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1. INTRODUCTION

In actuarial science, it is often of interest to compare stochastically extreme claim
amounts from heterogeneous portfolios. In this regard, in the present work, we compare the
extreme order statistics arising from two heterogeneous portfolios in the sense of the usual
stochastic ordering. It is assumed that the portfolios belong to the general exponentiated
location-scale model. The general exponentiated location-scale model includes several im-
portant statistical models such as generalized exponential distribution, generalized Weibull
distribution, generalized Pareto distribution and many more. The exponentiated location-
scale model has three types of parameters: location, scale and shape(or skewness) parameters.
Location parameter is useful in modeling the insurance related data, since an insurance com-
pany suffers a claim from policyholder after a certain period of time from the date of beginning
of the policy. Also, most of the data dealing with health care costs and economy are skewed.
In finance, an investigator may often have small gains, but occasionally may have a few large
losses. In this case, the data will invariably be negatively skewed. If, howeve, we have a
reverse situation, the data in this case will be positively skewed. Thus, fitting skewed models
to these types of data in finance and some other fields is a very important issue. in order to fit
a skewed data, we require a model having a skewness parameter. The general exponentiated
location-scale model possesses this kind of flexibility. For this reason, such a general model is
useful for fitting various kinds of data sets. In practical situations, the extreme claim amounts
play an important role as these provide useful information for determining annual premium.
In actuarial science, it is an important issue in expressing preferences between random future
gains or losses. In this direction, comparisons of claim amounts in two heterogeneous portfolio
of risks based on different stochastic ordering such as usual become very useful. Order statis-
tics have received a great amount of atention from various authors. It plays an important
role in several areas of probability and statistics such as reliability theory, queueing theory,
and survival analysis. Let X1:n ≤ ... ≤ Xn:n denote the order statistics corresponding to the
random variables X1, ..., Xn, where X1:n and Xn:n corresponds to the sample minimum and
sample maximum, respectively. The results of stochastic comparisons of the order statistics
with independent and dependent sampling units can be seen in Dykstra et al. (1997) [9], Zhao
and Balakrishnan (2011) [30], Li and Li (2015) [25], Torrado (2015) [28], Torrado and Kochar
(2015) [29], Kochar and Torrado (2015) [18], Kundu et al. (2016) [24], Kundu and Chowdhury
(2016 [19], 2018 [20], 2019 [21], 2020 [22]), Chowdhury and Kundu (2017 [4], 2018 [5]), Hazra
et al. (2017) [14], Fang and Zhang (2013) [12], Fang and Xu (2019) [13], Das et al. (2020)
[8], Kundu et al. (2022) [23], Chowdhury et al. (2022) [6], and the references there in for a
variety of parametric models. The assumption in the papers lies in the fact that each of the
order statistics X1:n, X2:n, ..., Xn:n occurs with certainty and the comparison is carried out
on the minimums or the maximums of the order statistics. Now, it may so happen that the
order statistics experience random shocks which may or may not result in its occurrence and
it is of interest to compare two such systems stochastically with respect to vector or matrix
majorization. A random variable X is said to follow the exponentiated location-scale model
if it’s cumulative distribution function is given by

(1.1) FX(x;λ, θ, α) =
[
F

(
x− λ

θ

)]α
, x > λ,

where λ ∈ R, α > 0, θ > 0 and F is the baseline distribution function. Here, λ, θ and α are
respectively known as the location, scale, and shape parameters. We write X ∼ ELS(λ, θ, α)
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if X has the distribution function given by (1.1). The probability density function of the
exponentiated location-scale model with (1.1) is denoted by fX . In particular, when α = 1,
the model given in (1.1) reduces to the location-scale family of distributions. Further, when
α = 1 and λ = 0, (1.1) reduces to the scale family and when α = 1 and θ = 1, (1.1) becomes
location family. The model in (1.1) coincides with the exponentiated-scale family when the
location parameter λ is equal to 0. Thus (1.1) is a general family of distribution with great
flexibility.

Let us assume series and parallel systems consist of n independent components in
working conditions. Each component of the system receives a shock which may cause the
component to fail. Let the random variable Xi denote lifetime of the i-th component in
the system which experiences a random shock at binging. Also, suppose that Ipi denotes
independent Bernoulli random variables, independent of X ,

is, with E(Ipi) = pi, where pi will
be called shock parameter hereafter. Then, the random shock impacts the i-th component
(Ipi = 1) with probability pi or doesn’t impact the i-th component (Ipi = 0) with probability
1− pi. Hence, the random variable Yi = IpiXi corresponds to the lifetime of i-th component
in a system under shock. Fang and Balakrishnan (2018) [10] have compared two such systems
with generalized Birnbaum–Saunders components. Similar comparisons are carried out in the
context of the insurance where largest or smallest claim amounts in a portfolio of risks are
compared stochastically. One may refer to Barmalzan et al. (2017) [3], and Balakrishnan et

al. (2018) [2].

The survival function of Y1:n = min{Y1, ..., Yn} is given by

(1.2) F̄Y1:n(x; p
∼
, λ∼, θ∼, α∼) =

n∏
i=1

pi

[
1− Fαi

(
x− λi
θi

)]
, x > max{λi, i = 1, ..., n},

and the cumulative distribution function of Yn:n = max{Y1, ..., Yn} is given by

(1.3) FYn:n(x; p
∼
, λ∼, θ∼, α∼) =

n∏
i=1

[
1− pi

[
1− Fαi

(
x− λi
θi

)]]
, x > max{λi, i = 1, ..., n},

where x∼ = (x1, ..., xn) ∈ In be any real vector and In denote a n-dimensional Euclidean space

where I ⊆ R. Hereafter, we assume that Y ∗
1:n(Y

∗
n:n) denotes similarly the smallest (largest)

order statistic arising from Y ∗
i = Ip∗iX

∗
i , i = 1, ..., n, where X∗

1 , ..., X
∗
n are independent non-

negative random variables with X∗
i ∼ ELS(λ∗i , θ

∗
i , α

∗
i ), i = 1, ..., n and Ip∗1 , ..., Ip∗n are inde-

pendent Bernoulli random variables, independent of X∗
i
,s, with E(Ip∗i ) = p∗i , i = 1, ..., n. Let

Pn =
{

(x∼, y∼;n) : xi > 0, yj > 0 and (xi − xj)(yi − yj) 6 0, i, j = 1, ..., n
}
,

Sn =
{

(x∼, y∼, z∼;n) : xi, yj , zk > 0 and xi 6 (>)xj , yi > (6)yj , zi > (6)zj

}
,

Nn =
{

(x∼, y∼, z∼;n) : zi ≥ 1, xi > 0, yi > 0, xi ≤ (≥)xj , yi ≤ (≥)yj , zi ≤ (≥)zj

}
,

N∗
n =

{
(x∼, y∼, z∼;n) : zi > 0, xi > 0, yi > 0, xi ≤ (≥)xj , yi ≤ (≥)yj , zi ≤ (≥)zj

}
,

Un =
{

(w∼ , x∼, y∼, z∼;n) : wi, xj , yk, zl > 0, wi 6 (>)wj , xi > (6)xj , yi > (6)yj , zi > (6)zj

}
.
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The rest of this paper is organized as follows. In Section 2, we introduce some definitions
and fundamental lemmas. In Section 3, we establish some ordering properties for the smallest
and largest order statistics of the ELS model with associated random shocks. In Section 4,
some special cases of our main results are added. Section 5 provides applications of the
established results. Finally, in Section 6, we include some concluding.

2. PRELIMINARIES

In this section we provide some preliminary definitions and lemmas which will be useful
in the sequel. To compare lifetimes of series and parallel systems, stochastic orders have been
extensively used in the literature. Below, we present a few of them. Throughout the paper,
we use the notations R = (−∞,+∞), R+ = (0,+∞) and a

sign
= b means that a and b have the

same sign. Let X be non-negative random variable with distribution function F , and density
function f . The survival function, hazard rate, and reversed hazard rate are F̄ = 1− F ,
rX = f

F̄
, and r̃X = f

F , respectively.

Definition 2.1. Let X and Y be two absolutely continuous random variables with
respective supports (lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX
and lY may be negative infinity. Then, X is said to be smaller than Y in usual stochastic
(st) order, denoted as X 6st Y , if F̄X(t) 6 F̄Y (t) for all t ∈ (−∞,+∞).

Let x∼ = (x1, ..., xn)∈ In and y
∼

= (y1, ..., yn)∈ In be any two real vectors with x(1), ..., x(n)

being the increasing arrangement of the components of the vector x∼. The following definitions

may be found in Marshall et al. (2011) [27].

Definition 2.2.

