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1. INTRODUCTION

Modeling count data is an important issue in different disciplines and applied sciences
such as medicine (see, for example, Joe and Zhu [25]), actuarial sciences (see, for example,
Gossiaux and Lemaire [17], Lord et al. [32]), biology (see, for instance, Esnaola et al. [14]),
health economics (see, for example, Zafakali and Ahmad [50]), among many others. With this
aim, the one-parameter Poisson distribution and the two-parameter Negative Binomial dis-
tribution are commonly used. Nevertheless, observed count data often exhibit overdispersion
(i.e., variance greater than the mean) and, therefore, the Poisson distribution is not adequate
for fitting such data, since its variance is restricted to be equal to the mean. Additionally, a
second usual feature of the observed count data is the presence of a high percentage of zero
values (zero inflation or zero vertex). The zero-inflation index zi = 1 + log(p0)/µ, where p0

is the probability of zero, can be used to measure zero-inflation. Then zi = 0 for Poisson
distribution, and zi = 1 + log(d)/(1− d) > 0 for the Negative Binomial, where d denotes the
Fisher dispersion index given by d = σ2/µ, where σ2 and µ are the variance and mean, re-
spectively [see 42]. Therefore, the Negative Binomial distribution is an improvement over the
Poisson distribution, since it can model overdispersed and zero-inflated data.

Several other distributions have been presented in the statistical literature to handle
both overdispersion and zero-inflation. In this frame, Neyman [39] developed the now well-
known Neyman type A (NTA) distribution, which is overdispersed, because d ≥ 1, and its
zero-inflation index zi is always larger than the respective for the Negative Binomial for any
fixed value of the dispersion index d (see Figure 1 in Puig and Valero [42]). For these reasons,
the NTA distribution has been used in various disciplines such as bacteriology, ecology and
entomology. The reader is referred to Johnson et al. [26, Chapter 9] and to Tripathi [49] for
a list of applications of NTA distribution. Let pN (k; τ, δ) and gN (t; τ, δ) be the probability
mass function (pmf) and probability generating function (pgf) of the NTA distribution, with
parameters δ > 0 and τ > 0. We have that

(1.1) Pr(X = k) := pN (k; τ, δ) =
τkeδ(e−τ−1)

k!
mk(δe−τ ), k ∈ N0,

where N0 = N ∪ {0} = {0, 1, 2, ...}, mk(r) =
∑k

j=0 S(j, k)rk is the k-th moment about zero
for the Poisson distribution with parameter r > 0, and S(k, j) are the Stirling numbers
of second kind (see, for instance, Massé and Theodorescu [33] for further details). Also,
gN (t; τ, δ) = exp[δ(eτ(t−1) − 1)], |t| ≤ 1. We shall use the notation X ∼ NTA(τ, δ) to refer
to this distribution.

Recently, Castellares et al. [8] on the basis of a series expansion presented in Touchard
[48] and Bell [4, 5], obtained a two-parameter family of distributions (named as Bell–Touchard
distribution) with pmf of the form

(1.2) Pr(X = k) := p(k; θ) =
eb(1−ea) ak Tk(b)

k!
, k ∈ N0,

where a > 0 and b > 0, θ = (a, b) ∈ Θ = (0,∞)× (0,∞), and Tk(·) are the Touchard polyno-
mials [48] defined by Tk(b) = e−b

∑∞
j=0 j

k bj/j!. We shall use the notation X ∼ BT(a, b),
or X ∼ BT(θ), to refer to the NTA distribution with this specific parameterization. If
X ∼ BT(a, b), then its pgf is given by

(1.3) g(t; θ) = exp{[b(eta − ea)]}, |t| ≤ 1.
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The Touchard polynomials Tk(b) corresponds to the k-th moment of the Poisson distribution
with parameter equal to b and can be obtained for different values of k. For example, T0(b) =
1, T1(b) = b, T2(b) = b2 + b, T3(b) = b3 +3b2 + b, T4(b) = b4 +6b3 +7b2 + b, T5(b) = b5 +10b4 +
25b3 + 15b2 + b, T6(b) = b6 + 15b5 + 65b4 + 90b3 + 31b2 + b, and so on.

Remark 1.1. Note that when b = 1 in (1.2), the pmf of the Bell distribution intro-
duced by Castellares et al. [7] is obtained as a special case, while the BT(a, b) distribution
corresponds to the NTA(δ = bea, τ = a) distribution. So, the Bell–Touchard (BT) distribu-
tion is a reparameterization of the NTA distribution and, hence, in the whole paper the BT
distribution stands for this reparameterization of the NTA distribution.

It is worth emphasizing that the two-parameter BT discrete distribution, or equiva-
lently the NTA distribution, is very simple to deal with, since its pmf does not contain any
complicated function. Tractability of the pmf may be a great advantage in computing the
probabilities, as well as structural properties from that equation. The BT distribution has,
among many other interesting properties the following properties:

(i) it includes the one-parameter Bell distribution introduced by Castellares et al.

[7] as a special case, which is also a reparameterization of the well-known NTA
distribution;

(ii) the Poisson distribution is not nested in the BT family, but it can be approxi-
mated for small values of a specific parameter of the BT distribution;

(iii) it is a special case of a multiple Poisson process and can have a zero vertex;

(iv) it is infinitely divisible;

(v) it has variance larger than the mean;

(vi) it is strongly unimodal for b ≥ 1;

(vii) it has an arbitrary number of modes when b < 1.

For a detailed description of the NTA distribution, the reader could consult Castellares
et al. [8] and Johnson et al. [26, Chapter 9].

Based on the key features of the NTA distribution (or equivalently BT distribution),
it can be easily justified why this distribution is a natural candidate and plays an important
role in modeling count data with evidence of overdispersion and with high percentage of
zero values. This implies that it is crucial to test the goodness-of-fit (gof) of this discrete
distribution fitted to a given set of observations. A number of gof tests for count data are
based on the pgf and the empirical pgf (epgf). To mention a few, but not limited to, we
have the gof tests in Kocherlakota and Kocherlakota [29], Rueda et al. [46], Baringhaus and
Henze [2], Epps [13], Rueda and O’Reilly [45], Meintanis and Bassiakos [36], Meintanis [35],
Jiménez-Gamero and Alba-Fernandez [21], Batsidis et al. [3] and Milocevic et al. [37]. The
motivation of using methods based on the pgf instead of the corresponding pmf when dealing
with count data is, as argued by Nakamura and Perez-Abreu [38], that the pgf is usually
simpler than the corresponding pmf. This is the case of the pgf of the BT distribution;
compare expressions (1.2) and (1.3).
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In this paper, we propose and study a consistent gof test for the two-parameter BT
family of distributions; that is, based on Remark 1.1, it is equivalently to study a consistent
gof test for the NTA distribution. Initially, it is shown that the pgf of the BT distribution
is the only pgf satisfying a certain differential equation. Then, reasoning as Nakamura and
Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and Jiménez-Gamero [41] for
testing bivariate Poisson distribution, Jiménez-Gamero and Alba-Fernandez [21] for testing
Poisson–Tweedie distribution, and Batsidis et al. [3] for testing Bell distribution, the proposed
statistic is a function of the polynomial of an empirical version of the differential equation.
In particular, the gof test proposed here can be considered as a generalization of the one
in Batsidis et al. [3], since Bell distribution is a special case of the BT distribution. In
addition, it can also be thought as a complement to the gof test for the Poisson–Tweedie
distribution presented by Jiménez-Gamero and Alba-Fernandez [21], since NTA is a subset
of the Poisson–Tweedie family of distributions. Additionally, for the first time, we apply
some existing gof tests to the BT distribution and study their finite-sample properties from
Monte Carlo simulation experiments. In particular, the numerical results reveal that two of
the existing gof tests considered to the BT distribution present interesting results regarding
size and power properties.

The paper is organized as follows. Section 2 contains some preliminaries related to
existing gof tests. Section 3 introduces the test statistic and derives the asymptotic null
distribution of the test statistic (i.e., the test statistic distribution under the null hypothesis),
which depends on unknown quantities. To overcome this problem, it is shown that the
parametric bootstrap consistently estimates the null distribution of the test statistic. Section
4 is devoted to study, with Monte Carlo simulation experiments, the finite sample performance
of the proposed test and simultaneously to compare numerically the power of the new test
with other two pgf-based tests introduced by Rueda and O’Reilly [45] and Meintanis [35]; that
is, we also consider the pgf-based tests introduced by these authors to the BT distribution and
study their finite sample properties in such a case. Apart from the previous gof tests, which
are based on the pgf, the tests in Henze [19] and Klar [27], which are similar to that in Rueda
and O’Reilly [45] but based on the distribution function and on the integrated distribution
function, will also be considered in the comparison of the existing gof tests. Section 5 provides
the application of the gof tests to real data sets. Section 6 closes up the paper with some
concluding remarks. All technical proofs are deferred to Appendix.

Before ending this section we introduce some notation: all limits in this paper are
taken when n→∞, where n denotes the sample size; L−→ denotes convergence in distribu-
tion; P−→ denotes convergence in probability; a.s.−→ denotes the almost sure convergence; I(A)
denotes the indicator function of the set A; l2 denotes the separable Hilbert space l2 = {z =
(z0, z1, z2, ...), zk ∈ R,

∑
k≥0 z

2
k <∞} with the usual inner product 〈z, w〉2 =

∑
k≥0 zkwk, and

‖ · ‖2 stands for the associated norm; Eθ and Covθ denote expectation and covariance by as-
suming that the data come from a BT distribution with parameter vector θ = (a, b); P∗,
E∗ and Cov∗ denote the conditional probability law, the conditional expectation and the
conditional covariance, respectively, given the data X1, ..., Xn.
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2. PRELIMINARIES AND EXISTING GOODNESS-OF-FIT TESTS

Let X1, ..., Xn be n independent and identically distributed random observations from
a population X taking values in N0, with pgf g(t) = E(tX), |t| ≤ 1. Based on the sam-
ple X1, ..., Xn, the objective is to test the composite, in the sense that the parameter vec-
tor θ = (a, b) is unknown, null hypothesis H0 : X ∼ BT(θ), for some θ = (a, b) ∈ Θ against
the alternative hypothesis H1 : X � BT(θ), ∀ θ = (a, b) ∈ Θ. Obviously, based on Remark
1.1, the previous hypothesis is equivalent in testing the null hypothesis H0 : X ∼ NTA(δ, τ),
for some (δ, τ) ∈ (0,∞)× (0,∞), against the alternative hypothesis H1 : X � NTA(δ, τ),
∀ (δ, τ) ∈ (0,∞)× (0,∞).

