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Abstract:

• The problem of homoscedasticity arises in several fields such as business, education, environments,
and medicine, and common question in many statistical analyses. One of the most important
tests in this direction is Levene test and its robust version Brown–Forsythe test. The goal of this
paper is threefold. The first goal is to propose an expression that enable to develop a graphical
way for Levene–Brown–Forsythe tests. The second goal is to derive the sampling distribution of
the proposed expression as the generalized beta prime distribution. The third goal is to provide
deep insight and understanding where the dispersion effects occur. Simulation study is carried out
to study the level of significance and power of the proposed test in comparison with the original
Levene–Brown–Forsythe tests. The results are of great values since the proposed method:

(a) provides powerful visual tool and deep insight for testing homoscedasticity,
(b) keeps the size and power of the test similar to Levene–Brown–Forsythe tests,
(c) does not need to pairwise comparisons.

Two applications are presented to show the utilities of the proposed method.
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1. INTRODUCTION

It is known that the one-way analysis of variance (ANOVA) is one of the most frequently
used tests to explore the differences among several treatment means; see, for example, Kutner
et al. [15], Yigit and Mendes [28] and Nguyen et al. [19]. The homoscedasticity plays an
important role in ANOVA test since the large deviations from the homoscedasticity can
affects the results of F-test for equal means; see Fox and Weisberg [9] and Wang et al. [27].
The Levene test [17] and its robust extension Brown–Forsythe test [5] had been used to
assess homogeneity of variances or homoscedasticity for several groups. These tests depend
on transforming the ANOVA test of means into a test of variances based the absolute values
of the differences between observations and a location measure (mean, trimmed mean and
median). The assumption of homoscedasticity can be written as

H0 : σ2
1 = ··· = σ2

k

versus
Ha : σ2

i 6= σ2
j for at least one pair (i, j),

where k is the number of groups.

The assumption of homoscedasticity can also use on its own to compare the dispersion
among several groups in a study. Kvamme et al. [16] used Levene test and Brown–Forsythe
robust version of Levene test to compare the dispersion of the holes of the chalupa pots from
the 3 different locations. The null hypothesis was that the dispersion or variation of each
characteristic is the same in the three locations. Plourde and Watkins [22] utilized Levene’s
test to month-to-month price fluctuates to investigate whether the conduct of oil costs changed
within the 1980s and got to be more like that of other goods, which head to have big cost
vacillations, they utilized both the nonparametric Fligner–Killeen [8] test and the Brown–
Forsythe modified of Levene test in an arrangement of post hoc pairs comparisons to evaluate
the relative variations of the price fluctuates. Sant and Cowan [24] considered the effect of a
privation of a profit by a company on the changeability of both the estimates of future profit
and the real profit. They compared the profit and predicted of companies that excluded
a profit amid the period 1963–1984 by comparing the fluctuations of the real or forecasted
profit per share 2 years after the omission and 2 years before. They utilized Brown–Forsythe
robust version of Levene test. Berger et al. [4] used a database of 6026 “echocardiograms”
that perused by one of 3 similarly capable perusers to survey the contrasts in recurrence
of many analyzes and related measurements. The numbers of “echocardiograms” examined
by the pursuers (one, two, three) were 2702, 2101 and 1223, respectively. Levene’s test was
utilized to evaluate the variation in the measurements of many continuous characteristics.
Nordstokke and Zumbo [20] had developed a nonparametric version of Levene test by pooling
the observations from all sets, ranking the scores with taking ties in consideration, return the
ranks into their original sets, and apply the Levene test on the ranks; for more details; see
Nordstokke et al. [21] and Shear et al. [25]. In analytical methods Aslam and Khan [2] used
Levene test to modify Chochran test to be applied for detecting outliers in the data. The goal
of this paper is threefold. The first goal is to develop an expression that assist in plotting
Levene–Brown–Forsythe tests. The second goal is to obtain the sampling distribution of the
suggested expression as a beta prime distribution of the second type that can be used in
creating a decision limit. The third goal is to provide deep insight and understanding where
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the dispersion effects occur. Simulation study is carried out to study the level of significance
and power of the proposed test in comparison with the original Levene–Brown–Forsythe
tests. The results are of great value since the proposed method provides visual and deep
insight where the variation occurs and does not need to post hoc pairwise comparisons. Two
applications are studied to show the usage of the proposed method.

Levene–Brown–Forsythe approach is explained in Section 2. The proposed method is
introduced in Section 3. The empirical type I error and test power is presented in Section 4.
The usage of the proposed method in the analysis of data from two applications is described
in Section 5. Section 6 is devoted for conclusion.