(i) The vector x∼ is said to majorize the vector y
∼

(written as x∼
m
> y

∼
) if

j∑
i=1

x(i) 6
j∑
i=1

y(i), j = 1, ..., n− 1, and
n∑
i=1

x(i) =
n∑
i=1

y(i);

(ii) The vector x∼ is said to weakly supermajorize the vector y
∼

(written as x∼
w
> y

∼
) if

j∑
i=1

x(i) 6
j∑
i=1

y(i) for j = 1, ..., n;

(iii) The vector x∼ is said to weakly submajorize the vector y
∼

(written as x∼ >w y∼) if
n∑
i=j

x(i) >
n∑
i=j

y(i) for j = 1, ..., n;

(iv) The vector x∼ is said to be p-larger than the vector y
∼

(written as x∼
p
> y

∼
) if

j∏
i=1

x(i) 6
j∏
i=1

y(i) for j = 1, ..., n;
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(v) The vector x∼ is said to reciprocally majorize the vector y
∼

(written as x∼
rm
> y

∼
) if

j∑
i=1

1
x(i)

>
j∑
i=1

1
y(i)

for j = 1, ..., n.

It is not difficult to show that x∼
m
> y

∼
⇒ x∼

w
> y

∼
⇒ x∼

p
> y

∼
⇒ x∼

rm
> y

∼
.

Definition 2.3. A functionψ : In→R is said to be schur-convex (schur-concave) on In if

x∼
m
> y

∼
implies ψ(x∼) > (6)ψ(y

∼
) for all x∼, y∼ ∈ I

n.

The following definitions related to matrix majorization may be found in Marshall et

al. (2011) [27].

Definition 2.4.

(i) A square matrix Πn, of order n, is said to be a permutation matrix if each row
and column has a single entry 1, and all other entries as zero;

(ii) A square matrix P = (pij), of order n, is said to be doubly stochastic if pij > 0,
for all i, j = 1, ..., n,

∑n
i=1 pij = 1, j = 1, ..., n and

∑n
j=1 pij = 1, i = 1, ..., n;

(iii) A square matrix Tw, is said to be T-transform matrix if it has form Tw =
wI + (1− w)Π; where 0 6 w 6 1, I is the identity matrix and Π is the per-
mutation matrix. Let Tw1 = w1I + (1− w1)Π1 and Tw2 = w2I + (1− w2)Π2 be
two transform matrices, where 0 ≤ w1, w2 ≤ 1 and Π1 and Π2 are two permuta-
tion matrices that interchange two coordinates. Then, we say Tw1 and Tw2 have
the same structure if Π1 = Π2, where Π1 and Π2 are permutation matrices with
the same dimension, otherwise they are different structures.

Definition 2.5. Consider the m× n matrices A = {aij} and B = {bij} with rows
a1, ..., am and b1, ..., bn, respectively.

(i) A is said to be larger than B in chain majorization, denoted by A� B, if there
exists a finite set of n×n T-transform matrices T1, ..., Tk such that B = AT1···Tk;

(ii) A is said to majorize B, denoted by A > B, if A = BP , where the n× n matrix
P is doubly stochastic. Since a product of T-transforms is doubly stochastic, it
follows that A� B ⇒ A > B;

(iii) A is said to be larger than the matrix B in row majorization, denoted by A
row
> B,

if ai
m
> bi for i = 1, ...,m. It is clear that A > B ⇒ A

row
> B;

(iv) A is said to be larger than the matrix B in row weakly majorization, denoted by

A
w
>B, if ai

w
> bi for i = 1, ...,m. It is clear that A

row
> B ⇒ A

w
>B. Thus it can be

written that A� B ⇒ A > B ⇒ A
row
> B ⇒ A

w
>B.
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Also, we introduce the following notations.

(i) D+ = {(x1, ..., xn) : x1 > ... > xn > 0};

(ii) ε+ = {(x1, ..., xn) : 0 < x1 6 ... 6 xn};

(iii) (h(p
∼
), λ∼) =

(
h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
.

The following two Lemmas are used to prove the two Theorems 2.17 and 2.18.

Lemma 2.1. A differentiable function Φ : R8
+ → R+ satisfies

Φ(A) > (6)Φ(B) for all A,B such that A ∈ U2, A� B(2.1)

if and only if

(i) Φ(A) = Φ(AΠ) for all permutation matrice Π and for all A ∈ U2, and

(ii)
4∑
i=1

(aik − aij)[Φik(A)− Φij(A)] > (6)0 for all j, k = 1, 2 and for all A ∈ U2,

where Φij(A) = ∂Φ(A)
∂aij

.

Lemma 2.2. Let the function γ : R4
+ → R+ be differentiable and the functin Φn :

R4n
+ → R+ be defined as

Φn(A) =
n∏
i=1

γ(a1i, a2i, a3i, a4i).

Assume that Φ2 satisfies (2.1). Then for A ∈ Un and B = ATw, we have Φn(A) > (6)Φn(B),
where Tw is the T-transform matrix.

Proof: The proofs of Lemmas 2.1–2.2 are similar to those of Theorems 2 and 3 of
Balakrishnan et al. (2015) [1], and Marshall and Olkin (1997) [26].

3. MAIN RESULTS

In this section we establish some ordering properties for the smallest and largest order
statistics of the ELS model with associated random shocks. We now consider the following
assumption.

Assumption 3.1. Suppose X1, ..., Xn are independent non-negative random variables
with Xi ∼ ELS(λi, θi, αi), and Ip1 , ..., Ipn are independent Bernoulli random variables, inde-
pendent of X ,

is, with E(Ipi) = pi, i = 1, ..., n. Further, suppose X∗
1 , ..., X

∗
n are independent

non-negative random variables with X∗
i ∼ ELS(λ∗i , θ

∗
i , α

∗
i ), and Ip∗1 , ..., Ip∗n are independent

Bernoulli random variables, independent of X∗,

i s, with E(Ip∗i ) = p∗i , i = 1, ..., n.

Theorem 3.1 shows that usual stochastic ordering holds between two parallel systems
of heterogeneous components under random shocks for fixed θ and α.
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Theorem 3.1. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable, in-

creasing and strictly convex function. Also, λi = λ∗i , θi = θ∗i = θ and αi = α∗i = α, where

i = 1, ..., n. Then, h(p
∼
) >w h(p∗∼ ) implies Yn:n >st Y

∗
n:n, provided λ∼ ∈ D+, h(p∼) ∈ D+, and

h(p
∼
) = (h(p1), ..., h(pn)).

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏
i=1

[
1− h−1(ui)

[
1− Fα

(
x− λi
θ

)]]
,

where h(pi) = ui. Let us define ψ1(u∼) = FYn:n(x). Differentiating ψ1(u∼), partially, with respect
to ui, we get

(3.1)
∂ψ1(u∼)

∂ui
= −

dh−1(ui)
dui

(
1− Fα

(
x−λi
θ

))
1− h−1(ui)

(
1− Fα

(
x−λi
θ

))ψ1(u∼) 6 0,

so, ψ1(u∼) is decreasing in each ui. Again, it can be shown that

(3.2)
∂ψ1(u∼)

∂ui
−
∂ψ1(u∼)

∂uj

sign
=

dh−1(uj)
duj

(
1− Fα

(
x−λj

θ

))
1− h−1(uj)

(
1− Fα

(
x−λj

θ

)) −
dh−1(ui)
dui

(
1− Fα

(
x−λi
θ

))
1− h−1(ui)

(
1− Fα

(
x−λi
θ

))
Now,

∂

∂u

(
1

1− h−1(u)(1− Fα
(
x−λ
θ

)) =
dh−1(u)
du

(
1− Fα

(
x− λ

θ

))
> 0,

implying that 1

1−h−1(u)

(
1−Fα(x−λ

θ )
) is increasing in u. Thus, as λ∼ ∈ D+, h(p∼) ∈ D+, for i 6 j

taking λi > λj and ui > uj and noticing that h−1(u) is increasing in u, it can be written that

1− Fα
(
x−λj

θ

)
1− h−1(uj)

(
1− Fα

(
x−λj

θ

)) 6
1− Fα

(
x−λi
θ

)
1− h−1(ui)

(
1− Fα

(
x−λi
θ

)) ,

Again, if h(u) is convex in u, then ui > uj gives dh−1(ui)
dui

> dh−1(uj)
duj

which yields

dh−1(uj)
duj

(
1− Fα

(
x−λj

θ

))
1− h−1(uj)

(
1− Fα

(
x−λj

θ

)) 6

dh−1(ui)
dui

(
1− Fα

(
x−λi
θ

))
1− h−1(ui)

(
1− Fα

(
x−λi
θ

)) .

Substituting the above result in (3.2), we get
∂ψ1(u∼)

∂ui
−

∂ψ1(u∼)

∂uj
6 0. Thus, by Lemma 3.1 of

Kundu et al. (2016) [24], ψ1(u∼) is Schur concave in u∼. Thus the result is proved by Theorem

A.8 of Marshall et al. (2011) [27].
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Theorem 3.2 shows that the majorized shape parameter vector leads to smaller systems
lifetime in the sense of the usual stochastic ordering when the location and scale parameter
vectors are constant and shock parameter vectors are heterogeneous.

Theorem 3.2. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗i = λ, θi = θ∗i = θ, and α∗i = βi, where i = 1, ..., n. Then,

α∼
w
>β

∼
implies Yn:n 6st Y

∗
n:n, provided α∼, β∼, h(p∼) ∈ ε+.