It is well-known that the distribution of a random variable X taking values in N0 is
fully and uniquely determined by its pgf. Also, the pgf can be consistently estimated by the
epgf given by gn(t) = 1

n

∑n
i=1 t

Xi . It is worth stressing that Kocherlakota and Kocherlakota
[29] were the first authors who proposed to base a gof test on the so-called epgf process with
estimated parameter given by Kn(θ̂, t) =

√
n[gn(t)− g(t; θ̂)], for 0 ≤ t ≤ 1, where g(t; θ) is

the pgf under the law in the null hypothesis; that is, in our special case, g(t; θ) is given in
relation (1.3), and θ̂ = (â, b̂) is a consistent estimator of θ = (a, b).

Kocherlakota and Kocherlakota [29] exemplified their method with the Poisson-type
distributions and NTA distribution. However, their method has the disadvantage that it
depends on the choice of the value of t at which the pgf is evaluated. To overcome this
problem, Rueda et al. [46] suggested the use of the following Cramér-von Mises type test
statistic Rn,0(θ̂) =

∫ 1
0 Kn(θ̂, t)2dt = n

∫ 1
0 [gn(t)− g(t; θ̂)]2dt. In addition, Rueda and O’Reilly

[45] proposed a natural generalization of the Cramér-von Mises type test statistic by in-
troducing a suitable weight function in order to make the test more sensitive to selected
alternatives; see also Baringhaus et al. [1]. In this frame, they suggested the following
test statistic Rn,w(θ̂) = n

∫ 1
0 [gn(t)− g(t; θ̂)]2w(t)dt, where w(t) is a non-negative function

on (0, 1) such that
∫ 1
0 w(t)dt <∞. By straightforward algebra, we have that Rn,w(θ̂) =

1
n

∑n
j,k=1{ω(1, Xjk)− ω(g(t; θ̂), Xj)− ω(g(t; θ̂), Xk) + ω(g2(t; θ̂), 0)}, where Xjk = Xj +Xk,

and ω(f, d) =
∫ 1
0 t

df(t)w(t)dt. Note that Rn,w(θ̂) can be equivalently expressed in the form
Rn,w(θ̂) = n

∑∞
r,k=0{p(r; θ)− p̂(r)}{p(k; θ)− p̂(k)}

∫ 1
0 t

r+kw(t)dt, where p(k; θ) is given by
(1.2), and

(2.1) p̂(k) =
1
n

n∑
j=1

I(Xj = k), k = 0, 1, ....

Note that p̂(k) corresponds to the empirical pmf for a given dataset. Hence, one rejects the
null hypothesis H0 for large values of the test statistic Rn,w(θ̂).

After the pioneer work by Kocherlakota and Kocherlakota [29], a large number of gof
tests for specific discrete distributions have been developed based on test statistics that utilize
properties of the pgf of the law under the null hypothesis. In this context, Meintanis [35]
presented a unified approach in testing the fit to any distribution belonging to the compound
Poisson family of distributions. The compound Poisson family of distributions is defined
as the distribution of X =

∑N
j=1 Yj , where Yj (j = 1, ..., N) are independent and identically

distributed with a common pgf ψ(t; ξ), ξ ∈ Rp is a parameter vector, N ∼ Poisson(λ) is
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independent of Yj (j = 1, ..., N), and λ > 0. Meintanis [35] has noted that the pgf of any
member of the compound Poisson family, say ζ(t), satisfies the following differential equation

(2.2) ζ ′(t)− λψ′(t; ξ)ζ(t) = 0,

where ζ ′(t) = (d/dt)ζ(t) and ψ′(t; ξ) = (d/dt)ψ(t; ξ). Then, since the pgf and its derivatives
can be consistently estimated by the epgf and the derivatives of the epgf (see, for example,
Proposition 2 of Novoa-Muñoz and Jiménez-Gamero [40] for the uniform consistency of gn

and its derivatives), Meintanis [35] proposed the following test statistic

(2.3) Tn,w(λ̂, ξ̂) = n

∫ 1

0
[ζ ′n(t)− λ̂ψ′(t; ξ̂)ζn(t)]2w(t)dt,

where ζ ′n(t) = (d/dt)ζn(t), and ζn(t) denotes the epgf. Note that the test statistic defined in
(2.3) is an integral of the squared of an empirical counterpart of equation (2.2).

The general test statistic given in (2.3) can be exemplified in the special case of the
BT distribution with parameter vector θ = (a, b), once the proposition below justifies that
the BT distribution belongs to the compound Poisson family of distributions. This result can
be found in Feller [15] and in Castellares et al. [8].

Proposition 2.1. Let X ∼ BT(a, b), where a > 0 and b > 0. Then, we have that

X =
∑N

j=1 Yj , where Yj (j = 1, ..., N) are independent and identically zero-truncated Poisson

distributed random variables with parameter a > 0 and a common pgf ψ(t; a) = exp(at)−1
exp(a)−1 ,

and N ∼ Poisson(b(ea − 1)) independent of Yj (j = 1, ..., N).

In terms of the notation used by Meintanis [35], it is evident that the BT distribution
belongs to the compound Poisson family with λ = b(ea − 1), ψ(t; ξ) = exp(ξt)−1

exp(ξ)−1 , ψ′(t; ξ) =
ξ exp(ξt)
exp(ξ)−1 , and ξ = a. Therefore, based on the work of Meintanis [35], the pgf g(t; θ) of the BT
distribution defined in (1.3) satisfies the following differential equation

(2.4) g′(t)− baeatg(t) = 0, ∀ t ∈ [0, 1],

and so the null hypothesis H0 is rejected for large values of the following test statistic
Mn,w(θ̂) = n

∫ 1
0 Gn(t, θ̂)2w(t)dt, where Gn(t; θ) is the empirical version of (2.4) given by

(2.5) Gn(t; θ̂) = g′n(t)− b̂âebatgn(t),

with g′n(t) = (d/dt)gn(t). By straightforward algebra (see also Meintanis [35, p. 753]), we have
that Mn,w(θ̂) = 1

n

∑n
j,k=1{XjXkω(1, Xjk − 2) + (̂bâ)2ω(e2bat, Xjk) − b̂âXjkω(ebat, Xjk − 1)}.

Note thatMn,w(θ̂) can be equivalently expressed in the formMn,w(θ̂) =n
∑∞

r,k=0 d̂(r; θ̂)d̂(k; θ̂) ·∫ 1
0 t

r+kw(t)dt, where

d̂(k; θ) = (k + 1)p̂(k + 1)−
k∑

u=0

coef (u; θ)p̂(k − u), k = 0, 1, ...,(2.6)

and coef (u; θ) := coef (u; a, b) = bau+1

u! can be recursively calculated as follows: coef (0; a, b) =
ba, and coef (u; a, b) = coef (u− 1; a, b)a/u for u ≥ 1.
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Remark 2.1. The asymptotic null distributions of the test statistics Rn,w(θ̂) and
Mn,w(θ̂) are intractable (Rueda and O’Reilly [45] and Meintanis [35]) and, hence, the crit-
ical points required for the implementation of these test procedures can be determined via
parametric bootstrap. It should be mentioned that the application of both tests requires
the choice of a weight function. Specific choices of it, which are rather arbitrary, can lead to
considerable computational simplification. In this frame, the choice of w(t) = tγ , where γ ≥ 0
denotes a constant, corresponds to an interesting choice. This weight function, apart from
computational convenience, has the following interpretation: for large values of γ more weight
is assigned to the values of Kn(θ̂, t) and Gn(t; θ̂) near t = 1; hence, large values of γ should
render the test sensitive to deviations from the moments of the hypothesized distribution;
see, for instance, Gürtler and Henze [18].

Apart from the previous tests, which are based on the pgf, the tests in Henze [19]
and Klar [27] denoted as Hn and Wn, which are similar to that in Rueda and O’Reilly [45]
but they are based on the distribution function and on the integrated distribution function,
respectively, will be also particularized for the BT distribution and will be also considered in
the simulation studies of Section 4. Specifically, we consider the modified Cramér–von Mises
statistic in expression (3.6) of Henze [19] given by

(2.7) Hn =
X(n)∑
k=0

[Fn(k)− F (k; θ̂)]2[Fn(k)− Fn(k − 1)],

where X(n) = max1≤j≤nXj , Fn(x) stands for the empirical distribution function defined by
Fn(x) = n−1

∑n
j=1 I(Xj ≤ x), and F (x; θ) denotes the cumulative distribution function of the

BT distribution with parameter θ. In contrast to the Cramér–von Mises statistic in expression
(2.2) of Henze [19], whose practical calculation involves truncation, the calculation of Hn

involves a finite sum and hence was preferred (see also Jiménez-Gamero and Alba-Fernandez
[22]). Finally, following Henze [19], to perform the test based on Hn a parametric bootstrap is
used and the null hypothesis is rejected for a large observed value of the test statistic Hn. We
also consider the test statistic (see relation (1) in Klar [27]) Wn =

√
n supt≥0 |Yn(t)− Ŷ (t)|,

where Y (t) =
∫ +∞
t [1−F (x)]dx, Yn(t) denotes its empirical counterpart and Ŷ (t) equals Y (t)

with F (x) replaced by F (x; θ̂). In practice (see also Jiménez-Gamero and Alba-Fernandez
[22]), we consider the expression (8) in Klar [27] given by

Wn =
√
n sup

1≤k≤X(n)

∣∣∣∣∣∣X̄ − E
bθ
(X) +

k−1∑
j=0

[Fn(j)− F (j; θ̂)]

∣∣∣∣∣∣,
where X̄ denotes the sample mean. For instance, if the moment estimator is used then the
previous relation is simplified taking into account that E

bθ
(X) = X̄. On the other hand, if

the maximum likelihood (ML) estimator is used, then the relation is simplified taking into
account that E

bθ
(X) = b̂âeba, where â and b̂ are the ML estimates of a and b, respectively,

since E(X) = baea, when X ∼ BT(a, b). Following Klar [27], to perform the test based on
Wn a parametric bootstrap is used and hence the null hypothesis is rejected for a large value
of the associated test statistic.
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3. A NEW TEST STATISTIC

In this section, a new gof test statistic will be constructed based on the characterization
of the BT distribution provided below and parallel with the tests discussed by Nakamura and
Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and Jiménez-Gamero [41]
for testing bivariate Poisson, Jiménez-Gamero and Alba-Fernandez [21] for testing Poisson–
Tweedie, and Batsidis et al. [3] for testing Bell distribution. To be specific, the next proposi-
tion shows that the BT pgf is the unique solution of the differential equation given in (2.4).

Proposition 3.1. Let G = {g : [0, 1] → R, such that g is a pgf and g′(t) = (∂/∂t)g(t)
exists ∀ t ∈ [0, 1]}, which is equivalent to say that G is the set of probability generating

functions associated with random variables taking values in N0 with finite mean. Let g(t; θ)
be defined as in (1.3). Then, g(t; θ) is the only pgf in G satisfying the differential equation

given in (2.4).

