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for this purpose. Additionally, the study is supported by real life data. It is observed that, RSS
and some of its modified methods shows better results than Simple Random Sampling (SRS).
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1. INTRODUCTION

RSS is developed as an alternative to SRS in order to estimate population parameters
more efficiently where the measurement of sampling units is difficult or costly but the units
are easier to rank. McIntyre [12] was the first to propose the use of RSS in the pasture
research to estimate the mean amount of crops. Afterwards, Halls and Dell [11] used this
method to estimate the mean weights of trees and plant leaves in pine forests located in
the east of Texas. In order to compare the variances of the means obtained from RSS and
SRS methods Evans [7] carried out a study on long leaf pine trees. The first mathematical
theory of RSS in infinite population was developed by Takahasi and Wakimoto [24]. They
also demonstrated that the estimator of the population mean obtained by RSS is unbiased
and its variance is smaller than SRS when the errors in the ranking are ignored. Dell and
Clutter [6] examined errors of ranking in RSS. They showed that the mean estimator of RSS
is an unbiased estimator of population mean when ranking is imperfect. David and Levine [5]
conducted a study to determine the effects of the errors in the ranking in RSS. The concept of
concomitant variable for RSS which is an effective way to increase the accuracy of ranking was
proposed by Stokes [22]. This variable should be highly correlated with the variable of interest.
Also, Stokes [23] suggested RSS based variance estimator which is asmptotically unbiased
and more efficient compared to SRS based variance estimator. In order to review other
results and examples for RSS see these studies, Patil et al. [20] and Al-Omari and Bouza [1].
Also detailed information regarding theoretical and applicational studies based on RSS can
be found in Chen et al. [4].

Ranking of the units in a set is made on the basis of the visual judgement of the
researcher or a concomitant variable which has a strong correlation with the variable of in-
terest. These ranking methods are defined as ranking error models. There are many studies
in the literature that are focused on the modelling of ranking errors. Primarily, Dell and
Clutter [6] developed a model including a term of random error for the observations. Later,
Bohn and Wolfe [3] proposed a ranking error model based on the expected value of the
difference between two order statistics. Fligner and MacEachern [9] used the principle of
monotone likelihood ratio to model the ranking information in RSS. New class of models is
presented for imperfect rankings, in a study carried out by Frey [10]. A calibration model is
developed by Ozturk [17] to reduce the errors in the ranking for RSS. Besides, Ozturk [18]
suggested inference techniques for ranked set sample data in the presence of judgement rank-
ing errors. Alexandridis and Ozturk [2] developed robust statistical inference against imper-
fect ranking in a ranked set sample data obtained from a family of discrete distributions.
By taking the ranking errors in RSS into account, Ozturk [19] obtained non-parametric max-
imum likelihood estimators.

The motivation of this study is to see the effects of ranking error models on the mean
estimators of RSS and some of its modified methods and compare them with the mean
estimator of SRS. For this purpose, a simulation study is conducted. In addition, an abalone
data set is used to support the results of the simulation study.

This study consists of six sections. The first section includes the aim of the study
and literarure review on RSS. The second section contains methodological background
and detailed information about RSS, extreme RSS (ERSS) and percentile RSS (PRSS).
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Ranking error models in RSS literature such as visual ranked set sampling (VRSS) and con-
comitant ranked set sampling (CRSS) are defined in section 3. In addition, a Monte Carlo
simulation study is conducted to determine the effects of ranking error models on the MSE
of the mean estimators based on RSS and some of its modified methods. Besides, abalone
data set is used for comparing the results obtained from the simulation study in section 5.
The final section contains the conclusions.

2. RANKED SET SAMPLING AND SOME OF ITS MODIFIED METHODS

2.1. Ranked Set Sampling

In recent years, RSS is a commonly used sampling method in literature. RSS was
introduced by McIntyre [12] as an alternative sampling method to SRS in order to estimate
the population parameters more efficiently. It is useful and preferable method due to several
important factors. Set size and the relative costs of various operations such as sampling,
ranking and measurement are the most important ones among these factors. Also RSS
provides advantages due to its features such as the ability to work with finite or infinite
populations and it does not require to measure all units in the selected sample in RSS.

There are two important parameters in RSS. These are the set size and the number of
cycles which are denoted by n and m, respectively. The set size in RSS usually ranges from
2 to 5. Also, there are many studies available in the literature in which more sets are used.
On the other hand, there is no limit for the number of cycles. RSS procedure is applied in 5
steps which are described as below:

1. Select a sample of size n2 from the population of interest using SRS.

2. Divide this randomly chosen sample of size n2 into n sets with size n.

3. Rank the units within each set via cost effective and straightforward measurement.
This ranking can be made by using visual ranking method, a concomitant variable
or other methods.

4. Select the smallest ranked unit from the first set, the second smallest ranked unit
from the second set and the n-th smallest ranked unit from the n-th set for actual
measurement of units.

5. This process is repeated m times, until maintaining the required sample size.

The following expression represents the RSS procedure for one cycle:
X1[1:n] ≤ X1[2:n] ≤ X1[3:n] ≤ ··· ≤ X1[n:n]

X2[1:n] ≤ X2[2:n] ≤ X2[3:n] ≤ ··· ≤ X2[n:n]

X3[1:n] ≤ X3[2:n] ≤ X3[3:n] ≤ ··· ≤ X3[n:n]
...

Xn[1:n] ≤ Xn[2:n] ≤ Xn[3:n] ≤ ··· ≤ Xn[n:n]

 .