2. LEVENE–BROWN–FORSYTHE APPROACH

Suppose there are k groups each follows a normal distribution with means µi, standard
deviation σi, ni the number of observations in each group, and Xij the response value and n

the total number of observations in all groups, i = 1, ..., k, j = 1, ..., ni. Levene [17] proposed
test to assess the equality of variances for two groups or more. The test was depending on
the idea of analysis of variance (ANOVA) for the absolute deviation about mean, |Xij −Xi ·|.
Levene’s test is based on the classical ANOVA method that can be written as

(2.1) W =
∑k

i=1 ni(Zi · − Z··)
2/(k − 1)∑k

i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
,

where k is the number of groups, ni the number of observations in group i, i = 1, ..., k,
n = n1 + ···+ nk is the total number, Zij =

∣∣Xij − X̄i ·
∣∣ is the absolute deviation about group

mean, Xij is the observation for j-th case from group i, Zi · = 1
ni

∑ni
j=1 Zij is the mean of Zij

for group i, Z·· = 1
n

∑k
i=1

∑ni
j=1 Zij is the mean of all Zij .

Although Levene noticed that
∣∣Xij − X̄i ·

∣∣ are not independent within each group, he
proved that the correlation is of order 1/n2

i and considered that this is small dependency
within each group and would not be seriously impact the distribution of W ; see Gastwirth et

al. [11]. Therefore, the test statistic W is approximated by F-distribution with k−1 and n−k

degrees of freedom, i.e., F (α; k − 1, n− k) where F is the quantile for F-distribution and α

is prechosen level of significant. In practice it may be concluded that there is heterogeneity if
W > F (α; k − 1, n− k). Brown and Forsythe [11] proposed revised version to Levene test by
using median or trimmed mean rather than mean, i.e., Zij =

∣∣∣Xij − X̃i ·

∣∣∣ or Zij =
∣∣Xij − X̌i ·

∣∣,
X̃i · median and X̌i · trimmed mean, with the same approximated distribution F (α; k−1, n−k).
Brown and Forsythe carried out simulation study that indicated that median and trimmed
mean performed better in heavy-tailed symmetric and skewed distributions while mean is
performed best in case of normal and moderate-tailed symmetric distribution; see Brown
and Forsythe [5] and Gastwirth et al. [11]. Although different underlying distributions give
different optimal choice for location parameter, the optimal choice based on median is a rec-
ommended one as it provides a good robustness for many types of non-normal data while hold
a good power in normal and symmetric distributions; see Gastwirth et al. [12], Wang et al. [27]
and Nguyen et al. [19].
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3. THE PROPOSED METHOD

The Levene–Brown–Forsythe test can be rewritten as

(3.1) W =
∑k

i=1 ni(Zi ·−Z··)
2/(k−1)∑k

i=1

∑ni
j=1(Zij −Zi ·)

2/(n−k)
=

k∑
i=1

ni(Zi ·−Z··)
2/(k−1)∑k

i=1

∑ni
j=1(Zij −Zi ·)

2/(n− k)
=

k∑
i=1

Ui .

Hence,

(3.2) Ui =
ni(Zi · − Z··)

2/(k − 1)∑k
i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
, i = 1, 2, ..., k.

This is the ratio for each between square and all treatments squares or contribution of each
between squares to mean square error. Therefore, the Levene–Brown–Forsythe tests could
be plotted as

xaxis = i versus yaxis = Ui with DL, for i = 1, 2, ..., k,

where DL is the decision limit obtained from the sampling distribution of Ui.

3.1. The sampling distribution of Ui

Under the assumptions of one-way ANOVA:

(a) Xi1, ..., Xkni
is a random sample of size ni from a normal population, i = 1, ..., k;

(b) the random samples from different populations are independent;

see Johnson and Wichern [14]. Furthermore, Gastwirth et al. ([11], page 4) had written that
“Zij =

∣∣Xij − X̄i ·
∣∣ are treated as independent, identically distributed, normal variables, and

the usual ANOVA statistic is utilized”. Since Zij =
∣∣Xij − X̄i ·

∣∣ is not normally distributed,
the Levene’s method takes usefulness of the reality that the ANOVA procedures for comparing
means are robust to infraction of the assumption that the data follows a normal distribution;
see Gastwirth et al. ([11], page 4) and Miller ([18], page 80). Therefore, if the null hypothesis
of homogeneity of variance is true, hence, the sampling distribution of Ui can be derived as

(3.3) ni(Zi · − Z··)
2/(k − 1) ∼ σ2

(
n− ni

n(k − 1)

)
χ2(1)

and

(3.4)
k∑

i=1

ni∑
j=1

(Zij − Zi ·)
2/(n− k) ∼ σ2χ2(n− k)/(n− k).

