Γ(x)x, x ∈ R+. Now, linearity of

the integral yields the desired conclusion.

Lemma 3.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the MSE of the MOLP of Rs based on R? is finite if and only if 2
r ln( s−1

r ) < p,

in which case it is given by

MSE(π(s)
MOLP) = σ2

Γ(s + 2
p)

Γ(s)

1− 2

s−1∏
i=r

(1 + 1
pi)

−1(
1− 1

pr ln( s−1
r )
)r−1 +

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1

.
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Proof: To prove the statement, we use that

(Rs − π
(s)
MOLP)2 = R2

s − 2RsRr

(
s− 1

r

)1/p̂MOL

+ (π(s)
MOLP)2

as well as the fact that the integral is linear if the integrand can be written as a sum of an
integrable and a quasi-integrable function (cf. [17, p. 135]). By [1, Theorem 3.3.1], we have

E(R2
s) = σ2

Γ(s + 2
p)

Γ(s)
,

E(RrRs) = σ2
Γ(s + 2

p)

Γ(s)

s−1∏
i=r

(
1 +

1
pi

)−1

,

and a similar argument as in the proof of Lemma 3.1 yields

E((π(s)
MOLP)2) =


σ2

Γ(r + 2
p)

Γ(r)
1(

1− 2
pr ln( s−1

r )
)r−1 ,

2
r

ln
(

s− 1
r

)
< p,

∞,
2
r

ln
(

s− 1
r

)
≥ p,

=


σ2

Γ(s + 2
p)

Γ(s)

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1 ,

2
r

ln
(

s− 1
r

)
< p

∞,
2
r

ln
(

s− 1
r

)
≥ p.

Combining these results, we conclude that

MSE(π(s)
MOLP) = E((Rs − π

(s)
MOLP)2)

=


σ2

Γ(s + 2
p)

Γ(s)

1− 2

s−1∏
i=r

(1 + 1
pi)

−1(
1− 1

pr ln( s−1
r )
)r−1 +

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1

,
2
r

ln
(

s− 1
r

)
< p,

∞, 1 <
pr

ln
(

s−1
r

) ≤ 2.

Finally, it remains to show that MSE(π(s)
MOLP) = ∞ for p ≤ 1

r ln( s−1
r ). Lemma 3.1 implies that

E(|Rs−π
(s)
MOLP|) = ∞ for p ≤ 1

r ln( s−1
r ). By the well-known embedding theorem for Lebesgue

spaces (cf. [17, Example 8.4.9 (2)]), we find E((Rs − π
(s)
MOLP)2) = ∞ for p ≤ 1

r ln( s−1
r ).

Table 1 contain the biases and MSEs of the MLP (estimated from 107 Monte Carlo
replications) and the MOLP for various values of r, s and p, and with σ = 1. Results in
boldface represent all best results in terms of the MSE among the prediction methods, pro-
vided the best result is achieved by the MLP. The simulation results indicate that the MOLP
exhibits superior performance based on the MSE in most cases. There are a few exceptions
though, which suggest that the MLP has a lower MSE in cases when p, r are small (p = 0.5,
r = 3) and s = r + 2. It should be noted that the MSE of the MOLP can become large (or
even infinite) for small values of p in (0, 1), small values of r and a higher gap between r and s

(see Table 1). This is due to the fact that, in theses cases, (2/r) ln((s− 1)/r) is close to p from
below (or exceeds p), which yields large (or infinite) MSEs by means of Lemma 3.2. However,
the situation of a small r combined with a large gap between r and s is not meaningful in
practice. Moreover, one can observe that the difference in performance becomes smaller as
the sample size increases.
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4. COMPARISON IN TERMS OF PITMAN’S MEASURE OF CLOSENESS

Since the MLP π
(s)
MLP of Rs based on R? is not given in closed form, we are not able to

derive an analytic expression for the Pitman efficiency of the MOLP π
(s)
MOLP relative to π

(s)
MLP.

We therefore aim at establishing a lower bound on the Pitman efficiency. The following lemmas
are required to establish the desired result.

Lemma 4.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the MOLP of Rs is always greater than the MLP of Rs.

Proof: Indeed, we know that, for (r1, ..., rr) ∈ (0,∞)r
<, the PMLE of p satisfies the

equation

p

(
p ln

(
r−1∏
i=1

ri

rr

)
+ r + 1

)
= ln

(
r + 1/p

s + 1/p− 1

)
.