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏
i=1

[
1− h−1(ui)

[
1− Fαi

(
x− λ

θ

)]]
,

where h(pi) = ui. Differentiating FYn:n(x), partially, with respect to αi, we get

∂FYn:n(x)
∂αi

=
h−1(ui)Fαi

(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(ui)
(

1− Fαi
(
x−λ
θ

))FYn:n(x) 6 0,

so, FYn:n(x) is decreasing in each αi. Again, it can be shown that
(3.3)
∂FYn:n(x)

∂αi
− ∂FYn:n(x)

∂αj

sign
=

h−1(ui)Fαi
(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(ui)
(

1− Fαi
(
x−λ
θ

)) − h−1(uj)Fαj
(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(uj)
(

1− Fαj
(
x−λ
θ

)) .
Now,

∂

∂α

(
Fα
(
x−λ
θ

)
1− h−1(u)(1− Fα

(
x−λ
θ

)) sign
= (1− h−1(u))Fα

(
x− λ

θ

)
ln
[
F

(
x− λ

θ

)]
6 0,

implying that
Fα(x−λ

θ )

1−h−1(u)

(
1−Fα(x−λ

θ )
) is decreasing in α. Again, as h(u) is decreasing in u, then

∂

∂u

(
h−1(u)

1− h−1(u)(1− Fα
(
x−λ
θ

)) sign
=

∂h−1(u)
∂u

6 0,

implying that h−1(u)

1−h−1(u)(1−Fα(x−λ
θ ) is decreasing in u. Thus, as α∼ ∈ ε+, h(p∼) ∈ ε+, for i 6 j

taking αi 6 αj and ui 6 uj and noticing that h−1(u) is decreasing in u, it can be written that

h−1(uj)Fαj
(
x−λ
θ

)
1− h−1(uj)

(
1− Fαj

(
x−λ
θ

)) 6
h−1(uj)Fαi

(
x−λ
θ

)
1− h−1(uj)

(
1− Fαi

(
x−λ
θ

))
6

h−1(ui)Fαi
(
x−λ
θ

)
1− h−1(ui)

(
1− Fαi

(
x−λ
θ

)) ,
which implies

h−1(uj)Fαj
(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(uj)
(

1− Fαj
(
x−λ
θ

)) >
h−1(uj)Fαi

(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(uj)
(

1− Fαi
(
x−λ
θ

))
>
h−1(ui)Fαi

(
x−λ
θ

)
ln[F

(
x−λ
θ

)
]

1− h−1(ui)
(

1− Fαi
(
x−λ
θ

)) ·
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Hence, substituting the above results in (3.3), we get ∂FYn:n (x)
∂αi

− ∂FYn:n (x)
∂αj

6 0. Thus, by
Lemma 3.3 of Kundu et al. (2016) [24], it can be proved that FYn:n(x) is Schur-convex in α∼.

Thus the result is proved by Theorem A.8 of Marshall et al. (2011) [27].

Theorem 3.3. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗i = λ, θi = θ∗i = θ, and α∗i = βi, where i = 1, ..., n. Then,

α∼
−1 >w β∼

−1 implies Yn:n 6st Y
∗
n:n, provided, α∼, β∼, h(p∼) ∈ ε+.

Proof: The cumulative distribution function of Yn:n can be expressed as the function
of ai, where ai = 1

αi
, i = 1, ..., n. We denote it by ψ2(a∼), where a∼ = (a1, ..., an), and

ψ2(a∼) =
n∏
i=1

[
1− h−1(ui)

[
1− F

1
ai

(
x− λ

θ

)]]
,

where h(pi) = ui. It can be shown that the partial derivative of ψ2(a∼), with respect to ai

increasing in i = 1, ..., n. Thus, by Lemma 3.1 of Kundu et al. (2016) [24], it can be proved
that ψ2(a∼) is Schur-convex in a∼. Thus the result is proved by Theorem A.8 of Marshall et al.

(2011) [27].

Theorem 3.4 shows that Yn:n is smaller than Y ∗
n:n with respect to the usual stochastic

ordering when a vector of scale parameters is p-larger than that of another vector of the scale
parameters with some additional conditions when the location and shape parameter vectors
are constant and shock parameter vectors are heterogeneous. Similar result also hold under
reciprocally majorized based conditions among the scale parameters.

Theorem 3.4. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗i = λ, θ∗i = δi, and αi = α∗i = α, where i = 1, ..., n. Then,

(i) θ∼
p
> δ∼ implies Yn:n 6st Y

∗
n:n, provided θ∼, δ∼, h(p∼) ∈ D+,, and ur̃(u) is increasing in u;

(ii) θ∼
rm
> δ∼ implies Yn:n 6st Y

∗
n:n, provided θ∼, δ∼, h(p∼) ∈ ε+, and r̃(u) is increasing in u.

Proof:

(i): The cumulative distribution function of Yn:n can be expressed as the function of
ai, where ai = ln θi, i = 1, ..., n. We denote it by ψ3(a∼), where a∼ = (a1, ..., an), and

ψ3(a∼) =
n∏
i=1

[
1− h−1(ui)

(
1− Fα(e−ai(x− λ))

)]
,

where h(pi) = ui. Differentiating ψ3(a∼), partially, with respect to ai, we get

∂ψ3(a∼)

∂ai
= −αh

−1(ui)e−ai(x− λ)r̃(e−ai(x− λ))Fα(e−ai(x− λ))
1− h−1(ui)

(
1− Fα(e−ai(x− λ))

) ψ3(a∼) 6 0,
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so, ψ3(a∼) is decreasing in each ai. Again, it can be shown that

∂ψ3(a∼)

∂ai
−
∂ψ3(a∼)

∂aj

sign
=

αh−1(uj)e−aj (x− λ)r̃(e−aj (x− λ))Fα(e−aj (x− λ))
1− h−1(uj)

(
1− Fα(e−aj (x− λ))

)
− αh−1(ui)e−ai(x− λ)r̃(e−ai(x− λ))Fα(e−ai(x− λ))

1− h−1(ui)
(
1− Fα(e−ai(x− λ))

) .

(3.4)

Now,

∂

∂a

(
Fα(e−a(x− λ))

1− h−1(u)
(
1− Fα(e−a(x− λ))

)) sign
= − αe−a(x− λ)(1− h−1(u))× r̃(e−a(x− λ))

× Fα(e−a(x− λ)) 6 0,

implying that Fα(e−a(x−λ))
1−h−1(u) (1−Fα(e−a(x−λ)))

is decreasing in a. Again, as h(u) is decreasing in u,
then Fang, L. and Balakrishnan, N. (2018) [10]. Ordering properties of the small25 est order
statistics from generalized Birnbaum–Saunders models with associated 26 random shocks,
Metrika, 81, 1, 19-35.

∂

∂u

(
h−1(u)

1− h−1(u)
(
1− F a(e−a(x− λ))

)) sign
=

∂h−1(u)
∂u

6 0,

implying that h−1(u)
1−h−1(u) (1−Fa(e−a(x−λ)))

is decreasing in u. Thus, as θ∼, h(p∼) ∈ D+, for i 6 j

taking ai > aj and ui > uj and noticing that h−1(u) is decreasing in u, it can be written that

h−1(uj)Fα(e−aj (x− λ))
1− h−1(uj)

(
1− Fα(e−aj (x− λ))

) >
h−1(uj)Fα(e−ai(x− λ))

1− h−1(uj)
(
1− Fα(e−ai(x− λ))

)
>

h−1(ui)Fα(e−ai(x− λ))
1− h−1(ui)

(
1− Fα(e−ai(x− λ))

) ,
As ur̃(u) is increasing in u, then

αh−1(uj)e−aj (x− λ)r̃(e−aj (x− λ))Fα(e−aj (x− λ))
1− h−1(uj)

(
1− Fα(e−aj (x− λ))

)
>

αh−1(ui)e−αi(x− λ)r̃(e−ai(x− λ))Fα(e−ai(x− λ))
1− h−1(ui)

(
1− Fα(e−ai(x− λ))

) .

Hence, from (3.4), we get
∂ψ3(a∼)

∂ai
−
∂ψ3(a∼)

∂aj
>0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that ψ3(a∼) is Schur-convex in a∼. Thus the result is proved by Lemma 3.1 of

Khaledi et al. (2002) [16].

(ii): The cumulative distribution function of Yn:n can be expressed as the function of
bi = 1

θi
, i = 1, ..., n. We denote it by ψ4(b∼), where b∼ = (b1, ..., bn):

ψ4(b∼) =
n∏
i=1

[
1− h−1(ui)

(
1− Fα(bi(x− λ))

)]
,

where h(pi) = ui. Differentiating ψ4(b∼), partially, with respect to bi, we see that ψ4(b∼) is

increasing in each i = 1, ..., n. Thus, by Lemma 3.1 of Kundu et al. (2016) [24], it can be
proved that ψ4(b∼) is Schur-convex in b∼. Thus the result is proved by Lemma 4.1 of Hazra et

al. (2017) [14].
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Theorem 3.5 shows that the majorized shape parameter vector leads to smaller systems
lifetime in the sense of the usual stochastic ordering when the location and scale and shock
parameter vectors are heterogeneous.