Here, X(i[k:n]j) represents the unit which has the rank of k in the i-th set and j-th cycle
where i = 1, 2, ..., n and j = 1, 2, ...,m. The obtained ranked set sample for n set and m cycle
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can be shown as 
X[1]1 X[2]1 X[3]1 ··· X[i]1

X[1]2 X[2]2 X[3]2 ··· X[i]2

X[1]3 X[2]3 X[3]3 ··· X[i]3
...

...
...

X[1]j X[2]j X[3]j ··· X[i]j

 ,

where X[i]j denotes the i-th ranked observation in the j-th cycle for i and j changing from
1 to n and m, respectively. The sets in RSS are random samples that are elements of the
i-th set X[i]1,X[i]2, ...,X[i]j and each set has the same distribution function F (x; θ) and same
probability density function f(x; θ), where i = 1, 2, 3, ..., n and j = 1, 2, 3, ...,m.

The sample mean estimator of the population mean for RSS can be shown as

(2.1) X̄RSS =
1

mn

m∑
j=1

n∑
i=1

X[i]j .

Also the variance of the mean estimator for RSS can be shown as

(2.2) Var(X̄RSS) =
σ2

x

mn

[
1−

n∑
i=1

(E(X[i]j)− µx)2

nσ2
x

]
,

where, µx and σ2
x are the mean and the variance of the population of interest, respectively.

2.2. Extreme Ranked Set Sampling

ERSS is developed by Samawi et al. [21] to estimate the population parameters more
efficiently than SRS with the same number of units by only using the minimum and maximum
ranked units for n when it is even and, the median ranked unit when it is odd.

For example, when n = 6, extreme ranked set sample is given below:



X1[1:6] ≤ X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤ X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤ X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤ X4[5:6] ≤ X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤ X5[5:6] ≤ X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤ X6[5:6] ≤ X6[6:6]

 .

Since the set size n = 6 is even, the actual measurement of units is made over the
smallest ranked units (X1[1:6], X2[1:6], X3[1:6]) from the first three sets and the largest ranked
units (X4[6:6], X5[6:6], X6[6:6]) from the last three sets, where Xi[m:n] represents the m-th
ranked unit in the i-th set for i = 1, 2, ..., n, m = 1, 2, ..., n. On the other hand, an example
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for odd set size, n = 7, is given below:

X1[1:7] ≤ X1[2:7] ≤ X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤ X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤ X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤ X4[5:7] ≤ X4[6:7] ≤ X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤ X5[5:7] ≤ X5[6:7] ≤ X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤ X6[5:7] ≤ X6[6:7] ≤ X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤ X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]


.

In this case, the actual measurement of units is made over the smallest ranked units (X1[1:7],
X2[1:7], X3[1:7]) from the first three sets and the largest ranked units (X4[7:7], X5[7:7], X6[7:7])
from the following three sets. In addition, the fourth ranked unit (X7[4:7]) is selected from the
remaining set for the measurement where Xi[m:n] represents the m-th ranked unit in the i-th
set for i = 1, 2, ..., n, m = 1, 2, ..., n. For this case, the last unit corresponds to the median
value of the last set in the sample.

For even set size, the mean estimator of ERSS is given by

(2.3) X̄ERSS =
1
n

[
n/2∑
i=1

X2i−1[1:n] +
n/2∑
i=1

X2i[n:n]

]
.

Also, the variance of the mean estimator based on ERSS is given by

(2.4) Var(X̄ERSS) =
1
n2

[
n/2∑
i=1

Var(X2i−1[1:n]) +
n/2∑
i=1

Var(X2i[n:n])

]
.

For odd set size, the mean estimator of ERSS is given by

(2.5) X̄ERSS =
1
n

[
(n−1)/2∑

i=1

X2i−1[1:n] +
(n−1)/2∑

i=1

X2i[n:n] + Xn[(n−1/2):n]

]
.

Also, the variance of the mean estimator based on ERSS is given by

(2.6) Var(X̄ERSS) =
1
n2

[
(n−1)/2∑

i=1

Var(X2i−1[1:n]) +
(n−1)/2∑

i=1

Var(X2i[n:n]) + Var(Xn[((n+1)/2):n])

]
.

2.3. Percentile Ranked Set Sampling

PRSS is suggested by Muttlak [13] to estimate the population parameters more effi-
ciently than SRS with the same number of units by only using the [p(n+1)]-th and [q(n+1)]-th
ranked units for n when it is even and, the median ranked unit when it is odd.

In this sampling method, p is denoted as the percentile value and takes value between
0 and 1, (0 < p < 1). On the other hand, q = 1− p and [p(n + 1)] and [q(n + 1)] are rounded
to the nearest integer. PRSS procedures are presented in the following examples.
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Let the set size be n = 6, p = 0.35 and q = 0.65. Following the ranking process of units,
the second ranked units from the first half of the sets (X1[2:6], X2[2:6], X3[2:6]) and the fifth
ranked units from the following three sets (X4[5:6], X5[5:6], X6[5:6]) are selected:



X1[1:6] ≤ X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤ X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤ X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤ X4[5:6] ≤ X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤ X5[5:6] ≤ X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤ X6[5:6] ≤ X6[6:6]

 .

This time, let n = 7, p = 0.4 and q = 0.6. Following the ranking process of units, the
third ranked units from the first three sets (X1[3:7], X2[3:7], X3[3:7]), the fifth ranked units
from the following three sets (X4[5:7], X5[5:7], X6[5:7]) and the median unit (X7[4:7]) of the last
set are selected:

X1[1:7] ≤ X1[2:7] ≤ X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤ X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤ X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤ X4[5:7] ≤ X4[6:7] ≤ X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤ X5[5:7] ≤ X5[6:7] ≤ X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤ X6[5:7] ≤ X6[6:7] ≤ X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤ X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]


.