Note that ln
(

r+1/p
s+1/p−1

)
< 0, p ∈ R+. Consequently, since ln(

∏r−1
i=1 ri/rr) < 0, the solution of

the above equation is always greater than −(r + 1)/ ln(
∏r−1

i=1 ri/rr) (= r+1
r p̂MOL). Now, for

α, β ∈ R, 0 < α < β, consider the functions

fα,β(t) =
β + t

α + t
, gα,β(t) = fα,β(t)t, t ∈ (−α,∞).

Differentiating fα,β and gα,β yields

f ′α,β(t) = − β − α

(α + t)2
, g′α,β(t) = fα,β(t)

(
ln(fα,β(t)) + t

f ′α,β(t)
fα,β(t)

)
, t ∈ (−α,∞).

Obviously, f ′α,β(t) < 0, t ∈ (−α,∞). Hence, fα,β is a strictly decreasing function. Furthermore,
for t ∈ (−α,∞),

ln(fα,β(t)) + t
f ′α,β(t)
fα,β(t)

= ln
(

1 +
β − α

α + t

)
+ t

α− β

(α + t)(β + t)

>
β − α

β + t
+ t

α− β

(α + t)(β + t)

=
α(β − α)

(α + t)(β + t)
> 0,

where we used the inequality x/(x+1) < ln(1+x), for x > −1, x 6= 0. Thus, gα,β is a strictly
increasing function. Using the preceding results, we obtain

π
(s)
MLP = gr,s−1(1/p̂ML)Rr

< gr,s−1(1/p̂MOL)Rr

= fr,s−1(1/p̂MOL)1/p̂MOLRr

< fr,s−1(0)1/p̂MOLRr = π
(s)
MOLP.
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Lemma 4.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the probability of Rs exceeding its MOLP based on R? is given by

P (π(s)
MOLP < Rs) =

s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 .

In particular, this probability is independent of the distributional parameters σ and p.

Proof: Observe that

π
(s)
MOLP < Rs ⇐⇒ s− 1

r
<

(
Rs

Rr

)p̂MOL

.

Let G denote the cumulative distribution function of (Rs/Rr)1/p̂MOL . By the results in [14,
section 4], G admits the representation

G(t) =

∞∫
0

H

(
r

s− r

(
t

z
2r − 1

)∣∣∣2(s− r), 2r

)
fχ2(z|2(r − 1))dz, t ∈ (1,∞).

Here, for n, m ∈ N, H(·|n, m) denotes the cumulative distribution function of the F distribu-
tion with parameters n and m, and fχ2(·|n) denotes the density function of the χ2 distribution
with parameter n. First, note that

H

(
r

s− r

(
t

z
2r − 1

)∣∣∣2(s− r), 2r

)
= I

1−t−
z
2r

(s− r, r) = 1− I
t−

z
2r

(r, s− r).

Consequently,

P (π(s)
MOLP < Rs) = 1−G

(
s− 1

r

)
=

∞∫
0

I
( r

s−1)
z
2r

(r, s− r)fχ2(z|2(r − 1))dz.

Furthermore, since the parameters of the regularized incomplete beta function are integers,
we have, by the relation of the regularized incomplete beta function to the binomial expansion
(see [8, (6.6.4)]),

Ix(r, s−r) =
s−1∑
j=r

(
s−1

j

)
xj(1−x)s−1−j =

s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s−1

j

)(
s−1− j

i

)
xi+j , x∈ (0,1).

From the preceding results we infer that

P (π(s)
MOLP < Rs) =

∞∫
0

I
( r

s−1)
z
2r

(r, s− r)fχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)∫ ∞

0

(
r

s− 1

) i+j
2r

z

fχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)∫ ∞

0
e

i+j
2r

ln( r
s−1)zfχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 ,

where in the last equality we used the expression for the moment generating function of
the χ2(2(r− 1)) distribution to evaluate the integrals

∫∞
0 e

i+j
2r

ln( r
s−1)zfχ2(z|2(r− 1))dz. This

concludes the proof.
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Remark 4.1. The proof of Lemma 4.2 yields a finite sum representation of the cumu-
lative distribution function G of (Rs/Rr)1/p̂MOL :

G(t) = 1−
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln(t)

)r−1 , t ∈ (1,∞).