Theorem 3.5. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗i , θi = θ∗i , and α∗i = βi, where i = 1, ..., n. Then, α∼
w
>β

∼

implies Yn:n 6st Y
∗
n:n, provided α∼, β∼, h(p∼), λ∼, θ∼,∈ ε+.

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏
i=1

[
1− h−1(ui)

[
1− Fαi

(
x− λi
θi

)]]
,

where h(pi) = ui. Differentiating FYn:n(x), partially, with respect to αi, we get

∂FYn:n(x)
∂αi

=
h−1(ui)Fαi

(
x−λi
θi

)
ln
[
F
(
x−λi
θi

)]
1− h−1(ui)

(
1− Fαi

(
x−λi
θi

)) FYn:n(x) 6 0,

so, FYn:n(x) is decreasing in each αi. Again, it can be shown that

∂FYn:n(x)
∂αi

− ∂FYn:n(x)
∂αj

sign
=

h−1(ui)Fαi

(
x−λi
θi

)
ln
[
F
(
x−λi
θi

)]
1− h−1(ui)

(
1− Fαi

(
x−λi
θi

))

−
h−1(uj)Fαj

(
x−λj

θj

)
ln
[
F
(
x−λj

θj

)]
1− h−1(uj)

(
1− Fαj

(
x−λj

θj

)) .

Now,

∂

∂α

(
Fα
(
x−λ
θ

)
1− h−1(u)

(
1− Fα

(
x−λ
θ

))) sign
= (1− h−1(u))Fα

(
x− λ

θ

)
ln
[
F

(
x− λ

θ

)]
6 0,

implying that
Fα(x−λ

θ )
1−h−1(u)

(
1−Fα(x−λ

θ )
) is decreasing in α. Again, as h(u) is decreasing in u, then,

∂

∂u

(
h−1(u)

1− h−1(u)
(
1− Fα

(
x−λ
θ

))) sign
=

∂h−1(u)
∂u

6 0,

implying that h−1(u)

1−h−1(u)
(
1−Fα(x−λ

θ )
) is decreasing in u. Again,

∂

∂λ

(
Fα
(
x−λ
θ

)
1− h−1(u)

(
1− Fα

(
x−λ
θ

))) sign
= −(

α

θ
)r̃
(
x− λ

θ

)
Fα
(
x− λ

θ

)(
1− h−1(u)

)
≤ 0,

implying that
Fα(x−λ

θ )
1−h−1(u)

(
1−Fα(x−λ

θ )
) is decreasing in λ. Also,

∂

∂θ

(
Fα
(
x−λ
θ

)
1− h−1(u)

(
1− Fα

(
x−λ
θ

))) sign
= − (

α

θ2
)(x− λ)r̃

(
x− λ

θ

)
Fα
(
x− λ

θ

)
×
(
1− h−1(u)

)
≤ 0,
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implying that
Fα(x−λ

θ )
1−h−1(u)

(
1−Fα(x−λ

θ )
) is decreasing in θ. Thus, as α∼, β∼, h(p∼), λ∼, θ∼,∈ ε+, for i ≤ j

taking αi ≤ αj , ui ≤ uj , λi ≤ λj , θi ≤ θj and noticing that h−1(u) is decreasing in u, it can
be written that

h−1(uj)Fαj

(
x−λj

θj

)
1− h−1(uj)

(
1− Fαj

(
x−λj

θj

)) 6
h−1(uj)Fαi

(
x−λj

θj

)
1− h−1(uj)

(
1− Fαi

(
x−λj

θj

))

6
h−1(ui)Fαi

(
x−λj

θj

)
1− h−1(ui)

(
1− Fαi

(
x−λj

θj

))

6
h−1(ui)Fαi

(
x−λi
θj

)
1− h−1(ui)

(
1− Fαi

(
x−λi
θj

))

6
h−1(ui)Fαi

(
x−λi
θi

)
1− h−1(ui)

(
1− Fαi

(
x−λi
θi

)) ,
which implies

h−1(uj)Fαj

(
x−λj

θj

)
1− h−1(uj)

(
1− Fαj

(
x−λj

θj

)) 6
h−1(ui)Fαi(x−λi

θi
)

1− h−1(ui)
(

1− Fαi

(
x−λi
θi

)) .
Hence substituting the above results, we get ∂FYn:n (x)

∂αi
− ∂FYn:n (x)

∂αj
≤ 0. Thus by Lemma 3.3 of

Kundu et al. (2016) [24], it can be proved that FYn:n(x) is Schur-convex in α∼. thus the result

is proved by Theorem A.8 of Marshall et al. (2011) [27].

Theorem 3.6. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗i = λ, θi = θ∗i = θ, α∗i = βi, where i = 1, ..., n. Then,

(i) α∼
w
>β

∼
implies Y1:n 6st Y

∗
1:n, provided α∼, β∼ ∈ ε+,

n∏
i=1

pi ≤
n∏
i=1

p∗i ;

(ii) α∼
−1 >w β∼

−1 implies Y1:n 6st Y
∗
1:n, provided α∼, β∼ ∈ ε+,

n∏
i=1

pi ≤
n∏
i=1

p∗i .

Proof:

(i): The survival function of Y1:n is given by

F̄Y1:n(x) =
n∏
i=1

pi

[
1− Fαi

(
x− λ

θ

)]
,

where h(pi) = ui. To prove the required result, it sufficient to show that F̄Y1:n(x) ≤ F̄Y ∗1:n(x),

which is equivalent to proving that
∏n
i=1

[
1−Fαi

(
x−λ
θ

)]
≤
∏n
i=1

[
1−F βi

(
x−λ
θ

)]
, since

n∏
i=1

pi ≤
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n∏
i=1

p∗i . Let φ(α∼) =
∏n
i=1

[
1− Fαi

(
x−λ
θ

)]
. Differentiating φ(α∼), partially, with respect to αi,

we get
∂φ(α∼)

∂αi
= −

Fαi
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− Fαi

(
x−λ
θ

) φ(α∼) > 0,

so, φ(α∼) is increasing in each αi. Again, it can be shown that

∂φ(α∼)

∂αi
−
∂φ(α∼)

∂αj

sign
=

Fαj
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− Fαj

(
x−λ
θ

)
−
Fαi

(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− Fαi

(
x−λ
θ

)(3.5)

Now,
∂

∂α

(
Fα
(
x−λ
θ

)
1− Fα

(
x−λ
θ

)) sign
= Fα

(
x− λ

θ

)
ln
[
F

(
x− λ

θ

)]
6 0,

implying that
Fα(x−λ

θ )
1−Fα(x−λ

θ ) is decreasing in α. Thus, as α∼ ∈ ε+, for i 6 j taking αi 6 αj , it can

be written that
Fαi

(
x−λ
θ

)
1− Fαi

(
x−λ
θ

) >
Fαj

(
x−λ
θ

)
1− Fαj

(
x−λ
θ

) ,
which implies

Fαi
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− Fαi

(
x−λ
θ

) 6
Fαj

(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− Fαj

(
x−λ
θ

) .

Hence, from (3.5), we get
∂φ(α∼)

∂αi
−

∂φ(α∼)

∂αj
> 0. Thus, by Lemma 3.3 of Kundu et al. (2016) [24],

it can be proved that φ(α∼) is Schur-concave in α∼. Thus the result is proved by Theorem A.8

of Marshall et al. (2011) [27].

(ii): The survival function of Y1:n can be expressed as the function of ci = 1
αi

,
i = 1, ..., n. We denote it by ψ5(c∼), where c∼ = (c1, ..., cn), and

ψ5(α∼) =
n∏
i=1

pi

[
1− F

1
ci

(
x− λ

θ

)]
,

where h(pi) = ui. To prove the required result, it is sufficient to show that ψ5(α∼) ≤ ψ5(β∼),

which is equivalent to proving that
n∏
i=1

[
1− Fαi

(
x−λ
θ

)]
≤

n∏
i=1

[
1− F βi

(
x−λ
θ

)]
, since

n∏
i=1

pi ≤
n∏
i=1

p∗i . Let φ(c∼) =
n∏
i=1

[
1− F

1
ci

(
x−λ
θ

)]
. It can be shown that the partial derivative of φ(c∼),

with respect to ci, is decreasing in each ci. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],
it can be proved that φ(c∼) is Schur-concave in c∼. Thus the result is proved by Theorem A.8

of Marshall et al. (2011) [27].