For even set size, the mean estimator of PRSS is obtained as

(2.7) X̄PRSS =
1
n

[
n/2∑
i=1

Xi[a:n] +
n∑

i=(n/2)+1

Xi[b:n]

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

(2.8) Var(X̄PRSS) =
1
n2

[
n/2∑
i=1

Var(Xi[a:n]) +
n∑

i=(n/2)+1

Var(Xi[b:n])

]
.

For odd set size, the mean estimator of PRSS is obtained as

(2.9) X̄PRSS =
1
n

[
(n−1/2)∑

i=1

Xi[a:n] +
n−1∑

i=((n−1)/2)+1

Xi[b:n] + Xi[((n−1)/2):n])

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

(2.10) Var(X̄PRSS) =
1
n2

[
(n−1)/2∑

i=1

Var(Xi[a:n])
n−1∑

i=((n−1)/2)+1

Var(Xi[b:n]) + Var(Xi[(n+1/2):n])

]
,

where a = [p(n + 1)] and b = [q(n + 1)].



The effects of ranking error models on mean estimators based on ranked set sampling 353

3. RANKING ERROR MODELS

3.1. Visual Ranked Set Sampling

Visual judgement ranking is firstly noted by McIntyre [12] to estimate the mean amount
of products. This ranking method is a subjective ranking method since the ranking of units
in the set is based on the personal judgement of the researcher. The reliability of visual
ranking depends on the knowledge and experience of the researcher based on the subject of
study and also on the materials used to rank the units.

Modelling the i-th visual score Vi was suggested by Dell and Clutter [6]. This model is
given as follows:

(3.1) Vi = Xi + τi ,

where

Vi : i-th visual judgement order statistic,

Xi : i-th true order statistic,

τi : i-th random error term where τi ∼ iid(0, σ2
τ ) and Xi ’s are mutually independent

of τi’s.

In RSS, visual ranking process can be defined as follows:

1. Generate Vi = Xi + τi with τi ∼ iid(0, σ2
τ ) where Xi’s and τi’s are mutually inde-

pendent.

2. Rank the visual scores ( V1, V2, ..., Vn) from the lowest to the highest.

3. In the last step select the sampling unit corresponding to the r-th visual score (Vr)
and measure the X[r] value for this unit.

This method is called Visual Ranked Set Sampling (VRSS). The correlation between
visual judgement order statistic (V ) and true order statistic (X) is computed by the following
equation proposed by Nahhas et al. [14, 15]:

(3.2) ρxv =
σx√

σ2
x + σ2

τ

.

3.2. Concomitant Ranked Set Sampling

In RSS, another method used to rank the units in the set is concomitant variable (Y )
based ranking which is suggested by Stokes [22]. The concomitant variable (Y ) is a variable
that has a high correlation with the variable of interest (X). The accuracy of the ranking is
increased by using this variable. As an example, to estimate the mean weight of a certain
number of fish belonging to a population, a researcher may use a concomitant variable, such
as fish size, which has a high correlation with the fish weight.



354 S. Akdeniz and T.O. Yildiz

David and Levine [5] were the first to study concomitant variable (Y ). Detailed in-
formation and some limiting assumptions for concomitant variable (Y ) were developed by
Stokes [22] in order to determine its effects on RSS. These assumptions are given as follows:

• There is a linear relationship between concomitant variable (Y ) and the variable of
interest (X).

• Standardized concomitant variable (Y ) and the standardized variable of interest (X)
have identical distribution.

Concomitant based ranking can be modelled as

(3.3) Xi = µx +
ρxyσx

σy
(Yi − µy) + τi ,

where

µx : the mean of the variable of interest (X),

σx : the standard deviation of the variable of interest (X),

µy : the mean of the concomitant variable (Y ),

σy : the standard deviation of the concomitant variable (Y ),

ρxy : the correlation between the variable of interest (X) and concomitant variable (Y ),

Xi : the i-th observation on the variable of interest (X),

Yi : the i-th observation on the concomitant variable (Y ),

τi : i-th random error term.

The random error term is independent identically distributed (iid) with mean 0 and
variance σ2

τ and τi’s and Yi’s are mutually independent. The stepwise period of ranking the
units in the set with respect to the concomitant variable is given below:

1. Generate Equation (3.3) where τi’s and Yi’s are mutually independent.

2. The Yi’s are ranked from the lowest to the highest to obtain the Yi order statictics
Y1 ≤ ··· ≤ Yn.

3. Select the r-th correctly ranked order statistic Yr and measure the r-th true order
statistic X = Xr from the sampling unit.

This method is defined as Concomitant Ranked Set Sampling (CRSS) method.

4. A MONTE CARLO SIMULATION STUDY

Our basic goal in this simulation study is to investigate the effects of ranking error
models on the mean estimators based on RSS, ERSS and PRSS. For this reason, bias and
MSE of the mean estimators are computed and compared with MSE of mean estimator based
on SRS for different set and cycle sizes, distributions and ranking error models such as VRSS
and CRSS in infinite population. The simulation study is performed via R Project with 10000
repetitions. In the simulation study:
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• The population of the variable of interest (X) and concomitant variable (Y ) are gen-
erated from N(0, 1) (symmetric), Uniform(0, 1) (symmetric), Exp(1) (right skewed)
and Gamma(4, 2) (right skewed) distributions with size (N) 10000.

• Set sizes (n) are determined to be 2, 3, 4 and 5. Also cycle sizes (m) are determined
to be 5 and 10.

• Four sampling methods are used. These sampling methods are SRS, RSS, ERSS
and PRSS. (In this study, p and q value for PRSS is determined as 0.4 and 0.6,
respectively. p = 0.4 and q = 0.6 values were used in the simulation study since
they offer the best results for PRSS.)