Therefore, the BT pgf is the only pgf satisfying the differential equation (2.4). Also,
the pgf g(t) and its derivatives can be consistently estimated by the epgf and the derivatives
of the epgf. Under the null hypothesis H0, it then follows that the empirical version of (2.4)
denoted by Gn(t; θ̂) and given in (2.5) should be close to zero, ∀ t ∈ [0, 1], where θ̂ = (â, b̂)
is a consistent estimator of θ = (a, b). Additionally, Gn(t; θ̂) can be expressed in the form
Gn(t; θ̂) =

∑
k≥0 d̂(k; θ̂)t

k, where p̂(k) and d̂(k; θ̂) are defined in (2.1) and (2.6), respectively.
It implies that (under the null hypothesis) Sn(θ̂) =

∑
k≥0 d̂(k; θ̂)

2 ≈ 0. Note that Sn(θ̂) =
‖d̂(·; θ̂)‖2

2, where d̂(·; θ̂) = (d̂(0; θ̂), d̂(1; θ̂), ...), and d̂(k; θ̂) is given in (2.6). Also, d̂(k; θ) =
1
n

∑n
i=1 φ(Xi; k, θ), where

(3.1) φ(X; k, θ) = (k + 1)I(X = k + 1)− b
k∑

u=0

au+1

u!
I(X = k − u).

In this paper, we propose and study a new gof test for the BT family of distributions based
on the statistic Sn(θ̂). In order to give a solid justification of Sn(θ̂) as a test statistic for
testing H0, we derive its limit distribution in the next theorem.

Theorem 3.1. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0 with probability mass function p(k) = Pr(X = k),

k ∈ N0, so that E(X2) <∞. Assume that θ̂
a.s.(P )−→ θ, then Sn(θ̂)

a.s.(P )−→ η = ‖d(·; θ)‖2
2, where

d(·; θ) = (d(0; θ), d(1; θ), ...), and d(k; θ) = (k + 1)p(k + 1)− b
∑k

u=0
au+1

u! p(k − u), k ∈ N0.

It should be noted that η ≥ 0 and, from Proposition 3.1, η = 0 if and only if H0 is
true. Hence, the null hypothesis H0 should be rejected for large values of the test statistic
Sn(θ̂). Now, to determine what is a large value we have to obtain the distribution of the
test statistic Sn(θ̂) under the null hypothesis H0, or at least an approximation to it. With
this aim, we next derive its asymptotic null distribution. We will assume that the estimator
θ̂ = (â, b̂) satisfies the following regularity condition.

Assumption 1. Under H0, if θ = (a, b) ∈ Θ denotes the true parameter value, then√
n(θ̂−θ) = 1√

n

∑n
i=1 `(Xi; θ)+oP (1), with Eθ{`(Xi; θ)}= 0 and J(θ) = Eθ{`(Xi; θ)T `(Xi; θ)}

<∞.
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Assumption 1 implies that when the null hypothesis is true and θ denotes the true
parameter value, then

√
n(θ̂ − θ) is asymptotically normally distributed. This assumption is

not restrictive at all since it is fulfilled by commonly used estimators such as the the ML esti-
mator and the moment estimator (see White [51] and Jiménez-Gamero and Kim [24], among
others). In Appendix B, the form of the function ` is provided for the aforementioned estima-
tors under the BT family of distributions, and we show that the conditions of Assumption 1
really holds for them.

The next theorem gives the asymptotic null distribution of Sn(θ̂).

Theorem 3.2. Let X1, ..., Xn be independent and identically distributed from X ∼
BT(θ), where θ = (a, b) ∈ Θ. Suppose that θ̂ satisfies Assumption 1. Then, nSn(θ̂) L−→
‖S(θ)‖2

2, where {S(θ) = (S(0; θ), S(1; θ), ...)} is a centered Gaussian process in l2 with co-

variance kernel %(k, r) = Covθ{Y (X; k, θ), Y (X; r, θ)} for k ∈ N0 and r ∈ N0, Y (X; k, θ) =
φ(X; k, θ)+(µ1(k; θ), µ2(k; θ))`(X; θ)T , φ is defined in (3.1), µ1(k; θ) = Eθ{(∂/∂a)φ(X; k, θ)},
and µ2(k; θ) = Eθ{(∂/∂b)φ(X; k, θ)}.

Remark 3.1. If someone specifies the function ` for a specific estimator, then the
covariance kernel appeared in the statement of the previous theorem can be given explic-
itly since one has just to calculate an expectation. For the BT family of distributions,
when the moment estimators are used, we have proved in Appendix B that the function `

can be obtained in a closed, but rather complicated, form. On the other hand, when the
ML estimators are used, the function ` cannot be obtained in a closed form. For the previous
reasons, we did not provide the form of the covariance kernel %(k, r) for the aforementioned
estimators.

Note that the null distribution of ‖S(θ)‖2
2 is that of

∑
j≥1 λj χ

2
1j , where χ2

11, χ
2
12, ... are

independent χ2 variates with one degree of freedom, and the set {λj} are the positive eigen-
values of the linear operator f 7→ Cf on l2 associated with the kernel % given in Theorem 3.2;
that is, (Cf)(k) =

∑
r≥0 %(r, k)f(r). Since these eigenvalues depend on the unknown θ, it

is evident that the asymptotic null distribution of the test statistic nSn(θ̂) depends on the
unknown true value of the parameter vector θ = (a, b). However, even if θ was known or
replaced by an appropriate estimator θ̂, to determine the eigenvalues of an operator is a quite
hard problem and unfortunately we did not succeed in finding explicit expressions for such
eigenvalues. For similar problems and arguments see Novoa-Muñoz and Jiménez-Gamero
[41] and Jiménez-Gamero and Alba-Fernandez [22], among others. Based on the previous
remarks, it is concluded that the asymptotic null distribution of nSn(θ̂) given in Theorem 3.2
does not provide a useful approximation to its null distribution. Therefore, one should find
another way of approximating the null distribution of the test statistic nSn(θ̂).

A common approach is to consider a parametric bootstrap approach to estimate the null
distribution of ‖S(θ)‖2

2. In the sequel, the parametric bootstrap approach is defined. Given
the data X1, ..., Xn, let X∗

1 , ..., X∗
n be independent and identically distributed from X∗ ∼

BT(θ̂). Let S∗n(θ̂∗) be the bootstrap version of Sn(θ̂) obtained by replacing X1, ..., Xn and θ̂ =
θ̂(X1, ..., Xn) with X∗

1 , ..., X
∗
n and θ̂∗ = θ̂(X∗

1 , ..., X
∗
n), respectively, in the expression of Sn(θ̂).

Then, we approximate Pθ{Sn(θ̂) ≤ x} by means of its bootstrap version, i.e. P∗{S∗n(θ̂∗) ≤ x}.
In order to show that the parametric bootstrap consistently approximates the null distribution
of Sn(θ̂), we need the following assumption, which is a bit stronger than Assumption 1.
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Assumption 2. Assumption 1 holds, and the functions `(X; θ) and J(θ) satisfy:

(1) supϑ∈∆ Eϑ

{
‖`(X;ϑ)‖2I(‖`(X;ϑ)‖ > ε

√
n)

}
−→ 0, ∀ ε > 0, where ∆ ⊆ Θ is an open

neighborhood of θ;

(2) `(X;ϑ) and J(ϑ) are continuous as functions of ϑ at ϑ = θ.

Theorem 3.3. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈ Θ, and that

Assumption 2 holds. Then, supx∈R

∣∣∣P∗{S∗n(θ̂∗) ≤ x} − Pθ{Sn(θ̂) ≤ x}
∣∣∣ a.s.(P )−→ 0.

Theorem 3.3 holds whether H0 is true or not. It states that the conditional distribution
of S∗n(θ̂∗) and the distribution of Sn(θ̂) are close when the sample is drawn from a population
with BT(θ) distribution, θ = (a, b) being the limit of θ̂ = (â, b̂). In particular, if the null
hypothesis H0 is true, then Theorem 3.3 states that the conditional distribution of S∗n(θ̂∗) is
close to the null distribution of Sn(θ̂). Let α ∈ (0, 1). Hence, the test function

Ψ∗ =

{
1, if Sn(θ̂) ≥ s∗n,α,

0, otherwise,

or, equivalently, the test that rejects H0 when p∗ = P∗{S∗n(θ̂∗) ≥ Sobs} ≤ α, is asymptotically
correct in the sense that when H0 is true, limn→∞ Pθ(Ψ∗ = 1) = α, where s∗n,α = inf{x :
P∗(S∗n(θ̂∗) ≥ x) ≤ α} is the α upper percentile of the bootstrap distribution of Sn(θ̂), and
Sobs is the observed value of the test statistic obtained from a given dataset. An immediate
consequence of Theorem 3.1 and Theorem 3.3 is that the test Ψ∗ is consistent; that is, it is
able to detect any fixed alternative, in the sense that Pr(Ψ∗ = 1) → 1 whenever X � BT(θ),
for any θ ∈ Θ.

Remark 3.2. A parametric bootstrap estimator of the null distribution of nSn(θ̂) was
previously discussed. As observed before, the most important difficulty with the distribution
of ‖S(θ)‖2

2 is the determination of the positive eigenvalues λj which, however, can be con-
sistently (a.s.) approximated following Dehling and Mikosch [11]. In this context, another
solution is to approximate the null distribution of nSn(θ̂) through the conditional distribu-
tion, given X1, ..., Xn, of

∑
j≥1 λ̂j χ

2
1j , where χ2

11, χ
2
12, ... are independent χ2 variates with one

degree of freedom and λ̂j is a consistent estimator of the eigenvalue λj , by means of weighted
bootstrap in the sense of Burke [6] (see also, for instance, Kojadinovic and Yan [30] and
references therein). From a computational point of view, the weighted bootstrap is more
efficient than the parametric bootstrap. On the other hand, it has the disadvantage that one
needs to estimate the function ` (see, for instance, Jiménez-Gamero and Kim [24]). In this
paper, we rely on parametric bootstrap similar to the existing gof tests described in Section 2.