Theorem 3.7. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗i = λ, θi = θ∗i = θ, and α∗i = βi, where i = 1, ..., n. Then, α∼
p
>β

∼
implies

Y1:n 6st Y
∗
1:n, provided α∼, β∼ ∈ D+,

n∏
i=1

pi ≤
n∏
i=1

p∗i .
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Proof: The survival function of Y1:n can be expressed as the function of di, where
di = lnαi, i = 1, ..., n. We denote it by ψ6(d∼), where d∼ = (d1, ..., dn):

ψ6(d∼) =
n∏
i=1

pi

[
1− F e

di

(
x− λ

θ

)]
,

where h(pi) = ui. To prove the required result, it is sufficient to show that ψ6(α∼) ≤ ψ6(β∼),

which is equivalent to proving that
∏n
i=1 pi

[
1− Fαi

(
x−λ
θ

)]
≤
∏n
i=1 pi

[
1− F βi

(
x−λ
θ

)]
, since

n∏
i=1

pi ≤
n∏
i=1

p∗i . Let φ(d∼) =
∏n
i=1

[
1−F edi

(
x−λ
θ

)]
Differentiating ψ6(d∼), partially, with respect

to di, we get

∂φ(d∼)

∂di
= −

ediF e
di
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− F e

di
(
x−λ
θ

) φ(d∼) > 0

so, φ(d∼) is increasing in each di. Again, it can be shown that

∂φ(d∼)

∂di
−
∂φ(d∼)

∂dj

sign
=

edjF e
dj (x−λ

θ

)
ln
[
F
(
x−λ
θ

)]
1− F e

dj
(
x−λ
θ

) −
ediF e

di
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− F e

di
(
x−λ
θ

) .(3.6)

Now,
∂

∂d

(
F e

d(x−λ
θ

)
1− F ed

(
x−λ
θ

)) sign
= edF e

d

(
x− λ

θ

)
ln
[
F

(
x− λ

θ

)]
6 0,

implying that
F ed(x−λ

θ )
1−F ed(x−λ

θ )
is decreasing in d. Thus, as d∼ ∈ D+, for i 6 j taking di > dj , it can

be written that
F e

di
(
x−λ
θ

)
1− F e

di
(
x−λ
θ

) 6
F e

dj (x−λ
θ

)
1− F e

dj
(
x−λ
θ

) ,
which implies

ediF e
di
(
x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− F e

di
(
x−λ
θ

) >
edjF e

dj (x−λ
θ

)
ln
[
F
(
x−λ
θ

)]
1− F e

dj
(
x−λ
θ

) .

Hence, from (3.6), we get
∂φ(d∼)

∂di
−

∂φ(d∼)

∂dj
6 0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that φ(d∼) is Schur-concave in d∼. Thus the result is proved by Lemma 3.1 of

Khaledi et al. (2002) [16].

Theorem 3.8. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗i = λ, θ∗i = δi, and αi = α∗i = α, where i = 1, ..., n. Then, θ∼
−1 >w δ∼

−1

implies Y1:n 6st Y
∗
1:n, provided θ∼, δ∼ ∈ ε+,

n∏
i=1

pi ≤
n∏
i=1

p∗i , and r̃(u) is increasing in u.

Proof: The survival function of Y1:n can be expressed as the function of ei, where
ei = 1

θi
, i = 1, ..., n. We denote it by ψ7(e∼), where e∼ = (e1, ..., en), and

ψ7(e∼) =
n∏
i=1

pi

[
1− Fα

(
ei(x− λ)

)]
,
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where h(pi) = ui. To prove the required result, it is sufficient to show that ψ7(θ∼
−1) ≤ ψ7(δ∼

−1),

which is equivalent to proving that
∏n
i=1

[
1− Fα

(
1
θi

(x− λ)
)]
≤
∏n
i=1

[
1− Fα

(
1
δi

(x− λ)
)]

,

since
n∏
i=1

pi ≤
n∏
i=1

p∗i . Let φ(e∼) =
∏n
i=1

[
1− Fα

(
ei(x− λ)

)]
. Differentiating φ(e∼), partially,

with respect to ei, we get

∂φ(e∼)

∂ei
= −α(x− λ)r̃(ei(x− λ))Fα(ei(x− λ))

1− Fα(ei(x− λ))
φ(e∼) 6 0,

so, ψ7(e∼) is decreasing in each ei. Again, it can be shown that

∂φ(e∼)

∂ei
−
∂φ(e∼)

∂ej

sign
=

α(x− λ)r̃(ej(x− λ))Fα(ej(x− λ))
1− Fα(ej(x− λ))

− α(x− λ)r̃(ei(x− λ))Fα(ei(x− λ))
1− Fα(ei(x− λ))

.

(3.7)

Now,

∂

∂e

(
Fα(e(x− λ))

1− Fα(e(x− λ))

)
sign
= α(x− λ)r̃(e(x− λ))Fα(e(x− λ)) > 0,

implying that Fα(e(x−λ))
1−Fα(e(x−λ)) is inscreasing in e. Thus, us θ∼ ∈ ε+, for i 6 j taking ei > ej ,

it can be written that

Fα(ei(x− λ))
1− Fα(ei(x− λ))

>
Fα(ej(x− λ))

1− Fα(ej(x− λ))
.

As r̃(u) is increasing in u, then

α(x− λ)r̃(ei(x− λ))Fα(ei(x− λ))
1− Fα(ei(x− λ))

>
α(x− λ)r̃(ej(x− λ))Fα(ej(x− λ))

1− Fα(ej(x− λ))
.

Hence, from (3.7), we get
∂φ(e∼)

∂ei
−

∂φ(e∼)

∂ej
6 0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that φ(e∼) is Schur-concave in e∼. Thus the result is proved by Theorem A.8

Marshall et al. (2011) [27].

Theorem 3.8 shows that if both the location and shock parameter vectors i.e. the matrix
of location and shock parameters of one system majorizes the other when the scale and shape
parameter vectors remain constant do not lead to better system reliability.

Theorem 3.9. For n = 2, let Assumption 3.1 hold. Further, let h : [0, 1] → R+ be a

differentiable and strictly increasing concave function. Then, for i = 1, 2, if θi = θ∗i = αi =
α∗i = θ, and (h(p

∼
), λ∼) ∈ P2, we have that

(
h(p1)
λ1

h(p2)
λ2

)
�
(
h(p∗1)
λ∗1

h(p∗2)
λ∗2

)
,

implies Y ∗
1:2 >st Y1:2, provided r̃(u) is increasing in u.
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Proof: With u1 = h(p1), u2 = h(p2), we have p1 = h−1(u1), p2 = h−1(u2), where h−1

denotes the inverse of the function h. From (1.2), the survival function of Y1:2 is

F̄Y1:2(x;u∼, λ∼, θ, θ) =
2∏
i=1

h−1(ui)
[
1− F θ

(
x− λi
θ

)]
, x > max{λi, i = 1, ..., n}.

Note that the function F̄Y1:2(x;u∼, λ∼, θ, θ) is permutation invariant in (ui, λi), and so condition

(i) of Theorem 2 of Balakrishnan et al. (2015) [1] is satisfied. Next, we have to show that
condition (ii) of Theorem 2 of Balakrishnan et al. (2015) [1] also holds. The assumption
(u∼, λ∼) ∈ P2 implies that (u1 − u2)(λ1 − λ2) 6 0. This implies that u1 > u2 and λ1 6 λ2 or
u1 6 u2 and λ1 > λ2. We proof only for the case when u1 > u2 and λ1 6 λ2. The proof for
the other case is similar. The partial derivatives of F̄Y1:2(x;u∼, λ∼, θ, θ) with respect to ui and
λi are

∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂ui
=

∂h−1(ui)
∂ui

h−1(ui)
F̄Y1:2(x;u∼, λ∼, θ, θ),

∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂λi
= −

r̃
(
x−λi
θ

)
F θ
(
x−λi
θ

)
1− F θ

(
x−λi
θ

) F̄Y1:2(x;u∼, λ∼, θ, θ).

For fixed x > max{λi, i = 1, ..., n}, let us define the function ϕ(u∼, λ∼) as follows:

ϕ(u∼, λ∼) = (u1 − u2)

(
∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂u1
−
∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂u2

)

+ (λ1 − λ2)

(
∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂λ1
−
∂F̄Y1:2(x;u∼, λ∼, θ, θ)

∂λ2

)

= (u1 − u2)

 ∂h−1(u1)
∂u1

h−1(u1)
−

∂h−1(u2)
∂u2

h−1(u2)

× F̄Y1:2(x;u∼, λ∼, θ, θ)

+ (λ1 − λ2)

 r̃
(
x−λ1
θ

)
F θ
(
x−λ1
θ

)
1− F θ

(
x−λ1
θ

) −
r̃
(
x−λ2
θ

)
F θ
(
x−λ2
θ

)
1− F θ

(
x−λ2
θ

)
 F̄Y1:2(x;u∼, λ∼, θ, θ).(3.8)

Since h is strictly increasing and concave, then for u1 > u2 and λ1 6 λ2, we have

(3.9)
∂h−1(u1)
∂u1

h−1(u1)
≤

∂h−1(u2)
∂u2

h−1(u2)
.