Hence,

(3.5) Ui ∼
((n− ni)/n(k − 1))χ2(1)

χ2(n− k)/(n− k)
=

gamma
(

1
2 , n(k−1)

2(n−ni)

)
gamma

(
n−k

2 , n−k
2

) .
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The sampling distribution of Ui can be obtained as

(3.6) fUi(u) =
[((n− ni)(n− k))/n(k − 1)]−1/2

B
(

1
2 , n−k

2

) (
1 +

n(k − 1)
(n− ni)(n− k)

u

)−(n−k+1)/2

u−1/2,

where k > 0, i = 1, ..., k, and B: Beta; see Coelho and Mexia [6] and Elamir [7]. This
distribution has parameters k, ni and n and is a special type from generalized beta prime
distribution with a = 1, b = ((n−ni)(n−k))

(n(k−1)) , p = 1/2, q = (n − k)/2, x = u; see Coelho and
Mexia [6], R Core Team [23] and GB2 package, Graf and Nedyalkova [13]. As one of the
reviewers has pointed out that the distribution of Ui may also be written in terms of a scaled
F-distribution. Note that Ui can be rewritten in terms of scaled F-distribution as

Ui ∼
((n− ni)/n(k − 1))χ2(1)

χ2(n− k)/(n− k)
=

n− ni

n(k − 1)
F (v1 = 1, v2 = (n− k)).

From Smyth ([26], page 9), the density function for scaled F-distribution (x = (a/b)F (v1, v2))
can be written as

f(x) =
av2/2bv1/2x

v1
2
−1

β
(

v1
2 , v2

2

)
(a + bx)

v1+v2
2

, x > 0.

The sampling distribution of Ui can be obtained from scaled F-distribution by replacing
v1 = 1, v2 = n− k, a = 1, b = (n− ni)/(n(k − 1)).

The moments of Ui can be obtained as

E(Ui
h) =

[
(n− ni)(n− k)

n(k − 1)

]h Γ(0.5 + h)Γ
(

n−k
2 − h

)
Γ(0.5)Γ

(
n−k

2

) , h = 1, 2, ...

For example,

E(Ui) =
[
(n− ni)(n− k)

n(k − 1)

]
Γ
(

n−k
2 − 1

)
2Γ

(
n−k

2

) =
(n− ni)(n− k)
n(n− k − 2)

and

V (Ui) = E
(
Ui

2
)
− E2(Ui) =

[
(n− ni)(n− k)

n(k − 1)

]2 3Γ
(

n−k
2 − 2

)
4Γ

(
n−k

2

) −
[
(n− ni)(n− k)
n(n− k − 2)

]2

.

When sample sizes are equal in each group n1 = ··· = nk = ne, the sampling distribution of Ui

can be simplified to

fUi(u) =
[1/(ne − 1)]−1/2

B
(

1
2 , k(ne−1)

2

) (
1 +

1
(ne − 1)

v

)−(k(ne−1)+1)/2

u−1/2.

This distribution has parameters k and ne. The moments for Ui can be derived as

E(Ui
h) = (ne − 1)h

Γ(0.5 + h)Γ
(

k(ne−1)
2 − h

)
Γ(0.5)Γ

(
k(ne−1)

2

) ;

see Coelho and Mexia [6].
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3.2. The empirical moments of Ui

To inspect how well the beta prime distribution for Ui in different setting, a simulation
study is conducted to obtain the first four empirical moments of Ui at k = 3 and 8, ni = 10
and 25 from normal distribution, Laplace distribution (symmetric heavy-tail) and chi square
distribution with 2 degrees of freedom (asymmetric heavy tail) using mean, trimmed mean
(0.25) and median as a measure of location. The steps for empirical study are:

1. Select the required design for example k = 3, ni = 10, normal distribution and mean
as location measure;

2. Simulate data from a selected distribution with equal variance;

3. Calculate Ui, i = 1, ..., k, for each group;

4. Calculate the first four moments for each Ui, i = 1, ..., k;

5. Repeat this R times and calculate the mean for every design.

Table 1 gives the first four empirical moments for mean of Ui from normal, Laplace
and chi square (df = 2) in addition to the theoretical value from the beta prime distribution.

Table 1: Mean of the first four empirical and theoretical (theo.) moments of mean of Ui using dif-
ferent setting and location measures (mean, Tri: trimmed mean (0.25) and Med:median).