• For CRSS, the correlation values between the variable of interest (X) and concomi-
tant variable (Y ) ρxy are determined as 0.95, 0.75, 0.50 and 0.25. (The same values
for ρxv and ρxy were used in the simulation study.)

• For VRSS, the random error term τi ∼ N(0, σ2
τ ). For the distributions used in the

simulation study, the ρxv values corresponding to σ2
τ were calculated by Equation

(3.2). These values are given in the table below.

Table 1: The values of σ2
τ corresponding to ρxv for N(0, 1), Uniform(0, 1),

Exp(1) and Gamma(4, 2).

σ2
τρxv

N(0, 1) Uniform(0, 1) Exp(1) Gamma(4, 2)

0.95 0.108 0.009 0.108 1.7285
0.75 0.778 0.0649 0.778 12.4444
0.50 3 0.25 3 48
0.25 15 1.25 15 240

The bias and mean squared error (MSE) of an estimator θ̂ of a parameter θ formulas
given below are used in the simulation study:

Bias(θ̂) = θ̂ − θ ,(4.1)

MSE (θ̂) = E(θ̂ − θ)2 .(4.2)

Note that, θ represents the population mean (µ) and θ̂ represents the mean estimators of
population mean based on SRS (X̄SRS), RSS (X̄RSS), ERSS (X̄ERSS) and PRSS (X̄PRSS),
respectively. The performance of the mean estimators of RSS, ERSS and PRSS is compared
with respect to SRS in terms of relative efficiency criteria. The relative efficiency formulas
given below are used:

RE1(X̄RSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄RSS)

,(4.3)

RE2(X̄ERSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄ERSS)

,(4.4)

RE3(X̄PRSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄PRSS)

.(4.5)
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The comparisons of the mean estimators are constructed in terms of bias, mean squared
error and relative efficiency for different correlation levels, variances of the random error term,
set and cycle sizes. The results of the simulation study with 10000 repetitions are presented
in tables.

Table 2 and Table 3 show bias values of mean estimators in VRSS and CRSS.
The results indicate that:

• For symmetric distributions, the bias values obtained from mean estimators of RSS,
ERSS and PRSS are close to 0. This means the mean estimators of RSS, ERSS and
PRSS are unbiased estimators of population mean for symmetric distributions.

• For right skewed distributions, the bias values obtained from the mean estimator
of RSS are close to symmetric distributions. On the other hand, for right skewed
distributions, the bias values obtained from mean estimators of ERSS and PRSS
are far from 0 when the set size increases. This means the mean estimators of ERSS
and PRSS are biased estimators of population mean when the set size increases.

Table 2: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 −0.001−0.001 0.003 −0.001 0.000−0.006 −0.003 0.002 0.000 0.002−0.003 0.000
3 0.003−0.001 0.002 0.000−0.003−0.004 0.000 0.000 0.001 −0.003 0.000 0.000
4 0.001 0.003−0.001 0.001−0.001 0.002 −0.001−0.001−0.001 0.002 0.002−0.004
5 0.000 0.000 0.001 0.000 0.001−0.001 −0.004−0.001−0.001 −0.004−0.002 0.002

10

2 −0.003 0.000 0.003 −0.003 0.002−0.001 0.004 0.001−0.004 −0.002 0.001 0.001
3 −0.002−0.002 0.000 0.001−0.001 0.001 0.000−0.003 0.000 0.000 0.001 0.001
4 0.000 0.000 0.002 0.000−0.001 0.000 0.002 0.001 0.000 0.002−0.002 0.000
5 0.000 0.001 0.001 0.000 0.001−0.001 0.000−0.002−0.001 0.001 0.001 0.000

Uniform(0, 1)

5

2 −0.002 0.000−0.001 −0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000−0.001
3 0.000 0.000 0.000 −0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001
4 0.000 0.000−0.001 0.000−0.001−0.001 0.001 0.000 0.000 0.001 0.001−0.001
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

10

2 0.000 0.000 0.000 −0.002 0.000−0.001 0.001 0.000 0.001 0.000 0.000−0.001
3 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000−0.001 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 −0.001−0.001 0.000 0.000 0.000 0.000

Exp(1)

5

2 −0.004 0.006 0.005 −0.002−0.002 0.006 0.005 0.004−0.001 −0.001−0.003 0.004
3 0.000 0.002−0.178 −0.003 0.001−0.149 −0.002−0.003−0.094 −0.002−0.001−0.033
4 −0.002 0.179−0.177 −0.001 0.150−0.154 0.001 0.092−0.092 −0.001 0.032−0.028
5 −0.004 0.159−0.160 −0.001 0.136−0.139 0.001 0.082−0.087 0.002 0.029−0.024

10

2 0.003 0.001−0.001 0.000−0.002 0.003 0.001 0.002 0.002 0.000−0.001−0.001
3 −0.001−0.001−0.176 0.000−0.002−0.152 −0.001 0.000−0.091 0.001 0.000−0.028
4 −0.001 0.177−0.178 0.000 0.150−0.153 0.000 0.092−0.091 0.000 0.032−0.027
5 0.000 0.158−0.159 0.000 0.137−0.137 0.000 0.084−0.082 0.000 0.027−0.026

Gamma(4, 2)

5

2 0.001 0.005−0.032 0.000−0.025 0.004 −0.016−0.010 0.013 −0.018−0.012 0.005
3 0.005−0.003−0.399 0.000−0.002−0.371 0.006−0.005−0.239 0.014 0.009−0.064
4 0.006 0.401−0.392 0.005 0.359−0.375 0.014 0.230−0.205 0.001 0.062−0.061
5 −0.003 0.347−0.350 0.005 0.320−0.319 −0.012 0.205−0.201 −0.003 0.055−0.064