Before closing this section, we have to note that the bootstrap p-value of any of the
five tests, namely Sn(θ̂), Rn,w(θ̂), Mn,w(θ̂), Hn and Wn cannot be exactly computed. In the
sequel, let T denote any of the five test statistics and let Tobs stand for the observed value of
such statistic. Then, the bootstrap p-value can be approximated as follows:

1. Calculate the observed values of the gof test statistics for the available dataset
X1, ..., Xn, say Sobs(θ̂), Mobs(θ̂), Robs(θ̂), Hobs and Wobs;
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2. Generate B bootstrap samples X∗v
1 , ..., X∗v

n from X∗ ∼ BT(θ̂), for v = 1, ..., B;

3. Calculate the test statistics Sn(θ̂), Mn,w(θ̂), Rn,w(θ̂), Hn and Wn for each bootstrap
sample and denote them, respectively, by S∗v , M∗

v , R∗v, H
∗
v and W ∗

v for v = 1, ..., B;

4. Compute the p-values of the tests based on the statistics Sn(θ̂), Mn,w(θ̂), Rn,w(θ̂),
Hn and Wn by means, respectively, of the expressions

p̂S =
#{S∗v ≥ Sobs(θ̂)}

B
, p̂M =

#{M∗
v ≥Mobs(θ̂)}

B
, p̂R =

#{R∗v ≥ Robs(θ̂)}
B

,

p̂H =
#{H∗

v ≥ Hobs}
B

, p̂W =
#{W ∗

v ≥Wobs}
B

.

For a good discussion of bootstrap p-values, see Efron and Tibshirani [12, Chapter 16].

4. FINITE-SAMPLE SIZE AND POWER PROPERTIES

The properties studied in the previous section related to the test statistic Sn(θ̂) are
asymptotic, which means that they describe the behavior of the proposed test when the
sample size is large. In this section, we empirically investigate its performance in small and
moderate sample sizes through Monte Carlo simulation experiments. We also include in the
Monte Carlo studies the test statistics Rn,w(θ̂), Mn,w(θ̂), Hn andWn for comparison. We have
not considered the test statistic Kn(t; θ̂) in the Monte Carlo experiments since the question
on how to select t remains unsolved and its performance depends on different values of t.
It is worth stressing that the numerical results regarding the existing gof tests applied in the
BT distribution are new, and so it also represents an additional contribution of the current
paper in studying the performance of these specific existing gof tests for this two-parameter
discrete distribution. All computations were performed by using the R language [43]. In
all cases, 10,000 Monte Carlo replications were considered. Without loss of generality, we
consider a = 0.8 and 1.4, and b = 0.6, 1.2 and 1.8.

The computation of the test statistics Rn,w(θ̂) and Mn,w(θ̂) depend on the weight
function w(t). Here, we consider the weight function in the form w(t) = tγ , where t ∈ (0, 1)
and γ = 0, 1, 2, 5 and 10. It is interesting to note that γ = 0 corresponds to the probability
density function of the uniform distribution on (0, 1) as a weight function. The resulting
tests when w(t) = tγ is used as a weight function will be denoted by Rn,γ(θ̂) and Mn,γ(θ̂).
In particular, we have that

Rn,γ(θ̂) =
∞∑

r,k=0

{p(r; θ)− p̂(r)}{p(k; θ)− p̂(k)}
r + k + γ + 1

and

Mn,γ(θ̂) =
∞∑

r,k=0

d̂(r; θ̂)d̂(k; θ̂)
r + k + γ + 1

.

It should be emphasized that the test statistics Sn(θ̂), Rn,γ(θ̂) and Mn,γ(θ̂) are defined by
means of infinite sums and, hence, these sums have to be truncated at some finite value, sayM .
We have noted that M = 20 yields sufficiently precise values of these test statistics.
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Random variates from BT(θ) distribution were generated by following Proposition 9
and Remark 13 in Castellares et al. [8]. To estimate θ = (a, b), we considered the ML method.
Finally, we adopted the warp-speed method [16] for evaluating the proposed resampling
scheme to reduce the computational burden. On the basis of the warp-speed method, in-
stead of computing critical points for each Monte Carlo sample, one resample is generated
for each Monte Carlo sample and each test statistic, say T , is computed for that sample,
obtaining say T ∗. Then, the resampling critical values for T are computed from the empirical
distribution determined by the resampling repetitions of T ∗. It is worth mentioning that the
idea behind the warp-speed bootstrap method is that taking just one bootstrap draw for each
simulated sample is sufficient to provide a useful approximation to the statistic of interest.
Applying this insight to Monte Carlo evaluation of bootstrap-based tests yields evaluation
methods that work with B = 1 [16]. Because of the resulting dramatic computational savings,
Giacomini et al. [16] called their method as “Warp-Speed” Monte Carlo method.

4.1. Size properties

First, the type I error of the gof tests based on the statistics Rn,γ(θ̂), Mn,γ(θ̂), Hn, Wn

and Sn(θ̂) are investigated. We consider the sample sizes n = 50, 70, 90 and 150. The nominal
levels of the tests are α = 0.10 and 0.05. We report the null rejection rates of H0 : X ∼ BT(θ)
for all the tests at the 10% and 5% nominal significance levels; i.e. the percentage of times
that the corresponding statistics exceed the 10% and 5% upper points obtained from the
reference distribution generated by parametric bootstrap. These rates estimate the type I
error probability of the tests. The null rejection rates of the gof tests Rn,γ(θ̂) and Mn,γ(θ̂) are
listed in Table 1, while Table 2 lists the null rejection rates of the gof tests Sn(θ̂), Hn and Wn.

For γ = 0 (i.e., the weight function w(t) corresponds to the probability density function
of the uniform distribution on the unit interval), note that the gof tests based on the statistics
Rn,0(θ̂) and Mn,0(θ̂) have not a good performance, mainly for small sample sizes and when
the parameter a is less than 1 (a < 1). On the other hand, the performance of these gof tests
improves considerably as γ increases for a < 1. It is also evident that values of γ greater
than 5 have no effect on improving the performance of the gof tests based on the statistics
Rn,γ(θ̂) and Mn,γ(θ̂) in such a case; compare the null rejection rates of the tests for γ = 5 and
γ = 10 when a < 1. Hence, for a < 1, the weight function w(t) = tγ with γ = 5 seems to be
a good choice for the test statistics Rn,γ(θ̂) and Mn,γ(θ̂) in the BT discrete distribution. It is
interesting to note that the gof tests that use Rn,0(θ̂) and Mn,0(θ̂) as test statistics present
better results when a > 1. However, the performance of these gof tests deteriorates as γ
increases and when a > 1, and so the probability density function of the uniform distribution
on the unit interval as weight function in such a case seems to be a good choice for these test
statistics. In short, the numerical results in Table 1 reveals the difficulty of selecting the best
value of γ for the gof tests based on the test statistics Rn,γ(θ̂) and Mn,γ(θ̂).

From Table 2, note that the null rejection rates of the gof tests that use Hn and Wn

as test statistics are close to the significance levels considered. It is worth stressing that the
proposed gof test that uses Sn(θ̂) as test statistic also presents a good performance, mainly
for small sample sizes, when compared with the existing gof tests and, hence, can be an
interesting alternative to these gof tests.



On goodness-of-fit tests for the Neyman type A distribution 155

Table 1: Null rejection rates of the gof tests Rn,γ := Rn,γ(θ̂) and Mn,γ := Mn,γ(θ̂)
for some weight functions w(t).

a = 0.8 and b = 0.6
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .066 .077 .080 .082 .083 .066 .072 .078 .080 .082
70 .077 .087 .090 .092 .092 .081 .085 .088 .091 .092
90 .085 .092 .095 .094 .093 .078 .089 .093 .093 .093

150 .091 .097 .098 .098 .098 .090 .098 .098 .098 .097

0.05

50 .025 .031 .034 .038 .038 .025 .031 .034 .036 .037
70 .035 .040 .042 .045 .045 .035 .038 .042 .044 .044
90 .036 .039 .041 .042 .042 .035 .037 .040 .041 .041

150 .037 .040 .042 .042 .043 .041 .041 .043 .043 .043

a = 0.8 and b = 1.2
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .060 .063 .069 .078 .086 .078 .073 .074 .080 .087
70 .066 .075 .086 .089 .092 .083 .078 .084 .089 .093
90 .066 .075 .086 .095 .099 .085 .083 .088 .097 .101

150 .073 .078 .085 .090 .096 .086 .084 .086 .094 .096

0.05

50 .025 .027 .030 .036 .039 .033 .030 .033 .036 .038
70 .028 .034 .036 .042 .043 .038 .039 .040 .042 .043
90 .025 .031 .036 .041 .044 .038 .035 .039 .042 .045

150 .028 .035 .038 .040 .041 .040 .040 .042 .042 .041

a = 1.4 and b = 1.8
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .098 .086 .085 .071 .074 .088 .082 .080 .082 .085
70 .094 .091 .084 .073 .078 .089 .082 .078 .078 .081
90 .096 .093 .087 .078 .081 .091 .084 .079 .078 .079

150 .106 .100 .091 .080 .080 .098 .092 .088 .086 .090

0.05

50 .046 .041 .038 .035 .036 .042 .039 .036 .035 .035
70 .047 .046 .041 .040 .041 .043 .039 .038 .034 .035
90 .047 .045 .039 .035 .039 .041 .038 .037 .036 .037

150 .050 .049 .044 .036 .038 .049 .042 .041 .041 .043

Table 2: Null rejection rates of the gof tests Hn, Wn and Sn := Sn(θ̂).

a = 0.8 and b = 1.2 a = 0.8 and b = 1.2 a = 0.8 and b = 1.2
α n

Hn Wn Sn Hn Wn Sn Hn Wn Sn

0.10

50 .103 .098 .079 .101 .107 .083 .095 .099 .091
70 .095 .099 .084 .097 .099 .090 .101 .103 .086
90 .095 .099 .082 .110 .110 .087 .105 .111 .085

150 .101 .099 .089 .100 .098 .094 .098 .105 .090

0.05

50 .049 .045 .036 .051 .052 .040 .050 .050 .041
70 .047 .049 .037 .050 .050 .042 .050 .052 .041
90 .048 .045 .037 .054 .054 .040 .054 .057 .039

150 .047 .045 .043 .049 .048 .042 .048 .052 .045
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4.2. Power properties

Next, the power of the tests based on the statisticsRn,γ(θ̂),Mn,γ(θ̂),Sn(θ̂),Hn andWn are
investigated. To compute the powers of the tests, we carried out Monte Carlo simulation experi-
ments similar to that described above, however, the data were generated from perturbed BT
distributions, and from the geometric (Geo), binomial (Bin), discrete Weibull (dWei) and nega-
tivebinomial (NB)distributions.Weconsider twokinds of perturbations for theBTdistribution.