Furthermore, tθ

1−tθ is increasing in t for θ > 0. For the reversed hazard rate function r̃ that is
increasing, we have

(3.10) r̃(
x− λ1

θ
) ≥ r̃

(
x− λ2

θ

)
and

(3.11)
r̃
(
x−λ1
θ

)
F θ
(
x−λ1
θ

)
1− F θ

(
x−λ1
θ

) >
r̃
(
x−λ2
θ

)
F θ
(
x−λ2
θ

)
1− F θ

(
x−λ2
θ

) .

Combining (3.9) and (3.10) and (3.11), we see that ϕ(u∼, λ∼) 6 0. Condition (ii) Theorem 2 of

Balakrishnan et al. (2015) [1] is satisfied, which completes the proof.
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Counterexample 3.1. Let the baseline distribution function be F (t) = e
−1
t , t > 0.

Take h(p) = − ln p. Here, the baseline reversed hazard rate function is decreasing and
h(p) is decreasing and convex. Thus, the assumptions of the Theorem 3.9 are violated.
Let us take θ1 = θ2 = θ∗1 = θ∗2 = α1 = α2 = α∗1 = α∗2 = 1.5, (λ1, λ2) = (0.3, 0.9), (λ∗1, λ

∗
2) =

(0.54, 0.66), (p1, p2) = (e−0.4, e−0.5) and (p∗1, p
∗
2) = (e−0.44, e−0.46). Consider the T-transform

matrix T0.6 =
(

0.6
0.4

0.4
0.6

)
. It can be shown that(
h(p∗1)
λ∗1

h(p∗2)
λ∗2

)
=
(
h(p1)
λ1

h(p2)
λ2

)
T0.6,

which implies
(
h(p1)
λ1

h(p2)
λ2

)
�
(
h(p∗1)
λ∗1

h(p∗2)
λ∗2

)
. Under this set up, F̄Y1:2(2) = 0.2597610428,

F̄Y ∗1:2(2) = 0.2599036428, F̄Y1:2(5) = 0.06532417018, F̄Y ∗1:2(5) = 0.06516286182, which readily
shows that Y ∗

1:2 �st Y1:2.

The following theorem extends Theorem 3.8 when two sets of n-independent observa-
tions from ELS distribution. The generalization is the direct result of the Theorem 3.8 and
Lemma 5 of Balakrishnan et al. (2018) [2]. So, the proof is omitted.

Theorem 3.10. Let Assumption 3.1 hold and h : [0, 1] → R+ be a differentiable and

strictly increasing concave function. Further, let Tw be a T-transform matrix. Then, for

i = 1, ..., n, if θi = θ∗i = αi = α∗i = θ, and (h(p
∼
), λ∼) ∈ Pn, we have that(

h(p∗1)
λ∗1

h(p∗2)
λ∗2

···
···

h(p∗n)
λ∗n

)
=
(
h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw,

implies Y ∗
1:n >st Y1:n, provided r̃(u) is increasing in u.

Theorem 3.11. Let Assumption 3.1 hold. Further, let Tw1 , ..., Twk
have the same

structure. Suppose h : [0, 1] → R+ is a differentiable and strictly increasing concave function.

Then, for i = 1, ..., n, if θi = θ∗i = αi = α∗i = θ, and (h(p
∼
), λ∼) ∈ Pn, we have that(

h(p∗1)
λ∗1

h(p∗2)
λ∗2

···
···

h(p∗n)
λ∗n

)
=
(
h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw1 ···Twk

,

implies Y ∗
1:n >st Y1:n, provided r̃(u) is increasing in u.

Proof: Since a finite product of T-transform matrices with the same structure is also
a T-transform matrix, so, the desired result is obtained from Theorem 3.9.

Our next Theorem shows that the result in Theorem 3.10 holds for T-transform matrices
with different structure.

Theorem 3.12. Let Assumption 3.1 hold. Further, let Tw1 , ..., Twk
, k > 2, have differ-

ent structures. Suppose h : [0, 1]→ R+ is a differentiable and strictly increasing concave func-

tion. Then, for i = 1, ..., n, if θi = θ∗i = αi = α∗i = θ, (h(p
∼
), λ∼) ∈ Pn and (h(p

∼
), λ∼)Tw1 ···Twk

∈
Pn, we have that(

h(p∗1)
λ∗1

h(p∗2)
λ∗2

···
···

h(p∗n)
λ∗n

)
=
(
h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw1 ···Twk

,

implies Y ∗
1:n >st Y1:n, provided r̃(u) is increasing in u.
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Proof:(
h(p1)(i)

λ
(i)
1

···
···

h(pn)(i)

λ
(i)
n

)
=
(
h(p1)
λ1

···
···

h(pn)
λn

)
Tw1 ···Twi , for i = 1, ..., k.

Assume V
(i)
1 , ..., V

(i)
n , i = 1, ..., k, are independent sets of random variables with V

(i)
j ∼

ELS(λ(i)
j , θj , αj) where θj = θ∗j = αj = α∗j = θ, j = 1, ..., n and i = 1, ..., k. From the assump-

tion of the theorem, it follows that(
h(p1)(i)

λ
(i)
1

···
···

h(pn)(i)

λ
(i)
n

)
∈ Pn, for i = 1, ..., k.

From these observations and the results of Theorem 3.9, it then follows that

Y1:n 6st V
(1)
1:n 6st ··· 6st V

(k−2)
1:n 6st V

(k−1)
1:n 6st Y

∗
1:n,

which completes the proof of the theorem.

The following example illustrates the result established in Theorem 3.11.

Example 3.1. Suppose X1, X2 and X3 are independent non-negative random vari-
ables with Xi ∼ ELS(λi, θi, αi), and Ip1 , Ip2 and Ip3 are independent Bernoulli random vari-
ables, independent of X ,

is, with E(Ipi) = pi, i = 1, 2, 3. Further, suppose X∗
1 , X

∗
2 and X∗

3

are independent non-negative random variables with X∗
i ∼ ELS(λ∗i , θ

∗
i , α

∗
i ), and Ip∗1 , Ip∗2 and

Ip∗3 are independent Bernoulli random variables, independent of X∗,

i s, with E(Ip∗i ) = p∗i ,
i = 1, 2, 3. Consider a baseline distribution with distribution function F (x) = 1− e−x, x > 0.
Consider the T-transform matrices as follows:

T0.7 =

 0.7
0

0.3

0
1
0

0.3
0

0.7

, T0.6 =

 0.4
0.6
0

0.6
0.4
0

0
0
1

, T0.4 =

 0.6
0

0.4

0
1
0

0.4
0

0.6

.
Suppose h(p) = p

1+p . Then, for θi = θ∗i = αi = α∗i = 1, i = 1, 2, 3, let (λ1, λ2, λ3) = (2, 3, 4),
(λ∗1,λ

∗
2,λ

∗
3)=(3.06,2.76,3.17), (p1, p2, p3)=(0.4,0.3,0.2) and (p∗1, p

∗
2, p

∗
3)=(0.285,0.317,0.273).

It is easy to observe that (h(p
∼
), λ∼) ∈ P3, (h(p∼), λ∼)T0.7 ∈ P3 and (h(p

∼
), λ∼)T0.7T0.6 ∈ P3 and

(h(p∗
∼

), λ∗∼ ) = (h(p
∼
), λ∼)T0.7T0.6T0.4. So, from Theorem 3.11, we have Y ∗

1:3 >st Y1:3.

Theorem 3.13. Let Assumption 3.1 hold for n = 2. Suppose h : [0, 1] → R+ is differ-

entiable and strictly increasing concave function. Further, let r̃(u) and ur̃(u) increasing in u.

Then, if αi = α∗i = α, and (h(p
∼
), λ∼, θ∼) ∈ S2, we have that

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

�
 h(p∗1)

λ∗1
θ∗1

h(p∗2)
λ∗2
θ∗2


implies Y ∗

1:2 >st Y1:2.
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Proof: With u1 = h(p1), u2 = h(p2), we have p1 = h−1(u1), p2 = h−1(u2), where h−1

denotes the inverse of the function h. From (1.2), the survival function of Y1:2 is

F̄Y1:2(x;u∼, λ∼, θ∼, α) =
2∏
i=1

h−1(ui)
[
1− Fα

(
x− λi
θi

)]
, x > max{λi, i = 1, ..., n}.

Note that the function F̄Y1:2(x;u∼, λ∼, θ∼, α) is permutation invariant in (ui, λi, θi) and therefore

condition (i) of Lemma 6 of Balakrishnan et al. (2018) [2] is satisfied. Next, we have to show
that Condition (ii) of Lemma 6 of Balakrishnan et al. (2018) [2] also holds. The assumption
(u∼, λ∼, θ∼) ∈ S2 implies that u1 6 (>)u2 and λ1 > (6)λ2 and θ1 > (6)θ2. We proof only for the
case when u1 6 u2 and λ1 > λ2 and θ1 > θ2. The proof for the other case is similar. The
partial derivatives of F̄Y1:2(x;u∼, λ∼, θ∼, α) with respect to ui and λi and θi are

∂F̄Y1:2(x;u∼, λ∼, θ∼, α)

∂ui
=

∂h−1(ui)
∂ui

h−1(ui)
× F̄Y1:2(x;u∼, λ∼, θ∼, α),

∂F̄Y1:2(x;u∼, λ∼, θ∼, α)

∂λi
=

α

θi
×
r̃
(
x−λi
θi

)
Fα
(
x−λi
θi

)
1− Fα

(
x−λi
θi

) × F̄Y1:2(x;u∼, λ∼, θ∼, α),

∂F̄Y1:2(x;u∼, λ∼, θ∼, α)

∂θi
=

α

θi
×

(
x−λi
θi

)
r̃
(
x−λi
θi

)
Fα
(
x−λi
θi

)
1− Fα

(
x−λi
θi

) × F̄Y1:2(x;u∼, λ∼, θ∼, α).