10

2 0.009−0.008 0.011 −0.009−0.003−0.002 0.002−0.006 0.011 0.016−0.008−0.005
3 0.009 0.002−0.380 0.007−0.001−0.365 0.005−0.002−0.222 −0.008−0.005−0.060
4 0.002 0.387−0.390 0.005 0.354−0.371 −0.006 0.227−0.221 0.003 0.060−0.064
5 −0.003 0.350−0.349 −0.001 0.329−0.325 −0.002 0.186−0.194 0.001 0.062−0.053
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Table 3: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.001 0.003 0.001 0.004−0.004 0.000 −0.006−0.005 0.003 −0.001 0.001 0.002
3 0.000 0.001−0.006 0.001−0.001 0.005 −0.004−0.003−0.002 −0.002 0.002−0.002
4 0.002−0.003−0.003 0.002−0.001 0.000 0.000 0.001 0.005 0.001 0.001 0.004
5 0.001 0.005−0.002 −0.002 0.004 0.000 −0.001 0.000−0.004 −0.002 0.005−0.001

10

2 0.000−0.002 0.000 0.003 0.001−0.001 −0.003−0.002 0.001 0.000 0.002−0.007
3 0.001 0.001 0.003 0.003 0.001−0.001 0.000 0.001−0.005 −0.003 0.000−0.004
4 0.000 0.001 0.002 0.003−0.001−0.002 0.001 0.003 0.001 0.000 0.000 0.001
5 0.001 0.003 0.005 0.000 0.003 0.004 0.000 0.008−0.002 0.000 0.005 0.003

Uniform(0, 1)

5

2 −0.002 0.000 0.000 0.001 0.000 0.000 −0.001 0.001 0.000 0.000 0.000−0.001
3 0.000−0.001 0.001 −0.001−0.001 0.001 0.001 0.000 0.000 0.000 0.000−0.001
4 0.000 0.001−0.001 −0.001−0.001−0.001 0.000−0.001 0.001 −0.001 0.000 0.000
5 0.000 0.000 0.000 0.000 0.001−0.001 0.001 0.000−0.001 0.000 0.000 0.002

10

2 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000−0.001 0.000−0.002−0.001
3 0.000 0.001−0.001 0.000 0.000 0.001 0.000 0.000 0.000 −0.001 0.000−0.002
4 0.000−0.001 0.000 0.000 0.000 0.002 0.000−0.001 0.000 0.000 0.001−0.001
5 0.000 0.000 0.000 −0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

Exp(1)

5

2 −0.002 0.001 0.001 0.001 0.001 0.004 −0.001−0.001−0.002 −0.002 0.000−0.001
3 0.002 0.003−0.152 0.002 0.002−0.094 0.001 0.002−0.046 −0.003 0.002 0.001
4 0.002 0.152−0.149 −0.003 0.094−0.099 0.001 0.045−0.039 −0.004 0.006 0.001
5 0.000 0.134−0.135 0.000 0.086−0.081 −0.001 0.029−0.032 −0.001 0.012 0.002

10

2 −0.003−0.002 0.001 0.000−0.001 0.003 −0.001 0.000 0.001 −0.002 0.003 0.000
3 0.001 0.000−0.148 −0.002 0.002−0.096 0.000 0.002−0.045 0.001 0.002−0.002
4 0.000 0.151−0.153 0.002 0.045−0.088 −0.001 0.040−0.047 0.001 0.007−0.002
5 0.000 0.143−0.133 0.000 0.029−0.079 0.002 0.034−0.038 −0.001 0.009 0.000

Gamma(4, 2)

5

2 0.005−0.004−0.001 0.010 0.010 0.011 0.003 0.003 0.005 −0.018 0.002 0.016
3 0.010 0.003−0.324 0.003 0.008−0.193 0.001 0.002−0.110 0.007 0.005−0.054
4 0.004 0.320−0.330 0.008 0.203−0.235 0.007 0.104−0.043 −0.003−0.004−0.023
5 0.002 0.278−0.285 0.006 0.180−0.182 0.003 0.064−0.068 0.015 0.010−0.013

10

2 −0.005 0.009−0.003 −0.014−0.007 0.005 −0.013 0.006 0.001 −0.004 0.009−0.006
3 0.002−0.001−0.346 −0.007 0.006−0.205 0.008−0.015−0.095 −0.009 0.011−0.014
4 −0.004 0.335−0.334 0.003 0.209−0.199 −0.007 0.079−0.098 0.005 0.014−0.030
5 0.004 0.275−0.301 −0.005 0.195−0.185 −0.006 0.086−0.081 −0.004 0.022−0.014
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Table 4 and Table 5 show MSE values of the mean estimators in VRSS and CRSS.
The results indicate that:

• Based on Table 4 and Table 5, the smallest and the highest MSE values were ob-
tained from Uniform(0, 1) and Gamma(4, 2), respectively.

• MSE values obtained from N(0, 1) are less than Exp(1).