Mean Tri Med
k ni

mean Var. Sk. Ku. mean Var. Sk. Ku. mean Var. Sk. Ku.

3

10

N 0.386 0.314 3.18 19.45 0.368 0.287 3.19 20.49 0.315 0.211 3.08 21.75
Laplace 0.443 0.396 3.24 20.02 0.377 0.302 3.44 23.51 0.34 0.237 3.22 22.35
χ2 (df =2) 0.708 1.043 3.24 20.53 0.539 0.675 3.73 23.61 0.364 0.276 3.81 24.62
Theo. 0.36 0.293 3.42 23.02 0.36 0.293 3.42 23.02 0.36 0.293 3.42 23.02

25

N 0.359 0.265 3.24 20.96 0.351 0.256 3.23 18.28 0.313 0.204 3.3 21.23
Laplace 0.377 0.278 2.82 15.02 0.346 0.24 2.69 14.01 0.334 0.219 2.79 15.23
χ2 (df =2) 0.617 0.762 3.13 16.05 0.471 0.472 3.47 17.63 0.338 0.233 2.99 18.28
Theo. 0.342 0.245 3.02 17.29 0.342 0.245 3.02 17.29 0.342 0.245 3.02 17.29

8

10

N 0.141 0.041 3.24 21.16 0.133 0.036 3.12 18.43 0.111 0.025 3.24 20.6
Laplace 0.161 0.056 3.65 30.77 0.135 0.039 3.92 28.59 0.122 0.034 3.65 26.38
χ2 (df =2) 0.249 0.164 4.09 29.14 0.182 0.086 4.69 33.9 0.125 0.04 4.33 30.29
Theo. 0.128 0.034 3.02 17.29 0.128 0.034 3.02 17.29 0.128 0.034 3.02 17.29

25

N 0.128 0.033 2.94 15.43 0.13 0.034 2.74 16.08 0.117 0.027 2.81 15.98
Laplace 0.137 0.039 3.11 18.29 0.126 0.033 3.11 18.49 0.121 0.03 3.1 19.12
χ2 (df =2) 0.221 0.114 3.56 25.74 0.164 0.065 3.72 26.1 0.123 0.033 3.55 22.76
Theo. 0.126 0.032 2.89 15.78 0.126 0.032 2.89 15.78 0.126 0.032 2.89 15.78

This table illustrates that:

1. When the mean is the location measure, the best results (empirical is very close to
theoretical) are obtained from normal distribution;

2. When the trimmed mean is the location measure, the best results (empirical is very
close to theoretical) are obtained from Laplace distribution, followed by normal;

3. When the median is the location measure, the best results (empirical is very close
to theoretical) are obtained from chi square distribution, followed by Laplace dis-
tribution then normal.
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3.3. Decision limit

To create decision limit (DL), it must take into account k tests that required making
difference between two sorts of level of significant α:

1. test-wise alpha (alpha per test α[PT ]) when working with a specific test;

2. family-wise (alpha per family or experiment alpha α[PF ]) when working with the
whole experiment.

The probability of committing first error for k tests can be defined from Abdi [1] as

(3.7) α(PF ) = 1− (1− α(PT ))k.

Hence,

(3.8) α(PT ) = 1− (1− α(PF ))1/k.

Simpler form can be obtained using Bonferroni approximation as

(3.9) α(PT ) ≈ α(PF )
k

.

As an example, to perform k = 8, and the α per family (PF ) = 0.05, based on Bonferroni
approximation, the null hypothesis will be rejected its related probability is less than α(PT ) ≈
0.05/8 = 0.00625. Although the Sidak and Bonferroni corrections are closely similar, the
Bonferroni correction is more conservative than Sidak and control of the expected number
of type I error (Per-family error rate (PFER)) which Sidak does not. Frane [10] stated that
“However, it is important to note that the Bonferroni procedure controls not only the FWER
(family-wise error rate) but also the PFER (Per-family error rate (PFER))”.