Table 3: Nonnull rejection rates of Rn,w(θ̂) andMn,w(θ̂) for some weight functions w(t): power.

n = 60 n = 80

Rn,0(bθ) Mn,0(bθ) Rn,0(bθ) Mn,0(bθ)Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.248 0.189 0.310 0.220 0.252 0.180 0.302 0.227
Alt2 0.842 0.787 0.861 0.812 0.885 0.847 0.900 0.867
Alt3 0.276 0.162 0.446 0.303 0.321 0.199 0.506 0.390
Alt4 0.947 0.931 0.970 0.952 0.971 0.959 0.988 0.976
Alt5 0.287 0.125 0.496 0.325 0.384 0.225 0.597 0.469
Alt6 0.870 0.798 0.936 0.880 0.924 0.867 0.972 0.943
Geo 0.680 0.551 0.658 0.521 0.779 0.713 0.764 0.689
Bin 0.785 0.780 0.800 0.784 0.802 0.789 0.825 0.806
dWei 0.952 0.922 0.961 0.935 0.969 0.955 0.974 0.962
NB 0.395 0.257 0.398 0.257 0.484 0.379 0.480 0.377

Rn,2(bθ) Mn,2(bθ) Rn,2(bθ) Mn,2(bθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.291 0.218 0.340 0.240 0.294 0.218 0.339 0.257
Alt2 0.878 0.810 0.900 0.835 0.927 0.879 0.945 0.903
Alt3 0.344 0.178 0.493 0.308 0.406 0.254 0.567 0.428
Alt4 0.945 0.926 0.964 0.939 0.969 0.955 0.982 0.969
Alt5 0.424 0.181 0.611 0.395 0.551 0.357 0.712 0.590
Alt6 0.863 0.770 0.915 0.842 0.918 0.859 0.950 0.921
Geo 0.719 0.581 0.727 0.590 0.811 0.741 0.818 0.750
Bin 0.788 0.784 0.794 0.785 0.802 0.793 0.814 0.798
dWei 0.998 0.998 0.065 0.955 0.974 0.966 0.988 0.988
NB 0.375 0.217 0.418 0.217 0.464 0.359 0.500 0.387

Rn,5(bθ) Mn,5(bθ) Rn,5(bθ) Mn,5(bθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.297 0.209 0.332 0.226 0.300 0.214 0.337 0.243
Alt2 0.881 0.803 0.897 0.821 0.933 0.876 0.946 0.894
Alt3 0.394 0.195 0.517 0.293 0.478 0.290 0.592 0.427
Alt4 0.929 0.907 0.943 0.914 0.954 0.937 0.963 0.947
Alt5 0.541 0.252 0.678 0.436 0.674 0.477 0.779 0.647
Alt6 0.892 0.783 0.932 0.839 0.944 0.883 0.966 0.931
Geo 0.725 0.585 0.739 0.600 0.816 0.741 0.822 0.752
Bin 0.779 0.775 0.781 0.775 0.792 0.782 0.797 0.784
dWei 0.999 0.998 0.998 0.998 0.999 0.981 0.999 0.994
NB 0.386 0.228 0.429 0.238 0.475 0.350 0.491 0.338

Let X1 ∼ BT(θ) and X2 be another random variable taking values on N0, not having a BT
distribution and independent of X1. Then, the random variables X1 +X2 and max{X1, X2}



On goodness-of-fit tests for the Neyman type A distribution 157

also take values on N0, but the corresponding distributions of these perturbed random vari-
ables do not belong to the BT family of distributions and, hence, they can be used as al-
ternatives. In the Monte Carlo simulations, we consider X2 as a discrete uniform random
variable taking values on {0, 1, ..., k}, for k = 2, 4 and 5, being denoted as dU2, dU4 and
dU5, respectively. Thus, we have the following alternative distributions: Alt1 = X1 + dU2,
Alt2 = max{X1, dU2}, Alt3 = X1 + dU4, Alt4 = max{X1, dU4}, Alt5 = X1 + dU5 and Alt6
= max{X1, dU5}.

Here, we consider w(t) = tγ with γ = 0, 2, 5, n = 60, 80, and a = 0.8 and b = 0.6. The
Monte Carlo simulation results regarding the power of the gof tests Rn,w(θ̂) and Mn,w(θ̂) are
listed in Table 3, and Table 4 lists the power results of the gof tests Sn(θ̂), Hn and Wn. From
Table 3, note that there is no great difference in powers when different weight functions are
considered. It is interesting to note that the test based on the proposed statistic Sn(θ̂) is the
most powerful among the gof tests in the great majority of the cases; compare Tables 3 and 4.
However, it is evident that no gof test provides the highest power against all alternatives;
that is, for some alternative distributions, the new gof test exhibits the highest power, but
for other ones, the existing gof tests yield greater power. In summary, there is no uniform
superiority of one gof test with respect to the others, as expected from the theoretical results
in [20]. As expected, as the sample size increases, the power of the tests increases. In short,
the numerical results of this section reveal that the proposed gof test on the basis of the new
statistic Sn(θ̂) can be an interesting alternative to the existing gof tests based on the test
statistics Rn,w(θ̂), Mn,w(θ̂), Hn and Wn. The main advantage of the test statistic Sn(θ̂) in
relation to the test statistics Rn,w(θ̂), Mn,w(θ̂) is that it is not necessary to consider a weight
function for its computation. On the other hand, we have to truncate an infinite sum in a
finite value to calculate the new test statistic.

Table 4: Nonnull rejection rates of Sn(θ̂), Hn and Wn: power.

Sn(bθ) Hn Wn
n Alternative

α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

60

Alt1 0.720 0.654 0.540 0.406 0.380 0.267
Alt2 0.982 0.973 0.985 0.967 0.948 0.871
Alt3 0.944 0.929 0.564 0.408 0.422 0.238
Alt4 0.999 0.999 0.992 0.998 0.981 0.932
Alt5 0.999 0.998 0.678 0.494 0.515 0.286
Alt6 0.999 0.999 0.999 0.983 0.939 0.880
Geo 0.919 0.826 0.557 0.426 0.648 0.512
Bin 0.830 0.736 0.794 0.735 0.790 0.767
dWei 0.928 0.907 0.997 0.952 0.999 0.999
NB 0.682 0.546 0.378 0.252 0.375 0.233

80

Alt1 0.783 0.648 0.571 0.462 0.372 0.306
Alt2 0.999 0.992 0.999 0.994 0.981 0.962
Alt3 0.969 0.919 0.648 0.475 0.478 0.352
Alt4 0.999 0.999 0.999 0.995 0.999 0.986
Alt5 0.999 0.992 0.758 0.610 0.606 0.445
Alt6 0.999 0.999 0.999 0.999 0.996 0.941
Geo 0.939 0.890 0.646 0.497 0.774 0.674
Bin 0.875 0.856 0.867 0.802 0.822 0.799
dWei 0.983 0.909 0.999 0.996 0.999 0.999
NB 0.734 0.596 0.440 0.303 0.458 0.345
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Finally, we compute the powers of the gof tests by considering moment estimators.
Castellares et al. [8] have provided the following moment estimators for a and b: ã = s2

X̄
− 1,

b̃ = X̄ exp(1−s2/X̄)
s2/X̄−1

, where X̄ and s2 are the sample mean and standard deviation. Castellares

et al. [8] proved that ã and b̃ are consistent estimators for a and b, respectively. The power
results when using these estimators are presented in Tables 5 and 6. Note that the powers
of the gof tests under the moment estimates are near the powers under the ML estimates.
However, the powers under the ML estimates are in general greater than the ones under the
moment estimates.

Table 5: Nonnull rejection rates of Rn,w(θ̃) and Mn,w(θ̃) for some weight functions w(t):
power under moment estimators.

n = 60 n = 80

Rn,0(eθ) Mn,0(eθ) Rn,0(eθ) Mn,0(eθ)Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.242 0.183 0.304 0.214 0.246 0.174 0.296 0.221
Alt2 0.811 0.756 0.830 0.781 0.854 0.816 0.869 0.836
Alt3 0.257 0.143 0.427 0.284 0.302 0.180 0.487 0.371
Alt4 0.909 0.893 0.932 0.914 0.933 0.921 0.950 0.938
Alt5 0.266 0.104 0.475 0.304 0.363 0.204 0.576 0.448
Alt6 0.822 0.750 0.888 0.832 0.876 0.819 0.924 0.895
Geo 0.672 0.543 0.650 0.513 0.771 0.705 0.756 0.681
Bin 0.745 0.740 0.760 0.744 0.762 0.749 0.785 0.766
dWei 0.948 0.918 0.957 0.931 0.965 0.951 0.970 0.958
NB 0.392 0.254 0.395 0.254 0.481 0.376 0.477 0.374

Rn,2(eθ) Mn,2(eθ) Rn,2(eθ) Mn,2(eθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.265 0.192 0.314 0.214 0.268 0.192 0.313 0.231
Alt2 0.831 0.763 0.853 0.788 0.880 0.832 0.898 0.856
Alt3 0.322 0.156 0.471 0.286 0.384 0.232 0.545 0.406
Alt4 0.912 0.893 0.931 0.906 0.936 0.922 0.949 0.936
Alt5 0.408 0.165 0.595 0.379 0.535 0.341 0.696 0.574
Alt6 0.859 0.766 0.911 0.838 0.914 0.855 0.946 0.917
Geo 0.693 0.555 0.701 0.564 0.785 0.715 0.792 0.724
Bin 0.743 0.739 0.749 0.740 0.757 0.748 0.769 0.753
dWei 0.978 0.961 0.983 0.970 0.984 0.975 0.988 0.982
NB 0.372 0.214 0.415 0.214 0.461 0.356 0.497 0.384

Rn,5(eθ) Mn,5(eθ) Rn,5(eθ) Mn,5(eθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.287 0.199 0.322 0.216 0.290 0.204 0.327 0.233
Alt2 0.843 0.765 0.859 0.783 0.895 0.838 0.908 0.856
Alt3 0.366 0.167 0.489 0.265 0.450 0.262 0.564 0.399
Alt4 0.914 0.892 0.928 0.899 0.939 0.922 0.948 0.932
Alt5 0.505 0.216 0.642 0.400 0.638 0.441 0.743 0.611
Alt6 0.879 0.770 0.919 0.826 0.931 0.870 0.953 0.918
Geo 0.708 0.568 0.722 0.583 0.799 0.724 0.805 0.735
Bin 0.743 0.739 0.745 0.739 0.756 0.746 0.761 0.748
dWei 0.989 0.979 0.992 0.984 0.991 0.986 0.994 0.990
NB 0.382 0.224 0.425 0.234 0.471 0.346 0.487 0.334
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Table 6: Nonnull rejection rates of Sn(θ̃), Hn and Wn: power under moment estimators.