Table 4: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.072 0.072 0.071 0.085 0.082 0.082 0.092 0.092 0.091 0.096 0.099 0.099
3 0.038 0.038 0.033 0.048 0.049 0.046 0.058 0.059 0.057 0.065 0.064 0.066
4 0.025 0.028 0.021 0.034 0.036 0.033 0.044 0.044 0.041 0.048 0.049 0.049
5 0.017 0.019 0.015 0.026 0.027 0.024 0.033 0.034 0.033 0.039 0.039 0.039

10

2 0.035 0.036 0.036 0.041 0.041 0.041 0.045 0.046 0.046 0.048 0.048 0.048
3 0.019 0.019 0.017 0.024 0.024 0.023 0.029 0.030 0.028 0.032 0.033 0.032
4 0.012 0.014 0.011 0.017 0.018 0.016 0.021 0.021 0.021 0.024 0.024 0.024
5 0.008 0.010 0.007 0.013 0.013 0.012 0.017 0.017 0.016 0.019 0.019 0.019

Uniform(0, 1)

5

2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005
4 0.002 0.001 0.002 0.003 0.002 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10

2 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004
3 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002

Exp(1)

5

2 0.077 0.077 0.079 0.084 0.085 0.087 0.095 0.095 0.092 0.096 0.096 0.100
3 0.045 0.044 0.058 0.052 0.052 0.057 0.061 0.058 0.054 0.063 0.065 0.060
4 0.029 0.071 0.049 0.037 0.072 0.048 0.044 0.063 0.042 0.048 0.055 0.045
5 0.020 0.053 0.039 0.028 0.054 0.038 0.034 0.047 0.034 0.038 0.043 0.036

10

2 0.040 0.039 0.039 0.043 0.043 0.044 0.046 0.047 0.046 0.049 0.050 0.048
3 0.021 0.022 0.045 0.026 0.026 0.041 0.030 0.030 0.031 0.033 0.033 0.030
4 0.014 0.052 0.041 0.018 0.047 0.036 0.022 0.035 0.025 0.024 0.027 0.023
5 0.010 0.039 0.032 0.014 0.037 0.029 0.017 0.028 0.020 0.019 0.021 0.019

Gamma(4, 2)

5

2 1.166 1.181 1.161 1.348 1.360 1.370 1.494 1.456 1.480 1.576 1.572 1.578
3 0.629 0.622 0.661 0.802 0.803 0.834 0.942 0.952 0.911 1.066 1.035 1.010
4 0.412 0.672 0.480 0.556 0.750 0.634 0.692 0.801 0.672 0.758 0.784 0.742
5 0.291 0.460 0.350 0.416 0.579 0.463 0.544 0.618 0.536 0.606 0.624 0.605

10

2 0.599 0.583 0.590 0.659 0.670 0.664 0.737 0.738 0.761 0.786 0.778 0.770
3 0.321 0.319 0.403 0.401 0.402 0.481 0.479 0.475 0.477 0.511 0.515 0.503
4 0.207 0.390 0.315 0.274 0.448 0.372 0.347 0.438 0.360 0.385 0.402 0.372
5 0.145 0.299 0.238 0.213 0.344 0.291 0.269 0.324 0.279 0.308 0.326 0.302
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Table 5: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.073 0.071 0.072 0.081 0.082 0.081 0.091 0.090 0.091 0.101 0.096 0.097
3 0.038 0.039 0.032 0.047 0.050 0.045 0.059 0.059 0.056 0.064 0.064 0.063
4 0.024 0.026 0.021 0.034 0.036 0.032 0.043 0.042 0.041 0.050 0.048 0.047
5 0.016 0.020 0.014 0.026 0.026 0.024 0.033 0.033 0.032 0.038 0.037 0.037

10

2 0.035 0.036 0.032 0.040 0.039 0.040 0.045 0.046 0.045 0.050 0.048 0.049
3 0.018 0.018 0.016 0.024 0.023 0.022 0.029 0.028 0.028 0.032 0.032 0.030
4 0.011 0.013 0.010 0.016 0.018 0.015 0.021 0.022 0.020 0.024 0.024 0.023
5 0.008 0.009 0.007 0.013 0.013 0.011 0.016 0.017 0.016 0.018 0.018 0.018

Uniform(0, 1)

5

2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.007 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.005 0.005
4 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10

2 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004
3 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002

Exp(1)

5

2 0.074 0.076 0.075 0.088 0.085 0.089 0.092 0.087 0.088 0.091 0.101 0.007
3 0.044 0.041 0.049 0.052 0.052 0.051 0.065 0.061 0.054 0.065 0.066 0.005
4 0.028 0.061 0.040 0.035 0.054 0.038 0.044 0.051 0.042 0.004 0.004 0.003
5 0.019 0.045 0.031 0.027 0.041 0.029 0.034 0.036 0.033 0.003 0.003 0.003

10

2 0.037 0.038 0.039 0.042 0.041 0.042 0.045 0.048 0.047 0.004 0.004 0.004
3 0.021 0.021 0.035 0.024 0.025 0.030 0.030 0.030 0.028 0.002 0.002 0.002
4 0.013 0.042 0.032 0.018 0.030 0.021 0.022 0.024 0.021 0.002 0.002 0.002
5 0.010 0.035 0.024 0.013 0.025 0.017 0.018 0.021 0.017 0.001 0.001 0.001

Gamma(4, 2)

5

2 1.173 1.138 1.165 1.363 1.317 1.313 1.453 1.490 1.415 1.579 1.564 1.624
3 0.638 0.630 0.618 0.804 0.775 0.768 0.940 0.950 0.901 1.037 1.062 1.054
4 0.413 0.587 0.418 0.555 0.660 0.549 0.700 0.709 0.677 0.776 0.742 0.737
5 0.290 0.408 0.312 0.423 0.483 0.425 0.525 0.562 0.543 0.589 0.586 0.617

10

2 0.590 0.571 0.605 0.681 0.633 0.667 0.719 0.724 0.751 0.788 0.782 0.796
3 0.304 0.308 0.375 0.396 0.399 0.400 0.468 0.478 0.465 0.508 0.510 0.498
4 0.203 0.363 0.277 0.277 0.343 0.292 0.343 0.365 0.330 0.391 0.395 0.363
5 0.145 0.246 0.210 0.209 0.270 0.226 0.276 0.287 0.277 0.302 0.316 0.308
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Table 6 and Table 7 show RE values of mean estimators in VRSS and CRSS. RE values
obtained from the simulation study which are greater than 1 mean that RSS, ERSS or PRSS
are more efficient than SRS:

• RE values obtained from symmetric distributions give better results than right
skewed distributions.