For fixed x > max{λi, i = 1, ..., n}, let us define the function ϕ(u∼, λ∼, θ∼) as follows:

ϕ(u∼, λ∼, θ∼) = (u1 − u2)

(
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂u1
−
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂u2

)

+ (λ1 − λ2)

(
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂λ1
−
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂λ2

)

+ (θ1 − θ2)

(
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂θ1
−
∂F̄ Y1:2(x;u∼, λ∼, θ∼, α)

∂θ2

)

= (u1 − u2)

 ∂h−1(u1)
∂u1

h−1(u1)
−

∂h−1(u2)
∂u2

h−1(u2)

× F̄Y1:2(x;u∼, λ∼, θ∼, α)

+ (λ1 − λ2)

(
1
θ1
r̃

(
x− λ1

θ1

)
l1 −

1
θ2
r̃

(
x− λ2

θ2

)
l2

)
× F̄Y1:2(x;u∼, λ∼, θ∼, α)

+ (θ1 − θ2)

(
1
θ1

(
x− λ1

θ1

)
r̃

(
x− λ1

θ1

)
l1 −

1
θ2

(
x− λ2

θ2

)
r̃

(
x− λ2

θ2

)
l2

)
(3.12)

× F̄Y1:2(x;u∼, λ∼, θ∼, α),

where li = l
(
α, Fα

(
x−λi
θi

))
=

αFα
�

x−λi
θi

�

1−Fα
�

x−λi
θi

� , i = 1, 2, is defined in Lemma 2.8 of Torrado (2015)

[28]. Since h is strictly increasing and concave function, then for u1 6 u2 and λ1 > λ2 and
θ1 > θ2, we have

(3.13)
∂h−1(u1)
∂u1

h−1(u1)
>

∂h−1(u2)
∂u2

h−1(u2)
.
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(3.14)
1
θ1
r̃

(
x− λ1

θ1

)
l

(
α, Fα

(
x− λ1

θ1

))
6

1
θ2
r̃

(
x− λ2

θ2

)
l

(
α, Fα

(
x− λ2

θ2

))
and
(3.15)
1
θ1

(
x− λ1

θ1

)
r̃

(
x− λ1

θ1

)
l

(
α, Fα

(
x− λ1

θ1

))
6

1
θ2

(
x− λ2

θ2

)
r̃

(
x− λ2

θ2

)
l

(
α, Fα

(
x− λ2

θ2

))
combining (3.13), (3.14) and (3.15) in (3.12), we see that ϕ(u∼, λ∼, θ∼) 6 0. So condition (ii) of

Lemma 6 of Balakrishnan et al. (2018) [2] is satisfied, which completes the proof.

Counterexample 3.2. Let the baseline distribution function be F (t) = e
−1
t , t > 0.

Here, r̃(t) and tr̃(t) are decreasing. Take h(p) = p. Thus, the assumption of Theorem 3.13
are violated. Let us take α1 = α2 = α∗1 = α∗2 = 2.2, (θ1, θ2) = (5.2, 2.7), (θ∗1, θ

∗
2) = (4.2, 3.7),

(λ1, λ2) = (2.2, 2.5), (λ∗1, λ
∗
2) = (2.32, 2.38), (p1, p2) = (p∗1, p

∗
2) = (0.2, 0.2). Consider the

T-transform matrix T0.6 =
(

0.6
0.4

0.4
0.6

)
. It can be shown that

 h(p∗1)
λ∗1
θ∗1

h(p∗2)
λ∗2
θ∗2

 =

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

T0.6,

which implies

h(p1)
λ1

θ1

h(p2)
λ2

θ2

�
h(p∗1)λ∗1

θ∗1

h(p∗2)
λ∗2
θ∗2

. Under this set up, F̄Y1:2(2.8) = 0.9999999923,

F̄Y ∗1:2(2.8) = 0.9999999918, F̄Y1:2(5) = 0.8918294672, F̄Y ∗1:2 = 0.9248659543, which readily shows
that Y ∗

1:2 �st Y1:2.

The following theorem extends Theorem 3.12 when two sets of n-independent observa-
tions are from ELS distribution. The generalization is the direct of the Theorem 3.12 and
Lemma 7 of Balakrishnan et al. (2018) [2]. So, the proof is omitted.

Theorem 3.14. Let Assumption 3.1 hold. Suppose h : [0, 1] → R+ is differentiable

and strictly increasing concave function. Further, let r̃(u) and ur̃(u) are increasing in u.

Then, for i = 1, ..., n and T-transform matrix Tw, if αi = α∗i = α, and (h(p
∼
), λ∼, θ∼) ∈ Sn, we

have that  h(p∗1)
λ∗1
θ∗1

h(p∗2)
λ∗2
θ∗2

···
···
···

h(p∗n)
λ∗n
θ∗n

 =

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn
θn

Tw
implies Y ∗

1:n >st Y1:n.

Theorem 3.15. Let Assumption 3.1 hold and Tw1 , ..., Twk
be T-transform matrices

with same structures. Suppose, h : [0, 1]→ R+ is differentiable and strictly increasing concave
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function. Further, let r̃(u), and ur̃(u) are strictly increasing in u,. Then, if αi = α∗i = α,, and

(h(p
∼
), λ∼, θ∼) ∈ Sn, we have that

 h(p∗1)
λ∗1
θ∗1

h(p∗2)
λ∗2
θ∗2

···
···
···

h(p∗n)
λ∗n
θ∗n

 =

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn
θn

Tw1 ···Twk

implies Y ∗
1:n >st Y1:n.

Proof: Since, a finite product of T-transform matrices with the same structure is
also a T-transform matrix, so, the desired result can be obtained by repeating the result of
Theorem 3.13.

Theorem 3.16. Let Assumption 3.1 hold and Tw1 , ..., Twk
, k > 2 be T-transform ma-

trices with different structures. Suppose, h : [0, 1] → R+ is differentiable and strictly increas-

ing concave function. Further, let r̃(u) and ur̃(u) are increasing in u. Then, if αi = α∗i = α,

and (h(p
∼
), λ∼, θ∼) ∈ Sn and (h(p

∼
), λ∼, θ∼)Tw1 ···Twi ∈ Sn, i = 1, ..., k − 1, we have

 h(p∗1)
λ∗1
θ∗1

h(p∗2)
λ∗2
θ∗2

···
···
···

h(p∗n)
λ∗n
θ∗n

 =

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn
θn

Tw1 ···Twk

implies Y ∗
1:n >st Y1:n.

Proof: h(i)(p1)
λ

(i)
1

θ
(i)
1

···
···
···

h(i)(pn)
λ

(i)
n

θ
(i)
n

 =

 h(p1)
λ1

θ1

···
···
···

h(pn)
λn
θn

Tw1 ...Twi , for i = 1, ..., k.

Assume V
(i)
1 , ..., V

(i)
n , i = 1, ..., k, are independent sets of random variables with V

(i)
j ∼

ELS(λ(i)
j , θ

(i)
j , αj) where αi = α∗i = α, j = 1, ..., n and i = 1, ..., k. From the assumption of

the theorem, it follows that  h(p1)(i)

λ
(i)
1

θ
(i)
1

···
···
···

h(pn)(i)

λ
(i)
n

θ
(i)
n

 ∈ Sn.

Using the results of Theorem 3.13, it then follows that

Y1:n 6st V
(1)
1:n 6st ··· 6st V

(k−2)
1:n 6st V

(k−1)
1:n 6st Y

∗
1:n,

which completes the proof of the theorem.
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Theorem 3.17. Let Assumption 3.1 hold for n = 2. Suppose h : [0, 1] → R+ is a

differentiable and strictly increasing concave function. Further, assume that r̃(u) and ur̃(u)
are increasing in u, and (h(p

∼
), λ∼, θ∼, α∼) ∈ U2,. Then,


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

�


h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2


implies Y ∗

1:2 >st Y1:2.

Proof: With the help of Lemma 2.1, the proof follows from arguments similar to those
in the proof of Theorem 3.13. It is omitted for brevity.

We present a counterexample to show that the comparison result may not hold if the
assumptions are not satisfied.