Sn(eθ) Hn Wn
n Alternative

α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

60

Alt1 0.706 0.605 0.490 0.392 0.331 0.217
Alt2 0.961 0.941 0.967 0.946 0.916 0.853
Alt3 0.942 0.901 0.552 0.406 0.394 0.226
Alt4 0.997 0.994 0.981 0.969 0.954 0.921
Alt5 0.980 0.960 0.634 0.475 0.477 0.242
Alt6 0.998 0.996 0.977 0.953 0.922 0.836
Geo 0.898 0.822 0.551 0.405 0.644 0.506
Bin 0.794 0.700 0.769 0.699 0.754 0.742
dWei 0.917 0.862 0.956 0.941 0.990 0.982
NB 0.676 0.540 0.372 0.246 0.369 0.227

80

Alt1 0.733 0.634 0.522 0.412 0.358 0.257
Alt2 0.982 0.971 0.986 0.976 0.960 0.930
Alt3 0.957 0.917 0.620 0.463 0.476 0.324
Alt4 0.999 0.998 0.991 0.984 0.975 0.959
Alt5 0.987 0.973 0.720 0.566 0.587 0.407
Alt6 0.999 0.999 0.991 0.978 0.966 0.924
Geo 0.933 0.869 0.642 0.491 0.753 0.670
Bin 0.850 0.820 0.831 0.777 0.786 0.763
dWei 0.942 0.898 0.967 0.955 0.992 0.988
NB 0.730 0.592 0.436 0.299 0.454 0.341

5. REAL DATA ILLUSTRATIONS

In this section, we apply the gof tests based on the test statistics Rn,w(θ̂), Mn,w(θ̂),
Sn(θ̂), Hn and Wn in some real datasets for the sake of illustration. We consider the weight
function w(t) = tγ with γ = 5 to compute the test statistics Rn,w(θ̂) and Mn,w(θ̂). All com-
putations were done using the R language [43]. The code used in the real data applications
can be obtained from the authors upon request. The datasets we consider correspond to the
number of chromatid aberrations in 24 hours [9, 10], the number of absences of workers in
a particular division of a large steel corporation in an observational period of six months
[47], the number of claims of automobile liability policies [28, pp. 244], and the number of
hemocytometer yeast cell on European red mites on apple leaves [44]. Descriptive measures
for these datasets are listed in Table 7.

Table 7: Descriptive measures.

Chromatid Absence Claims Cell

n 400 318 298 80
Mean (x̄) 0.55 0.67 1.71 1.15
Variance (s2) 1.13 1.53 3.67 2.10
Skewness 3.12 2.19 1.72 1.27
Kurtosis 15.68 7.72 6.90 3.96
CV 1.94 1.85 1.12 1.26
ID 2.05 2.29 2.15 1.83

CV: Coefficient of variation (= s/x̄);

ID: Index of dispersion (= s2/x̄).
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The ML estimates of the BT distribution parameters, asymptotic standard errors (SE),
and the 90% confidence intervals (CI) for the model parameters for each dataset are presented
in Table 8. Table 9 lists the bootstrap p-values (with B = 5000) of the gof tests on the basis of
the test statistics Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn for testing gof to the BT distribution.
It can be noted that the five gof tests agree that the two-parameter BT discrete distribution
is not adequate for fitting the chromatid dataset, once the bootstrap p-value for all tests are
< 0.01. In addition, the five gof tests agree that the BT distribution is adequate for fitting the
absence data, claims data, and cell data; that is, the five tests agree that the null hypothesis
cannot be rejected at any usual significance levels.

Table 8: ML estimates.

Chromatid aberrations
Parameter

ML estimate SE 90% CI

a 0.6453 0.1112 (0.4630; 0.8277)
b 0.4450 0.1201 (0.2480; 0.6420)

Absence proneness
Parameter

ML estimate SE 90% CI

a 1.2320 0.1589 (0.9714; 1.4926)
b 0.1586 0.0427 (0.0886; 0.2286)

Claims of automobile
Parameter

ML estimate SE 90% CI

a 0.9795 0.1342 (0.7594; 1.1995)
b 0.6548 0.1728 (0.3714; 0.9382)

Yeast cell
Parameter

ML estimate SE 90% CI

a 0.9340 0.2684 (0.4938; 1.3741)
b 0.4839 0.2596 (0.0582; 0.9096)

Table 9: Bootstrap p-values; B = 5000.

Dataset Rn,w(bθ) Mn,w(bθ) Sn(bθ) Hn Wn

Chromatid aberrations < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Absence proneness 0.5220 0.5290 0.1632 0.5540 0.3915
Claims of automobile 0.4614 0.3822 0.3050 0.5935 0.6100
Yeast cell 0.6804 0.6716 0.8694 0.7825 0.6355

A referee reminds us that the dataset regarding the absences of workers [47] was orig-
inally fitted with the Negative Binomial (NB) distribution. From Table 9, it is evident that
the BT distribution (i.e., the NTA distribution) is not rejected by any of the gof tests, and
so an interesting question is: which distribution fits better this dataset, BT or NB? The pmf
of the two-parameter NB distribution, specified in terms of its mean, µ say, is given by

Pr(Y = y) =
(

ϕ

ϕ+ µ

)ϕ(
µ

ϕ+ µ

)y Γ(y + ϕ)
Γ(ϕ)Γ(y + 1)

, y = 0, 1, 2, ...,
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where Γ(·) is the gamma function, and µ > 0 and ϕ > 0. It can be shown that the variance can
be written as µ+µ2/ϕ and hence the parameter ϕ is referred to as the“dispersion parameter”.
The ML estimates of µ and ϕ are (asymptotic SE between parentheses): µ̂ = 0.6698(0.0754)
and ϕ̂ = 0.3951(0.0752). The maximized log-likelihood function for the NB distribution is
−347.95, and so the AIC is given by 699.89. The maximized log-likelihood function for the
BT distribution is given by −345.60, which results in an AIC value of 695.20. On the basis
of the AIC values, it seems that the two-parameter BT distribution fits better the absences
of workers’ data than the two-parameter NB distribution and, hence, should be preferred.

Finally, it is well-known that the NTA distribution is traditionally fitted to datasets
from ecology, entomology, etc. For example, McGuire et al. [34] studied the distribution of
larval populations of the European corn borer, Pyrausta nubilalis (Hbni.). A total of n = 3205
corn plants growing in an area located in Northwest Iowa were dissected and, hence, the data
correspond to the number of borers per plant dissected; see Table 1 in McGuire et al. [34,
p. 74]. The ML estimates of the BT distribution parameters are (asymptotic SE between
parentheses): â = 0.2756(0.0325) and b̂ = 7.1346(1.0695). The bootstrap p-values (with B =
5000) of the gof tests on the basis of the test statistics Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn

for testing gof to the BT distribution are given, respectively, by 0.082, 0.098, 0.005, 0.034 and
0.056. Note that the gof tests deliver small p-values, which indicates that the two-parameter
BT discrete distribution (i.e., the NTA distribution) seems not adequate for fitting these
data. In short, this empirical application illustrates that the NTA distribution, which is quite
common in ecology and entomology, should be used with some caution in these areas, since
for some cases, as evidenced by the gof tests, it cannot be adequate to fit such datasets. This
indeed reveals the importance of gof tests to the BT distribution (i.e., the NTA distribution).

6. CONCLUSIONS

In this paper, a new gof test for the Neyman type A distribution was introduced, which
is based on the interesting property that its pgf is the unique pgf satisfying a certain differ-
ential equation. The new gof test statistic is a function of the coefficients of the polynomial
of the resulting equation when one replaces the pgf with the empirical pgf in the aforemen-
tioned differential equation. Also, other four related gof test statistics already introduced in
the statistical literature were particularized for the two-parameter Bell–Touchard distribu-
tion for the first time, and studied by means of Monte Carlo simulations. We have that these
five tests (the four already proposed and the new one) are consistent against fixed alterna-
tive hypotheses. Also, the practical computation of p-values of these tests requires a para-
metric bootstrap approximation to the null distribution of the corresponding test statistics.
We consider Monte Carlo simulation experiments to verify the performance of the gof tests
in finite samples. The Monte Carlo simulation results indicate that the null rejection rates
of the five tests are, in general, close to the nominal levels. In addition, the numerical results
regarding the power of the tests reveals that no test provides the highest power against all
alternatives considered: for some alternatives the new test exhibits the highest power, but for
other ones the competing tests yield greater power. In short, there is no uniform superiority of
one test with respect to the others. Finally, it is worth emphasizing that the new test statistic
Sn(θ̂) has no need of choosing a weight function for its computation, unlike the test statis-
tics Rn,w(θ̂) and Mn,w(θ̂), which can be a great advantage in practice. On the other hand,
we have to truncate an infinite sum in a finite value to calculate the new test statistic.
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A. APPENDIX: Proofs

Here we prove the results provided in the previous sections.

Proof of Proposition 3.1: It can be checked that the pgf ofX ∼ BT(θ) given in (1.3)
satisfies the differential equation given in (2.4). Obviously, this part of the proof can also be
obtained by the result given by Meintanis [35] since the BT(θ) distribution belongs to the
compound Poisson family of distributions. Next, we proof that it is the only pgf inG satisfying
such differential equation. It is well-known that the solution of the linear differential equation
of order one of the form y′+p(t)y = 0, where y = y(t), y′ = (∂/∂t)y(t) and p(t) is a continuous
function in t, is given by y = C exp(−

∫
p(t)dt), where C is an arbitrary constant. Since the

differential equation (2.4) is of this form, we have that g(t) = C exp(
∫
abea tdt) = C exp(bea t).

Taking into account that g is a pgf, it must satisfy g(1) = 1, implying that C = exp(−bea)
and, hence, the desired result is obtained.

Let φ(x; θ) = (φ(x; 0, θ), φ(x; 1, θ), ...), and fr(a, b) = br
∑

u≥0(u+ r)au

u! = br(a+ r)ea.
We have the following lemmas.

Lemma A.1. Let X1, ..., Xn be independent and identically distributed from X, a

random variable taking values in N0 with probability mass function p(k) = Pr(X = k), k ∈ N0,

so that E(X2) <∞. Then, E(‖φ(X; θ)‖2
2) ≤ E(X2) + b2f2

0 (a, b) <∞, ∀ θ = (a, b) ∈ Θ.

Proof: By definition,

‖φ(X; θ)‖2
2 =

∑
k≥0

(k + 1)2I(X = k + 1) +
∑
k≥0

k∑
u=0

b2a2u+2

(u!)2
I(X = k − u),

and, thus, E(‖φ(X; θ)‖2
2) = E(X2) +

∑
k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u). To show the finiteness of

E(‖φ(X; θ)‖2
2), we must prove that

∑
k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u) <∞. The rest of the proof

is parallel with the one in Lemma 1 of Batsidis et al. [3] and for this reason is omitted.

Let ∂
∂θi
d̂(·; θ) =

(
∂

∂θi
d̂(0; θ), ∂

∂θi
d̂(1; θ), ...