Table 6: RE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1)

5

2 1.422 1.387 1.412 1.146 1.223 1.236 1.077 1.101 1.119 1.044 1.010 1.020
3 1.746 1.754 1.975 1.356 1.398 1.464 1.165 1.146 1.178 1.036 1.026 1.006
4 1.989 1.819 2.381 1.453 1.401 1.484 1.118 1.131 1.194 1.027 1.036 1.011
5 2.323 2.028 2.646 1.587 1.461 1.626 1.214 1.195 1.197 1.006 1.020 1.009

10

2 1.417 1.386 1.389 1.212 1.185 1.225 1.153 1.079 1.076 1.057 1.033 1.012
3 1.750 1.764 1.940 1.377 1.385 1.453 1.137 1.109 1.228 1.024 1.005 1.020
4 2.086 1.881 2.361 1.448 1.407 1.622 1.162 1.191 1.173 1.062 1.052 1.038
5 2.379 2.111 2.673 1.509 1.471 1.589 1.184 1.152 1.218 1.064 1.028 1.011

Uniform(0, 1)

5

2 1.417 1.394 1.455 1.257 1.228 1.232 1.099 1.104 1.101 1.009 1.027 1.032
3 1.830 1.879 1.521 1.458 1.429 1.193 1.140 1.160 1.081 1.050 1.044 1.029
4 2.181 2.928 1.852 1.524 1.876 1.314 1.164 1.303 1.105 1.055 1.052 0.990
5 2.511 3.119 2.112 1.636 1.922 1.419 1.246 1.325 1.134 1.067 1.036 1.037

10

2 1.477 1.447 1.411 1.242 1.224 1.240 1.081 1.060 1.062 1.016 0.992 1.031
3 1.857 1.785 1.492 1.426 1.442 1.157 1.128 1.176 1.072 1.072 1.015 1.013
4 2.218 2.801 1.755 1.530 1.879 1.318 1.162 1.257 1.045 1.046 1.085 1.050
5 2.474 3.067 2.052 1.670 2.000 1.417 1.187 1.275 1.152 1.044 1.007 1.009

Exp(1)

5

2 1.296 1.229 1.278 1.188 1.190 1.168 1.031 1.074 1.121 1.071 1.017 1.005
3 1.539 1.550 1.140 1.267 1.306 1.203 1.111 1.136 1.298 1.066 1.008 1.126
4 1.692 0.701 1.022 1.384 0.696 1.044 1.134 0.793 1.193 1.060 0.910 1.159
5 1.953 0.778 1.066 1.422 0.757 1.068 1.158 0.839 1.193 1.036 0.946 1.114

10

2 1.266 1.272 1.270 1.174 1.135 1.188 1.068 1.076 1.101 1.022 1.028 1.058
3 1.596 1.594 0.737 1.221 1.279 0.811 1.119 1.106 1.081 1.019 1.001 1.088
4 1.780 0.479 0.621 1.370 0.537 0.688 1.142 0.735 0.994 1.010 0.917 1.078
5 1.968 0.515 0.625 1.430 0.548 0.694 1.228 0.724 0.994 1.027 0.962 1.088

Gamma(4, 2)

5

2 1.391 1.344 1.371 1.186 1.179 1.152 1.073 1.107 1.067 1.046 1.038 1.006
3 1.718 1.718 1.595 1.307 1.342 1.306 1.141 1.098 1.198 0.984 1.016 1.066
4 1.953 1.188 1.624 1.469 1.075 1.255 1.154 1.004 1.208 1.036 1.036 1.091
5 2.211 1.420 1.840 1.555 1.094 1.365 1.179 1.035 1.194 1.048 1.039 1.096

10

2 1.344 1.384 1.355 1.191 1.186 1.222 1.119 1.065 1.043 1.046 1.020 1.076
3 1.630 1.666 1.339 1.352 1.342 1.084 1.126 1.110 1.102 1.041 1.013 1.057
4 1.923 1.019 1.273 1.456 0.884 1.078 1.137 0.930 1.105 1.004 0.999 1.067
5 2.221 1.071 1.328 1.486 0.942 1.097 1.207 1.012 1.129 1.026 0.991 1.044
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Table 7: RE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1)

5

2 1.351 1.398 1.361 1.188 1.236 1.180 1.115 1.060 1.072 1.024 1.020 0.993
3 1.739 1.728 2.028 1.401 1.360 1.449 1.118 1.147 1.144 1.061 0.998 1.044
4 2.050 1.890 2.302 1.452 1.388 1.511 1.166 1.185 1.220 1.048 1.043 1.041
5 2.395 2.074 2.676 1.509 1.562 1.620 1.194 1.154 1.206 1.040 1.033 1.064

10

2 1.405 1.402 1.511 1.213 1.222 1.224 1.082 1.062 1.107 0.999 1.043 1.038
3 1.740 1.726 1.962 1.345 1.382 1.430 1.147 1.149 1.152 1.043 1.019 1.061
4 2.127 1.882 2.372 1.558 1.317 1.588 1.188 1.138 1.223 1.029 0.995 1.041
5 2.349 2.062 2.735 1.559 1.529 1.686 1.182 1.137 1.216 1.065 1.068 1.041