By exploiting the presence of alternating binomial sums in the above representation, a more
compact representation of G can be obtained. More precisely, we have that

G(t) = 1−
s−1∑
j=r

(−1)s−1−j

(
s− 1

j

)
∆s−1−jfr,j,t, t ∈ (1,∞),

where

fr,j,t(i) =
1(

1 + i+j
r ln(t)

)r−1 , 0 ≤ i ≤ s− 1− j,

and, for j = r, ..., s− 1, the (s− 1− j)-th forward difference is computed for i = 0. Using
this finite sum representation allows to avoid applying numeric integration for evaluation
of G (cf. [14, section 6]). Since alternating sums can be numerically problematic, for an
efficient and accurate implementation of G, it is advisable to use high precision arithmetic.
See sumBinomMpfr() in R package Rmpfr and its documentation.

Proposition 4.1. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, let π
(s)
MOLP and π

(s)
MLP be the MOLP and the MLP of Rs based on R?, respec-

tively. Then

P (|π(s)
MOLP −Rs| < |π(s)

MLP −Rs|)

>
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 .

Proof: Due to Lemma 4.1,

P (|π(s)
MOLP −Rs| < |π(s)

MLP −Rs|) > P (Rs > π
(s)
MOLP).

Hence, Lemma 4.2 yields the desired result.

Figure 1 contains the contour plots of the lower bound on the Pitman efficiency
PE(MOLP,MLP) = P

(
|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|

)
of the MOLP of Rs relative to the

MLP of Rs based on R? for r, s such that 2 ≤ r ≤ 20 and r + 1 < s ≤ r + 10. Table 2 contains
values of the lower bound on as well as estimated Pitman efficiencies for selected r and s, and,
in the case of estimated Pitman efficiencies, for shape parameter values p = 0.5, 1.5, 2, 2.5.
Observe that while the lower bound on the Pitman efficiencies does not depend on the
distributional parameters, the Pitman efficiencies do depend on the shape parameter p.
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Each estimated Pitman efficiency was computed based on 106 simulated samples of Weibull
record values. From the contour plot of the lower bound on the Pitman efficiency, the MOLP
seems to be superior to the MLP in terms of Pitman closeness for r, s such that 2 ≤ r ≤ 20 and
r+1 < s ≤ r+10. The estimated Pitman efficiencies presented in Table 2 as well as additional
simulation results suggest that for fixed r and s the Pitman efficiency is a decreasing function
of p. Furthermore, the simulation results indicate that the lower bound from Proposition 4.1
is the tighter, the bigger r and the smaller s− r are.

10

20

30

5 10 15 20
r

s

Lower bound on PE(MOLP,MLP)
(0.639,0.666]
(0.666,0.693]
(0.693,0.719]
(0.719,0.746]
(0.746,0.773]
(0.773,0.799]
(0.799,0.826]
(0.826,0.853]
(0.853,0.88]
(0.88,0.907]

Figure 1: Contour plot of the lower bound on the Pitman efficiency PE(MOLP,MLP) =
P (|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|) of the MOLP of Rs relative to the MLP of Rs

based on Weibull record values R1, ..., Rr for r, s such that 2 ≤ r ≤ 20 and
r + 1 < s ≤ r + 10.

The superior performance of the MOLP in terms of the Pitman efficiency compared
to the MLP even for small values of r and p < 1, for which the MOLP performs poorly if
evaluated in terms of the MSE (see Table 1) is in line with the intuition underlying the Pitman
criterion: namely being only affected by the bias and not accounting for the variability in
the predictors. Note also that according to Table 1, despite MOLP’s inferior performance
in terms of the MSE, it still has a lower bias than the MLP, which supports its superior
performance in terms of the Pitman criterion as evidenced by the values in Table 2.
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Table 2: Values of the lower bound (first row in each section) as well as estimated Pitman
efficiencies PE(MOLP,MLP) = P (|Rs−π

(s)
MOLP| < |Rs−π

(s)
MLP|) of the MOLP of Rs

relative to the MLP of Rs based on Weibull record values R1, ..., Rr for selected
r and s, and, in the case of estimated Pitman efficiencies, for p ∈ {0.5, 1.5, 2, 2.5}.