In addition to Bonferroni approximation, there is a good method called Benjamini–
Hochberg that controls the false discovery rate (the likelihood of an incorrect rejection of a
hypothesis occurs) using sequential modified Bonferroni correction for several testing rather
than the family wise error rate. Benjamini and Hochberg [3] defined the false discovery rate
(FDR) as the number of false discoveries in an experiment divided by the total number of
discoveries in that experiment where the discovery is a test that passes one acceptance thresh-
old. In other words, it represents one believe the result is true, but when they are accepted
it is never known how many of discoveries are right or wrong. According to Benjamini and
Hochberg [3], if q-value is an estimate of FDR from p-values, it may be written as qi = Npi/i,
N: total p-values, pi: i-th smallest p-value (likelihood of accepting a false result by chance),
Npi: expected value of false results if one accepts all results which have p-values of pi or
smaller, and i the number of results one accepts at i-th p-value threshold. The steps are:

(a) rank the p-values from all multiple hypothesis tests in an experiment;

(b) compute qi;

(c) to ensure monotonically decreasing q-values, replace qi with the lowest value
among all lower-rank q-values that computed.
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In R-software under the function “p.adjust(p; method = " "; n = length(p))” one of the
methods is BH (Benjamini–Hochberg); see R Core Team [23]. Therefore, the decision line
could be proposed by using the quantile function of beta prime distribution and the Bonferroni
approximation as

DL = qgb2
(

1− α

k
, a = 1, b =

(n− ni)(n− k)
n(k − 1)

, p = 0.5, q =
(n− k)

2

)
.

Moreover, the Bonferroni approximation could be replaced by BH using R-function as follows:
p.adjust(p = 1−α/k; method="BH"; n=length(p)); see GB2 package Graf and Nedyalkova [13].
Hence,

if any Ui > DL, for i = 1, ..., k, H0 is rejected.

The U-plot can be plotted as

xaxis = 1 : k versus yaxis = Ui, with decision limit DL.

H0 is rejected if any point outside DL and this will identify where the differences occur.

4. SIMULATION STUDY

The proposed method using Bonferroni (Bonf.) approximation and Benjamini–Hochberg
(BH) method is compared with Levene–Brown–Forsythe methods in terms of type I error
p(reject H0 |H0 is true) and power of the test p(reject H0 |H0 is false) = 1 − p(acceptH0 |
H0 is false) = 1− type II error.

With respect to type I error, the following steps are used in simulation:

1. Construct the desired design k = 3, 8, ni = 10, 20, 50 and nominal α = 0.05.

2. Simulate data from a required distribution with equal variances. The normal dis-
tribution as original distribution, Laplace distribution as symmetric heavy-tailed
distribution and χ2 (df =2) as asymmetric heavy-tailed distributions are used.

3. Calculate Ui-Bonf., Ui-BH, Levene–Brown–Forsythe for each design.

4. Compute the decision limit for Ui-Bonf., Ui-BH and p-values for Levene–Brown–
Forsythe.

5. Create a dummy variable by giving 1 for reject and 0 else.

6. Repeat R times and compute the mean for each design.

The results for these procedures are given in Table 2. It can be concluded about type I error
that:

1. Levene test and Ui-Bonferroni using mean as location are giving a good empirical
type I error in the case of normal distribution;

2. Brown–Forsythe and Ui-BH using median as location are giving a good empirical
type I error in the case of chi square distribution;

3. Brown–Forsythe and Ui-Bonferroni using trimmed mean as location are giving a
good empirical type I error in the case of Laplace distribution.
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In general, Brown–Forsythe and Ui-BH using median as location tend to have adequate type I
error control across all used distribution shapes and this is consistent with results of Wang
et al. [27] and Nguyen et al. [19].

Table 2: Empirical type I error using Ui -Bonferroni (Bonf.), Ui -BH,
Levene–Brown–Forsythe (LBF) methods, nominal α = 0.05
from normal, χ2 and Laplace distributions based on 10000
replications.

k ni Bonf. BH LBF Bonf. BH LBF Bonf. BH LBF

Mean, Normal (100,5) Mean, Chisq (df =2) Mean, Laplace (0,4)

10 0.056 0.06 0.064 0.176 0.185 0.195 0.065 0.067 0.074
3 20 0.05 0.053 0.056 0.166 0.172 0.181 0.056 0.058 0.065

50 0.048 0.051 0.053 0.16 0.168 0.178 0.047 0.05 0.054

10 0.071 0.073 0.074 0.314 0.322 0.37 0.103 0.094 0.101
8 20 0.055 0.059 0.059 0.271 0.28 0.34 0.081 0.082 0.08

50 0.053 0.058 0.058 0.255 0.263 0.31 0.061 0.063 0.06

Median, Normal (100,5) Median, Chisq (df =2) Median, Laplace (0,4)

10 0.03 0.032 0.032 0.042 0.047 0.048 0.03 0.03 0.031
3 20 0.034 0.037 0.036 0.041 0.044 0.044 0.037 0.04 0.043