)
, where i = 1, 2, and so θ1 := a and θ2 := b.

Lemma A.2. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. Then, ∀ θ = (a, b) ∈ Θ, we have that:

(I)

∥∥∥∥ ∂

∂θ1
d̂(·; θ)

∥∥∥∥2

2

6 b2(a+ 1)2e2a = f2
1 (a, b) <∞,∥∥∥∥ ∂

∂θ2
d̂(·; θ)

∥∥∥∥2

2

6 a2e2a = f2
0 (a, b) <∞;

(II)

∥∥∥∥E{
∂

∂θi
d̂(·; θ)

}∥∥∥∥2

2

<∞, i = 1, 2.
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Proof: (I) We have that

(A.1)
∂

∂a
d̂(k; θ) = −b

k∑
u=0

(u+ 1)au

u!
p̂(k − u).

Therefore, ∥∥∥∥ ∂

∂a
d̂(·; θ)

∥∥∥∥2

2

= b2
∑

u,v>0

(u+ 1)au

u!
(v + 1)av

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (b(a+ 1)ea)2 = f2
1 (a, b) <∞,

once
∑

k>max{u,v} p̂(k − u)p̂(k − v) 6
∑

k>0 p̂(k) = 1 and
∑

l>0(l + 1)al

l! = (a + 1)ea.
Furthermore, we have that

(A.2)
∂

∂b
d̂(k; θ) = −

k∑
u=0

au+1

u!
p̂(k − u).

Therefore, ∥∥∥∥ ∂∂bd̂(·; θ)
∥∥∥∥2

2

=
∑

u,v>0

au+1

u!
av+1

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (aea)2 = f2
0 (a, b) <∞.

(II) The result follows from part (I) by replacing p̂(k − u) and p̂(k − v) with p(k − u)
and p(k − v), respectively.

Lemma A.3. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. For each k ∈ N0, let θl = (al, bl) so that θl = γlθ +
(1− γl)θ̂, for some γl ∈ [0, 1]. Then,

∑
k≥0

{
∂

∂θi
d̂(k; θ)− ∂

∂θi
d̂(k; θl)

}2
a.s.(P )−→ 0, i = 1, 2.

Proof: From relation (A.1), and after some algebra, we have that

∆1 =
∑
k≥0

{
∂

∂a
d̂(k; θ)− ∂

∂a
d̂(k; θl)

}2

=
∑

u,v>0

u+ 1
u!

(blau
l − bau)

v + 1
v!

(blav
l − bav)M1(u, v),

with 0 ≤M1(u, v) =
∑

k≥max{u,v} p̂(k− u)p̂(k− v) ≤ 1. By applying the mean value theorem,

we have that blau
l = bau +ub̃uã

u−1
u (ãu−a)+ ãu

u(̃bu− b), ∀u ≥ 1, where θ̃u = (ãu, b̃u) with θ̃u =
γuθl + (1− γu)θ, for some γu ∈ (0, 1). Therefore, ãu − a = γu(al − a) and b̃u − b = γu(bl − a).
Taking into further consideration that au ≤ max{al, a} ≤ max{â, a} := ã, bu ≤ max{bl, b} ≤
max{b̂, b} := b̃, we have that | blau

l − bau | ≤ ub̃ãu−1 | al− a | + ãu | bl− b | ≤ ub̃ãu−1 | â− a | +
ãu | b̂− b | , ∀u ≥ 1. Similarly, we have that | blav

l − bav | ≤ vb̃ãv−1 | â−a | + ãv | b̂− b | , ∀v ≥ 1.
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From the above considerations we have that |∆1 | ≤ (â−a)2(̃b(ã+2)eea)2 +2 | â−a | | b̂− b | ·
b̃(ã+ 1)eea(ã+ 2)eea + (̂b− b)2((ã+ 1)eea)2. Taking into account that in the right-hand side
of the above expression all the functions are continuous functions of θ, it follows that

(â−a)2(̃b(ã+2)eea)2
a.s.(P )−→ (a−a)2(b(a+ 2)ea)2 = 0, | â−a | | b̂− b | b̃(ã+1)eea(ã+2)eea

a.s.(P )−→
| a−a | | b−b | b(a+1)ea(a+2)ea = 0, (̂b−b)2((ã+1)eea)2

a.s.(P )−→ (b−b)2((a+ 1)ea)2 = 0. Thus,

∆1
a.s.(P )−→ 0.

From relation (A.2), and after some algebra, we have that

∆2 =
∑
k≥0

{
∂

∂b
d̂(k; θ)− ∂

∂b
d̂(k; θl)

}2

=
∑

u,v>0

1
u!

(au+1
l − au+1)

1
v!

(av+1
l − av+1)M1(u, v).

By applying the mean value theorem as done when studying ∆1 and following similar steps,

we get |∆2| ≤ (â− a)2((ã+ 1)eea)2. Then, it follows that (â− a)2((ã+ 1)eea)2
a.s.(P )−→ (a− a)2 ·

((a+ 1)ea)2 = 0, and, hence, ∆2
a.s.(P )−→ 0.

Lemma A.4. Let X1, ..., Xn be independent and identically distributed from X, a

random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈ Θ. Given the data,

let X∗
1 , ..., X

∗
n be independent and identically distributed from X∗ ∼ BT (θ̂). Let d̂∗(k; θ)

be defined as d̂(k; θ) with p̂(k) replaced with p̂∗(k) = 1
n

∑n
j=1 I(X

∗
j = k), k ≥ 0. Then, for

i = 1, 2,

(I)
∑
k≥0

[
∂

∂θi
d̂∗(k; θ̂)− µi(k; θ̂)

]2
P∗−→ 0, a.s.(P),

(II)
∑
k≥0

[
µi(k; θ)− µi(k; θ̂)

]2
→ 0, a.s.(P).

Proof: (I) We have that

∑
k≥0

[
∂

∂a
d̂∗(k; θ̂)− µ1(k; θ̂)

]2

=
∑
k≥0

{
−b̂

k∑
v=0

(v + 1)
av

v!

[
p̂∗(k − v)− p(k − v; θ̂)

]}2

= b̂2
∑

u,v≥0

(u+ 1)
âu

u!
(v + 1)

âv

v!

∑
k≥max{u,v}

{
p̂∗(k − v)− p(k − v; θ̂)

}{
p̂∗(k − u)− p(k − u; θ̂)

}
≤

[
b̂(â+ 1)eba

]2 ∑
k≥0

{
p̂∗(k)− p(k; θ̂)

}2
.

Since [̂b(â+ 1)eba]2 is a continuous function of θ̂ = (â, b̂), we have that b̂(â+ 1)eba]2
a.s.(P )−→

[b(a+ 1)ea]2 <∞, ∀ θ ∈ Θ. We also have that (see proof of Lemma 4 in Batsidis et al. [3])∑
k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, and it follows that

∑
k≥0

[
∂

∂θ1
d̂∗(k; θ̂)− µ1(k; θ̂)

]2
P∗−→ 0, a.s.(P ).
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Also, we have that

∑
k≥0

[
∂

∂b
d̂∗(k; θ̂)− µ2(k; θ̂)

]2

=
∑
k≥0

{
k∑

v=0

av+1

v!
[p̂∗(k − v)− p(k − v; θ̂)]

}2

=
∑

u,v≥0

âu+1

u!
âv+1

v!

∑
k≥max{u,v}

{p̂∗(k − v)− p(k − v; θ̂)}{p̂∗(k − u)− p(k − u; θ̂)}

≤
(
âeba

)2 ∑
k≥0

{p̂∗(k)− p(k; θ̂)}2.

Using similar arguments as above, we have (âeba)2
a.s.(P )−→ (aea)2 <∞, ∀ θ ∈ Θ. Then, taking

into account that
∑

k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, we obtain

∑
k≥0

[
∂

∂θ2
d̂∗(k; θ̂)− µ2(k; θ̂)

]2
P∗−→ 0, a.s.(P ).

(II) We have that
∑

k≥0[µ1(k; θ)− µ1(k; θ̂)]2 = ∆11 + 2∆12 + ∆13, where

∆11 =
∑
k≥0

k∑
u,v=0

(u+ 1)
b̂âu

u!
(v + 1)

b̂âv

v!
{p(k − u; θ̂)− p(k − u; θ)}{p(k − v; θ̂)− p(k − v; θ)},

∆12 =
∑
k≥0

k∑
u,v=0

(u+ 1)
b̂âu

u!
v + 1
v!

{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){b̂âv − bav},

∆13 =
∑
k≥0

k∑
u,v=0

u+ 1
u!

v + 1
v!

p(k − u; θ)p(k − v; θ){b̂âu − bau}{b̂âv − bav}.

It follows that
∆11 ≤ (̂b(â+ 1)eba)2

∑
k≥0

{p(k; θ̂)− p(k; θ)}2.

Since (̂b(â+ 1)eba)2
a.s.(P )−→ (b(a+ 1)ea)2, it suffices to show that∑

k≥0

{p(k; θ̂)− p(k; θ)}2 a.s.(P )−→ 0,

then, ∆11
a.s.(P )−→ 0. Taking into account that∑

k≥0

{p(k; θ̂)− p(k; θ)}2 ≤
∑
k≥0

k2{p(k; θ̂)− p(k; θ)}2,

and that Eθ(X2) = (baea)2 + baea(1 + a), ∀θ ∈ Θ, the rest of the proof is parallel with the
proof of Lemma 4 II given in Jiménez-Gamero and Alba-Fernandez [21] and, hence, it is
omitted.

We now deal with ∆12. After some algebra and by applying the mean value theorem
as in the proof of Lemma A.2, we have that |∆12| ≤ b̂(â+ 1)ebab̃(â− a)(ã+ 2)eea + b̂(â+ 1)eba ·
(̂b− b)(ã+ 1)eea. Thus, ∆12

a.s.(P )−→ 0.
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Related to |∆13|, note that after some algebra and following similar arguments as above,
we have that

|∆13| ≤
∑
u≥1

u+ 1
u!

{ub̃ãu−1|â− a|+ ãu |̂b− b|}

×
∑
v≥1

v + 1
v!

{vb̃ãv−1|â− a|+ ãv |̂b− b|},

or

|∆13| ≤ (â− a)2b̃
∑

u,v≥1

u+ 1
u!

uvãu−1ãv−1

+ (̂b− b)2
∑

u,v≥1

u+ 1
u!

ãuãv

+ 2|â− a||̂b− b|̃b
∑

u,v≥1

u+ 1
u!

uãu−1ãv.