r

�
s p r + 2 r + 3 r + 4 r + 5 r + 10

0.906 0.875 0.877 0.874 0.873
0.5 0.927 0.920 0.917 0.915 0.909

2 1.5 0.923 0.918 0.918 0.918 0.920
2 0.921 0.916 0.917 0.917 0.920
2.5 0.920 0.915 0.916 0.916 0.920

0.805 0.771 0.759 0.754 0.745
0.5 0.852 0.836 0.832 0.831 0.831

5 1.5 0.838 0.818 0.812 0.812 0.818
2 0.836 0.814 0.809 0.808 0.812
2.5 0.834 0.813 0.807 0.805 0.809

0.771 0.727 0.708 0.698 0.681
0.5 0.807 0.778 0.770 0.766 0.769

10 1.5 0.794 0.760 0.746 0.742 0.739
2 0.792 0.757 0.743 0.738 0.734
2.5 0.790 0.755 0.742 0.736 0.731

0.760 0.711 0.689 0.677 0.654
0.5 0.788 0.751 0.738 0.732 0.729

15 1.5 0.776 0.735 0.718 0.710 0.701
2 0.775 0.733 0.716 0.707 0.696
2.5 0.773 0.731 0.713 0.705 0.693

0.754 0.703 0.679 0.665 0.639
0.5 0.776 0.735 0.719 0.711 0.704

20 1.5 0.767 0.722 0.702 0.692 0.677
2 0.766 0.720 0.700 0.690 0.673
2.5 0.765 0.719 0.699 0.687 0.671

5. ASYMPTOTIC RESULTS

In the present section we establish two asymptotic results concerning the behavior of
the bias as well as the asymptotic distribution of the prediction error of the MOLP. Hereby,
we consider sequences (rn)∞n=1, (sn)∞n=1 ∈ NN, satisfying

rn < sn for all n ∈ N and lim
n→∞

rn = ∞.

However, by an abuse of notation, we write r, s →∞ when taking limits with respect to n.
Also, we will suppress n in the notation.

Proposition 5.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. The

MOLP π
(s)
MOLP of Rs based on R? is asymptotically unbiased in the sense that if lim

s,r→∞
s/r = λ,

for some λ > 1, then

E(π(s)
MOLP)

E(Rs)
−→ 1, r, s →∞.
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Proof: Observe that, under the stated assumptions, the condition 1
pr ln

(
s−1

r

)
< 1

is satisfied for r large enough, in which case, by the proof of Lemma 3.1,

E(π(s)
MOLP)

E(Rs)
=

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1 .

For x ∈ (−1, 1), set ρ(x) =
∑∞

k=2(−1)k+1 xk

k . Then log(1 + x) = x + ρ(x), x ∈ (−1, 1), and

s−1∏
i=r

(
1 +

1
pi

)−1

= exp

{
−

s−1∑
i=r

log
(

1 +
1
pi

)}

= exp

{
−1

p

s−1∑
i=r

1
i

}
exp

{
−

s−1∑
i=r

ρ(1/pi)

}
.

Since ρ(x) = O(x2) as x → 0, we have ρ(1/pi) = O(1/i2) as i →∞. Consequently,
lim

r,s→∞

∑s−1
i=r ρ(1/pi) = 0. Moreover, lim

r,s→∞

∑s−1
i=r 1/i = ln(λ). Hence, we obtain that

lim
r,s→∞

s−1∏
i=r

(
1 +

1
pi

)−1

=
(

1
λ

) 1
p

.

The claim now follows from the fact that

lim
r,s→∞

(
1− 1

pr
ln
(

s− 1
r

))r−1

= exp
{
−1

p
ln(λ)

}
=
(

1
λ

) 1
p

.

Remark 5.1. The shifted Stirling’s approximation for the (real) Gamma function
reads (see [2, formula (5.11.7)])

Γ(x + a) =
√

2πe−xxx+a− 1
2 eo(1), as x →∞.

Hence,

Γ(s + 1/p)
Γ(s)

= s1/peo(1), as s →∞.

To prove that π
(s)
MOLP is unbiased in the limit, i.e., lim

r,s→∞
E(Rs − π

(s)
MOLP) = 0, where r and s

are supposed to satisfy lim
r,s→∞

s
r = λ > 1, one has to prove that

s1/p

1−
∏s

i=r+1(1 + 1
pi)

−1(
1− 1

pr ln
(

s−1
r

))r−1

→ 0, r, s →∞,

which is equivalent to showing that

s1/p

((
1− 1

pr
ln
(

s− 1
r

))r−1

−
s∏

i=r+1

(
1 +

1
pi

)−1
)
→ 0, r, s →∞.