Counterexample 3.3. Let the baseline distribution function be F (t)=1−exp(1−t0.5),
t ≥ 1. Here r̃(t) and tr̃(t) are decreasing. Take h(p) = ep, where h(p) is convex. Thus, the
assumption of Theorem 3.17 are not violated. Let us set (α1, α2) = (0.2, 0.5), (α∗1, α

∗
2) =

(0.44, 0.26), (λ1, λ2) = (1, 1.5), (λ∗1, λ
∗
2) = (1.4, 1.1), (θ1, θ2) = (4, 2), (θ∗1, θ

∗
2) = (2.4, 3.6),

(p1, p2) = (ln(4), ln(5)), (p∗1, p
∗
2) = (ln(4.8), ln(4.2)),. Consider a T-transform matrix T0.2 =(

0.2
0.8

0.8
0.2

)
. Then, it can be shown that


h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2

 =


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

T0.2,

which implies


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

�

h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2

. Finally F̄Y1:2(5)− F̄Y ∗1:2(5)= 0.4133022299,

F̄Y1:2(7.5)− F̄Y ∗1:2(7.5) = −0.0324688838, which readily shows that Y ∗
1:2 �st Y1:2.

In the following theorem, we present a generalization of Theorem 3.17 to the case of
n independent variables.

Theorem 3.18. Let Assumption 3.1 hold. Further, let Tw be a T-transform ma-

trix. Suppose h : [0, 1] → R+ is a differentiable strictly increasing concave function. Further,

assume that r̃(u) and ur̃(u) are increasing in u, and let (h(p
∼
), λ∼, θ∼, α∼) ∈ Un. Then,


h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2

···
···
···
···

h(p∗n)
λ∗n
θ∗n
α∗n

 =


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

···
···
···
···

h(pn)
λn
θn
αn

Tw
implies Y ∗

1:n >st Y1:n.
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Theorem 3.19. Let Tw1 , ..., Twk
be T-transform matrices with same structure. Let

Assumption 3.1 hold and h : [0, 1] → R+ be a differentiable and strictly increasing concave

function. Further, assume that r̃(u) and ur̃(u) are strictly increasing in u, and (h(p
∼
), λ∼, θ∼, α∼) ∈

Un. Then,
h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2

···
···
···
···

h(p∗n)
λ∗n
θ∗n
α∗n

 =


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

···
···
···
···

h(pn)
λn
θn
αn

Tw1 ···Twk

implies Y ∗
1:n >st Y1:n.

The following theorem presents a generalization to the case of a finite number of
T-transform matrices with different structures.

Theorem 3.20. Let Assumption 3.1 hold. Further, letTw1 , ...,Twk
, k>2 be T-transform

matrices, with different structures. Suppose h : [0, 1] → R+ is a differentiable and strictly in-

creasing concave function. Further, assume that r̃(u) and ur̃(u) are increasing in u, and

(h(p
∼
), λ∼, θ∼, α∼) ∈ Un and (h(p

∼
), λ∼, θ∼, α∼)Tw1 ···Twi ∈ Un, i = 1, ..., k − 1. Then,


h(p∗1)
λ∗1
θ∗1
α∗1

h(p∗2)
λ∗2
θ∗2
α∗2

···
···
···
···

h(p∗n)
λ∗n
θ∗n
α∗n

 =


h(p1)
λ1

θ1
α1

h(p2)
λ2

θ2
α2

···
···
···
···

h(pn)
λn
θn
αn

Tw1 ···Twk

implies Y ∗
1:n >st Y1:n.

4. SOME SPECIAL CASES

In this section, we present some special cases of the results obtained in the previous
sections. We consider two special distributions - generalized gamma, half - normal distribu-
tions. For these distributions, we present some comparisons results using the general results
established earlier. In terms of hazard rate function, the following theorems can be proved
like the theorems above, which are proved by reversed hazard rate function. To prevent
recurrence, you can refer to Das et al. (2021) [7].

4.1. Generalized gamma distribution

In this subsection, we consider the generalized gamma distribution with density function

f(t) ∝ ta−1e−t
b
, a, b, t > 0.

It is easy to check that the hazard rate function of this distribution is increasing for a, b ≥ 1
and decreasing for 0 < a, b ≤ 1(see Hazra et al., 2018 [15]). We now consider the baseline
distribution function to the generalized gamma distribution.
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Theorem 4.1. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X

∗
n)

be non-negative independent random variables withXi∼ELS(λi, θi,αi)[X∗
i ∼ELS(µi, δi,βi)],

i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ]
,s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Then, for i = 1, 2, if

θi = δi = δ and αi = βi = α ≥ 1, r(x) is increasing. Suppose h(p) = ep ln(1 + p). Then, for

a, b ≥ 1, we have

(
h(p1)
θ1

h(p2)
θ2

)
�
(
h(p∗1)
δ1

h(p∗2)
δ2

)
implies Y ∗

1:2 ≥st Y1:2.

Theorem 4.2. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X

∗
n)

be non-negative independent random variables withXi∼ELS(λi, θi,αi)[X∗
i ∼ELS(µi, δi,βi)],

i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ]
,s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Further, let the baseline

hazard rate r(.) be increasing. If αi = βi = α ≥ 1 and (h(p
∼
), λ∼, θ∼) ∈ N2. Suppose h(p) = p2.

Then, for a, b ≥ 1, we have

 h(p1)
λ1

θ1

h(p2)
λ2

θ2

�
 h(p∗1)

µ1

δ1

h(p∗2)
µ2

δ2

 implies Y ∗
1:2 ≥st Y1:2.

4.2. Half-normal distribution

Consider the probability distribution function of a half-normal distribution given by

f(t) ∝ e
−t2

2 , t > 0.

The hazard rate function of the above half-normal distribution is increasing (see Hazra et al.

(2018) [15]). The distribution function of the half-normal distribution is now taken as the
baseline distribution function.

Theorem 4.3. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X

∗
n)

be non-negative independent random variables withXi∼ELS(λi, θi,αi) (X∗
i ∼ELS(µi, δi,βi)),

i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ]
,s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Further, let the baseline

hazard rate r(.) be increasing. If θi = δi = θ and (h(p
∼
), λ∼, α∼) ∈ N∗

2 . Let h(p) = −p ln(1− p).

Then

 h(p1)
λ1

α1

h(p2)
λ2

α2

�
 h(p∗1)

µ1

β1

h(p∗2)
µ2

β2

 implies Y ∗
1:2 ≥st Y1:2.

5. APPLICATIONS

In this section, we discuss application of few of our established results in insurance and
auction theory. Suppose X1, ..., Xn are independent exponentiated location-scale random
variables with Xi ∼ ELS(λi, µi, αi), for i = 1, ..., n, and Ip1 , ..., Ipn are independent Bernoulli
random variables, independent of the X ,

is, with E(Ipi) = pi. Let Yi = IpiXi, for i = 1, ..., n.
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Suppose Xi denotes the total of random claims that can be made in an insurance period and
Ipi denotes a Bernoulli random variables associated with Xi defined as follows: Ipi = 1 when
ever the ith policyholder makes random claim Xi and Ipi = 0 whenever he/she does not make
make a claim. In setting, Yi = IpiXi corresponds to the claim amount in a portfolio of risks.
The problem of comparison of number of claims and aggregate claim amounts with respect
to some well-known stochastic orders is of interest on both theoretical and practical view
points. Under some conditions Theorems 3.2, 3.3, 3.4 respectively conclude that Yn:n in the
weakly supermajorized order, weakly submajorized order, p-larger and reciprocally majorized
order is stochastically smaller. There are many real-life applications of the ordering results.
We discuss applications of few of our established results in auction theory. Auction theory
has been an interest topic to various scientists because of its usefulness for sale of variety
of items or purchasing services. For more details in auction theory, we refer to (Klemperer,
(2004) [17]). In real world,among all types of auctions, the sealed-bid private-value auction
is of theoretical interest. Also, this type of auction has been used extensively. In this case,
bidders hand in their bids to the auctioneer simultaneously and can neither observe their
rival bids nor revise their own bids.The bidders having the highest bid wins. The bidders
with the lowest bid wins in the reverse auction. Consequently, the bidder pays his own bid
in the sealed-bid first-price auction (FPA). Few of our established results could be useful for
some new light in the auction theory. Let the bids follow exponentiated locatio-scale model.
Then, under some conditions, Theorems 3.2, 3.3, 3.4 respectively conclude that the final
price in the FPA with more heterogeneous shape parameters in the weakly super majorized
order, reciprocal of the shape parameters in the weakly submajorized, scale parameters in
the p-larger and reciprocally majorized orders is stochastically smaller.

6. CONCLUDING

In this paper, when the matrix of parameters changes to another matrix of parameters
with respect to multivariate chain majorization, we study the usual stochastic order of the
smallest order statistics when each component receives a random shock. Under certain condi-
tions, by using the concept of vector majorization and related orders, we have also discussed
stochastic comparison between series and parallel systems in the sense of the usual stochastic
order under random shock. We have then applied the results for some special cases of the ex-
ponentiated location-scale model with possibly different scale, location and shape parameters
to illustrate the established results.
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