50 0.039 0.043 0.044 0.041 0.046 0.048 0.04 0.042 0.043

10 0.034 0.035 0.032 0.064 0.065 0.045 0.056 0.056 0.036
8 20 0.036 0.037 0.034 0.056 0.056 0.044 0.051 0.051 0.042

50 0.044 0.046 0.044 0.051 0.052 0.046 0.048 0.049 0.046

Trimmed, Normal (100,5) Trimmed, Chisq (df =2) Trimmed, Laplace (0,4)

10 0.04 0.045 0.048 0.075 0.078 0.082 0.041 0.044 0.045
3 20 0.044 0.046 0.049 0.059 0.062 0.066 0.038 0.042 0.043

50 0.041 0.043 0.045 0.055 0.058 0.063 0.042 0.046 0.047

10 0.053 0.055 0.054 0.115 0.116 0.104 0.075 0.073 0.048
8 20 0.046 0.048 0.047 0.08 0.082 0.072 0.064 0.061 0.046

50 0.047 0.048 0.048 0.064 0.065 0.068 0.056 0.056 0.045

With respect to power of the test, the following steps are used in simulation:

1. Construct the desired design k = 3, 8, ni = 10, 20, 50 and nominal α = 0.05.

2. Simulate data from a required distribution with unequal variances. The used dis-
tributions are the normal distribution with variances 5, 5 and 10 (k = 3) and
5, 5, 5, 5, 10, 10, 25 and 25 (k = 8), Laplace distribution with df = 2, 2, 10 (k = 3)
and df = 2, 2, 2, 2, 1, 1, 5, 5 (k = 8) and χ2 with df = 2, 2, 4 (k = 3) and df = 2, 2, 2, 2,

1, 1, 4, 4 (k = 8).

3. Calculate Ui-Bonf., Ui-BH, Levene–Brown–Forsythe for each design.

4. Compute the decision limit for Ui-Bonf., Ui-BH and p-values for Levene–Brown–
Forsythe.

5. Create a dummy variable by giving 1 for reject and 0 else.

6. Repeat R times and compute the mean for each design.
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The results of these procedures are given in Table 3. It can be concluded that:

1. As k and ni increase, the power becomes larger. If data is from normal and k = 3,
ni needs to be at least 20 to obtain good power while it will be much less if k = 8.

2. Ui are giving nearly power similar to Levene–Brown–Forsythe tests using the mean,
trimmed mean and median.

3. Ui-BH gives slightly better results than Ui-Bonf. in terms of power.

4. With increasing the number of groups, Ui will be slightly better than Levene–
Brown–Forsythe tests especially with using trimmed mean and median.

Table 3: Empirical power using Ui -Bonferroni (Bonf.), Ui-BH, Levene–Brown–Forsythe
(LBF) methods, nominal α = 0.05 from normal, χ2 and Laplace distributions
based on 10000 replications.

k ni Bonf. BH Levene Bonf. BH Levene Bonf. BH Levene

Mean, Normal Mean, Chisq Mean, Laplace
var=5,5,10 df =2, 2, 4 scale= 5,5,10

10 0.475 0.488 0.493 0.272 0.278 0.289 0.342 0.35 0.36
3 20 0.835 0.847 0.832 0.378 0.387 0.399 0.604 0.612 0.622

50 0.997 0.997 0.997 0.63 0.64 0.648 0.95 0.952 0.954

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale= 5,5,5,5,10,10,20,20

10 0.997 0.997 0.999 0.575 0.598 0.695 0.907 0.924 0.968
8 20 1 1 1 0.771 0.789 0.869 0.995 0.997 0.999

50 1 1 1 0.978 0.981 0.993 1 1 1

Median, Normal Median, Chisq Median, Laplace
var=5,5,10 df =2, 2, 4 scale= 5,5,10

10 0.348 0.355 0.361 0.114 0.116 0.121 0.225 0.228 0.236
3 20 0.765 0.769 0.774 0.204 0.209 0.22 0.533 0.541 0.552

50 0.998 0.998 0.998 0.518 0.526 0.538 0.943 0.945 0.947

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale= 5,5,5,5,10,10,20,20

10 0.988 0.989 0.997 0.255 0.261 0.282 0.822 0.829 0.878
8 20 1 1 1 0.492 0.513 0.639 0.991 0.993 0.999

50 1 1 1 0.945 0.956 0.986 1 1 1

Trimmed mean, Normal Trimmed mean, Chisq Trimmed mean, Laplace
var=5,5,10 df = 2, 2, 4 scale= 5,5,10

10 0.42 0.43 0.435 0.162 0.168 0.177 0.272 0.277 0.285
3 20 0.78 0.786 0.791 0.25 0.26 0.265 0.559 0.57 0.575