Numerical computation indicates that this is true.
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We continue with a result concerning the asymptotic distribution of the prediction error
of the MOLP.

Proposition 5.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. The

prediction error of the MOLP π
(s)
MOLP of Rs based on R? has an asymptotic normal distribu-

tion. More specifically, we have that

αs(σ, p)

(
Rs −

(
s− 1

r

) 1
p̂MOL

Rr

)
−→ N

(
0, λ + λ ln2(λ)− 1

)
, r, s →∞,

where it is assumed that there exists a λ ∈ (1,∞) such that lim
r,s→∞

(λ− s/r)
√

r = 0, and the

sequence of normalizing constants is given by αs(σ, p) = p
σs

1
2
− 1

p .

Proof: First, recall that, by result (7) in [14], p̂MOL is independent of Rr and Rs

and pr/p̂MOL ∼ Gamma(r − 1, 1). Let (Yn)∞n=1 and (Zn)∞n=1 be two independent sequences
of i.i.d. random variables, Y1, Z1 ∼ Exp(1). By [1, equation (2.3.3)], for any r, s ∈ N, r < s,
the identity (Rr, Rs)

d= σ((
∑r

i=1 Yi)
1/p, (

∑s
i=1 Yi)

1/p) holds true. Combining these results, we
conclude that

1
σ

(
Rs−

(
s−1

p

) 1
p̂MOL

Rr

)
d=

(
r∑

i=1

Yi +
s∑

i=r+1

Yi

)1/p

−

([
s− 1

r

]1/p
)1

r

Pr−1
i=1 Zi

(
r∑

i=1

Yi

)1/p

=

(
s +

{∑r
i=1 Yi−r√

r

√
r

s
+
∑s

i=r+1 Yi−(s−r)
√

s−r

√
s−r

s

}
√

s

)1/p
− s1/p

+ s1/p − λ1/p

(
r +

∑r
i=1 Yi − r√

r

√
r

)1/p

+

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
×
(

r +
∑r

i=1 Yi − r√
r

√
r

)1/p

=:A + B + C.(5.1)

We first treat the terms denoted by A. By [6, Theorem 5.6.1],∑r
i=1 Yi − r√

r
,

∑s
i=r+1 Yi − (s− r)

√
s− r

d−→ N (0, 1), r, s →∞.(5.2)

Hence, applying Theorem 2.8 in [4] as well as Slutsky’s lemma, we conclude that

∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

d−→ N (0, 1), r, s →∞.(5.3)
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By expanding the function f(x) = (1 + x)1/p, x > −1, around x = 0, f(x) = 1 + x
p + o(x),

as x → 0. Consequently,

A =

(
s +

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
√

s

)1/p

− s1/p

= s1/p

(1 +

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
1√
s

)1/p

− 1


=

s
1
p
− 1

2

p

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
(1 + oP (1)), r, s →∞.(5.4)

Similarly, we have

B = s1/p − λ1/p

(
r +

∑r
i=1 Yi − r√

r

√
r

)1/p

= −s1/p

[(
λ

r

s
+
∑r

i=1 Yi − r√
r

√
λ2

r

s

1√
s

)1/p

− 1

]

= −s1/p

[(
1 + o(1/

√
s) +

∑r
i=1 Yi − r√

r

√
λ2

r

s

1√
s

)1/p

− 1

]
, r, s →∞

= −s
1
p
− 1

2

p

(∑r
i=1 Yi − r√

r

√
λ2

r

s
+ o(1)

)
(1 + oP (1)), r, s →∞,(5.5)

where the second-last equality is due to lim
r,s→∞

(λ− s/r)
√

r = 0. Finally, we treat the terms

denoted by C. First, we rewrite C as

C =

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
(

r +
∑r

i=1 Yi − r√
r

√
r

)1/p

=
s

1
p
− 1

2

p

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
×

(
r +

Pr
i=1 Yi−r√

r

√
r
)1/p

− r1/p

s
1
p
− 1

2 /p

+
s

1
p
− 1

2

p

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
(r

s

)1/p
p
√

s

=: D + E.(5.6)

By [6, Theorem 5.6.1] and Slutsky’s lemma,

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
P−→ 0, r, s →∞.(5.7)
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Next, by (5.2), we have that(
r +