Also, we have that
∑

k≥0[µ2(k; θ)− µ2(k; θ̂)]2 = ∆21 + 2∆22 + ∆23, where

∆21 =
∑
k≥0

k∑
u,v=0

âu+1

u!
âv+1

v!
{p(k − u; θ̂)− p(k − u; θ)}{p(k − v; θ̂)− p(k − v; θ)},

∆22 =
∑
k≥0

k∑
u,v=0

âu+1

u!
1
v!
{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){âv+1 − av+1},

∆23 =
∑
k≥0

k∑
u,v=0

1
u!

1
v!
p(k − u; θ)p(k − v; θ){âu+1 − au+1}{âv+1 − av+1}.

Similarly, ∆21≤ (âeba)2
∑

k≥0{p(k; θ̂)−p(k; θ)}2. Since (âeba)2
a.s.(P )−→ (aea)2 and

∑
k≥0{p(k; θ̂)−

p(k; θ)}2 a.s.(P )−→ 0, we have that ∆21
a.s.(P )−→ 0. Also,

|∆22 | ≤ | â− a |
∑
u≥0

âu+1

u!

∑
v≥0

v + 1
v!

ãv

= | â− a | âeba(ã+ 1)eea.

Since | â− a | âeba(ã+ 1)eea
a.s.(P )−→ 0, it follows that ∆22

a.s.(P )−→ 0.

Finally, it holds that

|∆23 | ≤
∑

u,v≥0

âu+1 − au+1

u!
âv+1 − av+1

u!

≤ (â− a)2
(
ã+ 1)eea

)2
,

and since (â− a)2
(
ã+ 1)eea

)2 a.s.(P )−→ 0, it follows that ∆23
a.s.(P )−→ 0.
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Proof of Theorem 3.1: By applying the mean value theorem, we get, for each k ∈N0,
that

(A.3) d̂(k; θ̂) = d̂(k; θ) +
{
∂

∂θ
d̂(k; θ)

}
(θ̂ − θ)T +

{
∂

∂θ
d̂(k; θl)−

∂

∂θ
d̂(k; θ)

}
(θ̂ − θ)T ,

with θl = γlθ+(1−γl)θ̂, for some γl ∈ (0, 1). From Lemma A.1, E(‖φ(X; θ)‖2
2) <∞ and thus

by the strong law of large number (SLLN) in Hilbert spaces and the continuous mapping
theorem, it follows that

(A.4) ‖d̂(k; θ)‖2
2

a.s.−→ ‖E{φ(X; θ)}‖2
2 = η <∞.

Finally, the result follows from (A.3), (A.4) and Lemmas A.2 and A.3.

Proof of Theorem 3.2: From expansion (A.3), Assumption 1 and Lemmas A.2 and
A.3, it follows that

(A.5)
√
nd̂(·; θ̂) =

√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T + r1,

with ‖r1‖2 = oP (1). Now, by applying the SLLN in Hilbert spaces and Assumption 1, we get

(A.6)
√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T =

1√
n

n∑
i=1

Y (Xi; ·, θ) + r2,

with ‖r2‖2 = oP (1). By the central limit theorem in Hilbert spaces,

(A.7)
1√
n

n∑
i=1

Y (Xi; ·, θ)
L−→ S(θ),

where Y (X; ·, θ) = (Y (X; 0, θ), Y (X; 1, θ), ...). The result follows from (A.5)–(A.7) and the
continuous mapping theorem.

Proof of Theorem 3.3: Proceeding as in the proof of Theorem 3.2, we have that

√
nd̂∗(·; θ̂∗) =

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T + r∗1,

with ‖r∗1‖2 = oP∗(1) a.s.(P ). Let Y ∗n = 1√
n

∑n
i=1 Y (X∗

i ; ·, θ̂). By applying Lemma A.4 and
Assumption 2, we get

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T = Y ∗n + r∗2,

with ‖r∗2‖2 = oP∗(1) a.s.(P ). To prove the result we derive the asymptotic distribution of Y ∗n ,
showing that it coincides with the asymptotic distribution of Sn(θ̂) when the data come from
X ∼ BT(θ). With this aim, we apply Theorem 1.1 in Kundu et al. [31]. So, we will show
that conditions (i)–(iii) in that theorem hold. This can be done in a similar way with the
proof of Theorem 3 in Jiménez-Gamero and Alba-Fernandez [21].
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B. APPENDIX: Function `

Here, the form of the function `, appeared in Assumption 1, associated with the
ML estimators, and the moment estimators are provided. Moreover, it is proved that the
conditions given in Assumption 1 really hold for the aforementioned estimators. For details
about the existence of the ML estimators, and ways of computing them in practice, we refer
to Section 4.2 in Castellares et al. [8].

In this context, when the ML estimators of the BT distribution are used, particularized
for this special distribution the general relation given in the the proof of Theorem 3.2 in
White [51] (see also Jiménez-Gamero and Kim [24]), the ` function is given by `(x; θ) =
−A(θ)−1∇ log f(x; θ), with

A(θ) = −
(
ba−1(1 + a)ea ea

ea Kbb

)
,

where Kbb cannot be obtained in closed-form and is provided in Castellares et al. [8, p. 4846],
and ∇ log f(x; θ) =

(
−be−a + x

a , (1− ea) + ∂
∂b log Tx(b)

)T
. Note that −A(θ) = K(θ) is the

unit (per observation) expected Fisher information matrix. Despite the fact that K(θ) cannot
be obtained in closed-form, we have from Castellares et al. [8, p. 4846] that Kbb ≤ eab−1 and
det(K(θ)) <∞. This implies that the inverse of this matrix exists. Furthermore, we have
from Castellares et al. [8] that Eθ( ∂

∂θ1
log f(x; θ)) = 0 and Eθ( ∂

∂θ2
log f(x; θ)) = 0. Therefore,

the relation Eθ{`(Xi; θ)} = 0 is fulfilled when the ML estimator is used. Finally, we have
that J(θ) = Eθ{`(Xi; θ)T `(Xi; θ)} = tr((K(θ))−1K(θ)−1Σ1) = tr(K(θ)−1) <∞, where tr(A)
denotes the trace of the matrix A, and Σ1 = Covθ(∇ log f(X; θ)) = K(θ).

Now, we consider the moment estimators of the BT distribution parameters to find
the expression ` and to confirm that the conditions given in Assumption 1 are satisfied.
Initially, note that from Remark 12 in Castellares et al. [8], we have after some algebra that
(a, b)T = (g1(µ1, µ2), g2(µ1, µ2))T , where

g1(µ1, µ2) =
µ2 − (µ1)2

µ1
− 1, g2(µ1, µ2) =

µ1 exp(1− µ2−µ2
1

µ1
)

µ2−(µ1)2

µ1
− 1

,

with µk = E(Xk), given in Remark 12 by Castellares et al. [8]. Therefore, since g = (g1, g2)T

is continuously differential at (µ1, µ2)T and E(||X||4) <∞, we have that (see for instance
Jiménez-Gamero and Kim [24]) `(x; θ) = (`1(x; θ), `2(x; θ))T , and

`1(x; θ) =
(

∂

∂µ1
g1(µ1, µ2),

∂

∂µ2
g1(µ1, µ2)

)
(x− µ1, x

2 − µ2)T ,

`2(x; θ) =
(

∂

∂µ1
g2(µ1, µ2),

∂

∂µ2
g2(µ1, µ2)

)
(x− µ1, x

2 − µ2)T .

Obviously, Eθ{`(Xi; θ)} = 0 since Eθ(X − µ1) = Eθ(X2 − µ2) = 0. Therefore, the condition
Eθ{`(Xi; θ)} = 0 is fulfilled when the moment estimator is used. In the sequel, let us denote by
K1(θ) the 2× 2 matrix with (i, j) element (i, j = 1, 2) equal to ∂

∂µj
gi(µ1, µ2). The elements

of the matrix K1(θ), which depend only on µ1 and µ2, are omitted here, however, they
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are available upon request and can be given in closed-form. Finally, we have that J(θ) =
Eθ{`(Xi; θ)T `(Xi; θ)} = tr(K1(θ)TK1(θ)Σ2), where

Σ2 = Covθ

(
X − µ1, X

2 − µ2

)T =
(

µ2 − µ2
1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

Therefore, J(θ) <∞ since tr((K1(θ))
TK1(θ)Σ2) <∞.
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[3] Batsidis, A.; Jiménez-Gamero, M.D. and Lemonte, A.J. (2020). On goodness-of-fit
tests for the Bell distribution, Metrika, 83, 297–319.

[4] Bell, E.T. (1934a). Exponential polynomials, Annals of Mathematical, 35, 258–277.

[5] Bell, E.T. (1934b). Exponential numbers, The American Mathematical Monthly, 41, 411–
419.

[6] Burke, M. (2000). Multivariate tests-of-fit and uniform confidence bands using a weighted
bootstrap, Statistics and Probability Letters, 46, 13–20.

[7] Castellares, F.; Ferrari, S.L.P. and Lemonte, A.J. (2018). On the Bell distribution
and its associated regression model for count data, Applied Mathematical Modelling, 56, 172–
185.

[8] Castellares, F.; Lemonte, A.J. and Moreno-Arenas, G. (2020). On the two-parameter
Bell–Touchard discrete distribution, Communications in Statistics – Theory and Methods, 4,
4834–4852.

[9] Catcheside, D.G.; Lea, D.E. and Thoday, J.M. (1946a). Types of chromosome structural
change induced by the irradiation of Tradescantia microspores, Journal of Genetics, 47, 113–
136.



170 A. Batsidis and A. Lemonte

[10] Catcheside, D.G.; Lea, D.E. and Thoday, J.M. (1946b). The production of chromosome
structural changes in Tradescantia microspores in relation to dosage, intensity and tempera-
ture, Journal of Genetics, 47, 137–149.

[11] Dehling, H. and Mikosch, T. (1994). Random quadratic forms and the bootstrap for
U-statistics, Journal of Multivariate Analysis, 51, 392–413.

[12] Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap, Chapman and
Hall, New York.

[13] Epps, T.W. (1995). A test of fit for lattice distributions, Communications in Statistics –
Theory and Methods, 24, 1455–1479.

[14] Esnaola, M.; Puig, P.; Gonzalez, D.; Castelo, R. and Gonzalez, J.R. (2013).
A flexible count data model to fit the wide diversity of expression profiles arising from ex-
tensively replicated RNA-seq experiments, BMC Bioinformatics, 14, 254.

[15] Feller, W. (1943). On a general class of contagious distributions, The Annals of Mathemat-
ical Statistics, 14, 389–400.

[16] Giacomini, R.; Politis, D.N. and White, H. (2013). A warp-speed method for conducting
Monte Carlo experiments involving bootstrap estimators, Econometric Theory, 29, 567–589.

[17] Gossiaux, A. and Lemaire, J. (1981). Methodes d’ajustement de distributions de sinistres,
Bulletin of the Association of Swiss Actuaries, 81, 87–95.
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