50 0.997 0.997 0.997 0.561 0.57 0.579 0.945 0.948 0.95

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale= 5,5,5,5,10,10,20,20

10 0.994 0.995 0.998 0.335 0.344 0.401 0.854 0.86 0.891
8 20 1 1 1 0.566 0.588 0.704 0.992 0.995 0.999

50 1 1 1 0.956 0.966 0.989 1 1 1
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5. APPLICATION

Kvamme et al. [16] used Levene test and Brown–Forsythe robust version of Levene
test to compare the dispersion of the apertures of the chalupa pots that vary in the method
they arrange ceramic production from 3 locations, Dalupa (ApDg), Dangtalan (ApDg) and
Paradijon (ApP). The data consists of 343 observations: ApDg that has 55 observations,
ApDl that has 171 observations and ApP: that has 117 observations; see Gastwirth et al. [12].

Table 6 shows the mean, median and standard deviation (st. deviation) for pot data.
The largest standard deviation is 12.73 (ApDg) followed by 8.13 (ApP) while the smallest
standard deviation is 5.83 (ApP). Table 4 gives the results of Levene–Brown–Forsythe tests
for pot data. The p-values of three tests are showing that the dispersion in every of 3 measured
characteristics of the pots in different areas are statistically significant at 0.01 and 0.05.

Table 4: Levene–Brown–Forsythe tests for pot data.

Mean Trimmed mean median

Test statistics 7.716 6.567 6.794
p-value 0.0005 0.0016 0.0013

On the other hand, Figure 1 illustrates the results of U-plot at both significance levels
0.01 and 0.05. Since the number of observations are not equal, the height of DL will be different.
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Figure 1: U plot for pot data using mean, trimmed mean and median as location measure.
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For example, by using the quantile function of beta prime distribution of the second type,
median as location measure and α = 0.05, the decision limit is

DL = qgb2
(

1− 0.05
3

, p = 1, q =
(343− (55, 171, 117))(340)

343(2)
, α =

1
2
, β =

340
2

)
.

This gives
DL = (2.43, 1.45, 1.91).

At 0.05, the values of U1 and U3 are outside the DL while the value of U3 is outside DL for 0.01
based on mean, trimmed mean and median as location measures. Therefore, the dispersion
in each of the three measured characteristics of the pots in different regions are statisti-
cally significant at 0.01 and 0.05 and the most different in dispersion comes from group 3.

The data for the second application is shown in Table 5 where these data are simulated
from chi square distribution with df =1, 2, 2, 2, 2, 2, 2, 2. The data consists of 8 groups and in
every group, there are 20 observations.

Table 5: Simulated data from χ2 (df =1, 2, 2, 2, 2, 2, 2, 2) distribution.

k1 k2 k3 k4 k5 k6 k7 k8

0.27 6.14 3.73 1.13 3.22 1.93 1.07 0.83
1.46 0.1 3.48 0.39 6.28 0.46 2.25 3.89
0.6 1.75 8.23 0.47 1.89 2.35 0.86 0.66
0.49 0.82 1.09 1.53 0.41 2.1 0.92 1.89
0.78 1.7 0.04 5.22 5.78 1.14 1.73 3.27
1.92 0.35 7.03 1.09 2.5 0.94 3.26 4.75
0.11 3.76 8.03 2 0.89 4.12 2.92 5.46
4.9 3.04 0.51 2.6 4.2 5.52 4.31 0.43
1.47 1.68 4.07 0.73 2.2 3.36 1.11 6.3
0.08 3.44 3.5 2.02 0.95 2.75 4.84 5.47
0.64 2.95 0.42 0.44 7.2 0.12 1.38 7.63
0.48 0.1 0.4 0.92 3.45 0.33 0.5 3.25
0.4 0.53 0.63 0.93 2.37 2.18 0.4 4.51
5.37 0.15 2.8 2.73 3.74 1.75 2.24 1.11
0.05 2.16 0.14 3.34 1.29 2.93 1.25 1.4
1.18 0.07 9.48 3.32 0.35 3.45 5.39 2.93
0.01 1.27 0.49 0.47 0.67 1.47 0.48 1.36
0.18 0.67 2.98 3.33 1.68 0.07 0.43 0.32
1.09 2.17 0.2 2.13 0.44 2.25 1.89 1.98
5.07 2.91 2.26 0.82 1.67 0.53 0.26 6.12

Table 6 shows the mean, median and standard deviation (st. deviation) for χ2 simulated
data. The largest standard deviation is 3.02 (k3) followed by 1.24 (k8) while the smallest
standard deviation is 1.31 (k4) followed by second smallest 1.54 (k7).