Pr
i=1 Yi−r√

r

√
r
)1/p

− r1/p

s
1
p
− 1

2 /p
=

(
r +

Pr
i=1 Yi−r√

r

√
r
)1/p

− r1/p

r
1
p
− 1

2 /p

r
1
p
− 1

2

s
1
p
− 1

2

=

(
1 +

Pr
i=1 Yi−r√

r
1√
r

)1/p
− 1

r−
1
2 /p

r
1
p
− 1

2

s
1
p
− 1

2

=
(∑r

i=1 Yi − r√
r

+ oP (1)
)

λ
1
2
− 1

p , r, s →∞

= OP (1), r, s →∞.(5.8)

From (5.7) and (5.8) it readily follows that

ps
1
2
− 1

p D = oP (1), r, s →∞.(5.9)

Next, consider the terms denoted by E. We have (r/s)1/pp
√

s ∼ pλ
1
2
− 1

p
√

r, as r, s →∞.
Furthermore, setting

Wr =
1
p

((∑r−1
i=1 Zi − (r − 1)√

r − 1

√
r − 1

r

)
1√
r
− 1

r

)
ln
(

s− 1
r

)
and observing that Wr = oP (1), as r, s →∞, we conclude that

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
=
(

s− 1
r

) 1
p

exp{Wr}

=
(

s− 1
r

) 1
p

(1 + Wr + W 2
r + oP (W 2

r )),

as r, s →∞. Hence, using these asymptotic relations as well as the fact that W 2
r = oP (1/

√
r),

as r →∞, we obtain

ps
1
2
− 1

p E =

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
(r

s

)1/p
p
√

s

=

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�pλ
1
2
− 1

p
√

r, r, s →∞

= pλ
1
2
− 1

p

{(
λ

1
p −

(
s− 1

r

) 1
p

)
√

r

−
(

s− 1
r

) 1
p√

rWr −
(

s− 1
r

) 1
p√

rW 2
r + oP (W 2

r )
√

r

}
, r, s →∞

= p λ
1
2
− 1

p

{
−
(

s− 1
r

) 1
p√

rWr + oP (1)

}
, r, s →∞.(5.10)
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Finally, combining (5.1), (5.4), (5.5), (5.6), (5.9), (5.10), we arrive at

1
σ

(
Rs −

(
s− 1

p

) 1
p̂MOL

Rr

)
d=

s
1
p
− 1

2

p

{∑r
i=1 Yi − r√

r

(√
r

s
−
√

λ2
r

s

)
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}

− s
1
p
− 1

2

p

{
pλ

1
2
− 1

p

(
s− 1

r

) 1
p√

rWr + oP (1)

}
, r, s →∞.

Since
√

rWr
d→ 1

p ln(λ)N (0, 1), as r, s →∞, Theorem 2.8 in [4] as well as Slutsky’s lemma
yield that

p

σ
s

1
2
− 1

p

(
Rs −

(
s− 1

p

) 1
p̂MOL

Rr

)
d−→

(√
1
λ
−
√

λ

)
X1 +

√
1− 1

λ
X2 −

√
λ ln(λ)X3,

as r, s →∞, where X1, X2, X3
i.i.d.∼ N (0, 1). Since(

1
λ
−
√

λ

)
X1 +

√
1− 1

λ
X2 −

√
λ ln(λ)X3 ∼ N (0, λ + λ ln2(λ)− 1),

the statement is proved.

Remark 5.2. From the preceding result we obtain an approximate prediction interval
for Rs with nominal coverage probability 1− α, which is given by

π
(s)
MOLP ± z1−α/2

√
(s/r)(1 + ln2(s/r))− 1)

αs(σ̂MLE, p̂MLE)
,

where σ̂MLE is the MLE of σ, σ̂MLE = Rr/r1/p̂MLE and z1−α/2 denotes the respective quantile
of N (0, 1). For the MLEs of σ and p we refer to [14].

6. CONCLUSION

For predicting future record values based on a sequence of observed upper record values
with an underlying Weibull distribution, we derive two likelihood-based predictors, namely
the maximum likelihood predictor and the maximum observed likelihood predictor. Expres-
sions for the predictors are derived along with properties in terms of bias and mean squared
error. The predictors are compared via Pitman’s measure of closeness and their performance
is examined in a simulation study.
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