Table 7 gives the results of Levene–Brown–Forsythe tests for simulated data from chi
square distribution. The p-values of Levene–Brown–Forsythe tests are showing that the
variances in each of the eight groups are statistically significant at 0.01 and 0.05.

With respect to U plot, Figure 2 displays the results of U-plot at both significance
levels 0.01 and 0.05 and using mean, trimmed and median as location measures. Since the
number of observations are equal, the height of DL will be the same. For example, by using
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the quantile function of beta prime distribution of the second type and α = 0.01, the decision
limit can be computed as

DL = qgb2
(

1− 0.01
8

, p = 1, q =
(160− 20)(160− 8)

160(7)
, α =

1
2
, β =

160
2

)
= 1.35.

At 0.05 and 0.01, the value of U1 is outside the DL using mean, trimmed mean and median
as location measures. Therefore, the assumption of homogeneity of variances is rejected and
the most different in dispersion comes from group 3.

Table 6: Summary statistics for Pot and simulation data.

Pot data Simulation data

ApDg ApDl ApP k1 k2 k3 k4 k5 k6 k7 k8

# 55 171 117 20 20 20 20 20 20 20 20
Mean 170.5 163 128.6 1.33 1.79 2.98 1.78 2.56 1.99 1.87 3.18
median 170 165 130 0.62 1.69 2.53 1.33 2.04 2.02 1.31 3.09
st. devation 12.739 8.127 5.829 1.72 1.58 3.02 1.31 2.02 1.44 1.54 2.24

Table 7: Levene–Brown–Forsythe tests for simulated data.

Mean Trimmed mean median

Test statistics 3.316 2.876 2.859
p-value 0.0026 0.0075 0.0078
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Figure 2: U plot for simulated data from chi square distribution using mean,
trimmed mean and median as location measure.
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6. DISCUSSION

The Levene–Brown–Forsythe test can be rewritten as

W =
k∑

i=1

ni(Zi · − Z··)
2/(k − 1)∑k

i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
.

This can be interpreted as an aggregate way to test whether the level factor mean absolute
deviations differ from the overall mean absolute deviation. In terms of the null hypothesis,
it tests for the equality of the mean absolute deviations for different factor levels. In terms
of alternative hypothesis, it tests that at least two mean absolute deviations for factor levels
are not equal. The Ui tests can be rewritten as

Ui =
ni(Zi · − Z··)

2/(k − 1)∑k
i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
, i = 1, 2, ..., k.

These are simultaneous tests that show every level mean absolute deviation and the decision
limit on the graph. If a value of any factor level mean absolute deviation is outside the
decision limit, there is evidence that the level factor mean absolute deviation represented
by that value is significantly different from the overall mean absolute deviation. In other
words, these plots show whether there is statistically significant evidence of each group mean
absolute deviation from centre differing from the overall mean absolute deviation from centre.
In terms of alternative hypothesis, it tests at least one mean absolute deviation for factor
levels is not equal the overall mean absolute deviation.

7. CONCLUSION

Assessing the homogeneity of variance is a prevalent question in many statistical anal-
yses such as regression and analysis of variance. A graphical Ui test for homoscedasticity is
proposed as the ratio for the contribution of each between squares treatment to mean square
error of all treatments where the sum of the Ui is Levene–Brown–Forsythe tests. The sam-
pling distribution of Ui is derived as beta prime distribution of the second type. By using
Bonferroni approximation and Benjamini–Hochberg method, the decision line had been ob-
tained to decide about homogeneity of variances when all values of Ui are less than decision
limit or heterogeneity of variances when any value of Ui lies outside the decision line.

Overall, the simulation results showed that the performance of Ui plot is similar to
Levene–Brown–Forsythe tests using different designs of number of groups and the number
of observations in terms of type I error and test power. Therefore, it can be concluded that
Ui plot using mean and trimmed means as a location is suited to symmetric distributions
and Ui plot using median as a location was suited to asymmetric distribution. Moreover, if
there are no ideas about the shape of the data, the Ui based on median should be used as
a general test where it gives a good control for type I error and reasonable power in case
of asymmetric distributions while hold a reasonable type I error control and test power in
symmetric distributions.
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There are many advantages of using Ui plot:

(a) provides a powerful visual tool for testing homogeneity of variances;

(b) keeps the size and power of the test like Levene–Brown–Forsythe tests;

(c) does not need to pairwise comparisons where it could be considered as a comple-
ment method to original test.
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