Uniform(0, 1)

5

2 1.474 1.408 1.442 1.193 1.251 1.208 1.079 1.106 1.093 1.022 1.000 1.047
3 1.804 1.789 1.509 1.388 1.386 1.233 1.116 1.163 1.085 0.994 1.035 1.022
4 2.202 2.670 1.844 1.497 1.648 1.340 1.186 1.206 1.101 1.043 1.025 1.029
5 2.470 2.921 2.153 1.559 1.698 1.374 1.168 1.254 1.120 1.053 1.056 1.015

10

2 1.447 1.414 1.416 1.214 1.197 1.225 1.097 1.094 1.102 1.008 1.022 1.022
3 1.752 1.866 1.545 1.393 1.369 1.275 1.108 1.092 1.104 1.055 1.021 0.992
4 2.177 2.755 1.802 1.417 1.601 1.308 1.132 1.214 1.117 1.031 1.044 1.067
5 2.513 2.923 2.182 1.569 1.693 1.415 1.208 1.199 1.158 1.041 1.022 0.995

Exp(1)

5

2 1.323 1.284 1.297 1.167 1.186 1.182 1.099 1.077 1.102 1.017 1.010 1.040
3 1.526 1.501 1.347 1.288 1.293 1.387 1.018 1.110 1.221 1.034 1.027 1.009
4 1.705 0.802 1.286 1.362 0.944 1.312 1.101 1.009 1.197 1.028 1.011 1.017
5 1.912 0.882 1.271 1.381 0.986 1.324 1.112 1.079 1.182 1.021 0.991 1.050

10

2 1.384 1.281 1.232 1.165 1.177 1.145 1.097 1.064 1.040 1.023 0.998 0.998
3 1.539 1.551 0.912 1.321 1.224 1.077 1.097 1.102 1.138 0.997 1.070 1.042
4 1.801 0.586 0.754 1.313 0.810 1.150 1.166 0.970 1.087 1.039 1.028 0.996
5 1.939 0.614 0.818 1.480 0.826 1.077 1.143 0.979 1.162 1.054 0.961 1.023

Gamma(4, 2)

5

2 1.370 1.364 1.374 1.180 1.198 1.231 1.121 1.063 1.053 1.022 0.999 0.967
3 1.681 1.688 1.773 1.300 1.357 1.371 1.122 1.120 1.147 1.024 1.007 1.053
4 1.926 1.373 1.907 1.427 1.259 1.471 1.180 1.097 1.116 1.018 1.075 1.052
5 2.201 1.530 2.040 1.481 1.284 1.505 1.204 1.138 1.175 1.043 1.062 1.068

10

2 1.336 1.366 1.338 1.190 1.227 1.198 1.086 1.089 1.066 1.041 1.017 0.988
3 1.741 1.729 1.442 1.358 1.371 1.330 1.103 1.145 1.146 1.067 1.047 1.032
4 1.989 1.081 1.510 1.443 1.171 1.356 1.143 1.097 1.220 1.001 1.020 1.087
5 2.165 1.260 1.573 1.532 1.204 1.380 1.111 1.104 1.199 1.047 1.000 1.016

According to the results obtained from the simulation study:

For VRSS:

• When the number of set size increases, relative efficiency increases.

• When the variance of random error term (σ2
τ ) increases, the relative efficiency de-

creases. On the other hand, when the correlation between visual judgement order
statistic (V ) and true order statistic (X) decreases, the relative efficiency decreases.

For CRSS:

• When the number of set size increases, relative efficiency increases.

• When the correlation between the variable of interest (X) and the concomitant
variable (Y ) increases, relative efficiency increases.
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For VRSS and CRSS:

• The number of cycles didn’t cause a regular increase or decrease in relative efficiency
for VRSS and CRSS. For this reason, exact comment can not be made about the
effect of number of cycles on relative efficiency.

• In both visual and concomitant based ranking methods MSE decreases when set
size and number of cycles increase.

• MSE increases as the variance of the error term increases in visual ranking and as
the correlation between the concomitant variable (Y ) and the variable of interest
(X) variable decreases in concomitant based ranking.

• In both visual and concomitant based ranking methods MSE values obtained from
right skewed distributions are greater than the MSE values obtained from symmetric
distributions.

• In both visual and concomitant based ranking methods, the bias, MSE and RE
values from mean estimators based on RSS, ERSS and PRSS for symmetric distri-
butions and right skewed distributions are similar.

5. REAL DATA APPLICATION

Abalone is a common name given to a group of small to very large sea snails, marine
gastropod molluscs which are the member of Haliotidae family [8]. Age of an abalone can be
determined by making some physical measurements which, in advance, include cutting and
staining of the shell. After the staining process, the rings become clear and they are counted
under a microscope to obtain age information. Estimating the age of abalone includes difficult,
costly and time-consuming physical measurements. Therefore, it forces us to use alternative
measurement techniques. A new physical measurement method which is easier than the
others in estimating the age of abalone is proposed by Nash et al. [16]. This data set is taken
from https://archive.ics.uci.edu/ml/datasets/abalone [25]. Abalone dataset includes 4177
samples with 9 variables. Information about these variables are given in the table below:

Table 8: Descriptions of abalone dataset.

Variable Data Type Measurament Unit of Data Description

Length Continuous mm Longest shell measurement
Diameter Continuous mm Perpendicular to length
Height Continuous mm With meat in shell
Whole weight Continuous gr Whole abalone
Shucked weight Continuous gr Weight of meat
Viscera weight Continuous gr Gut weight (after bleeding)
Shell weight Continuous gr After being died
Rings Integer — +1.5 gives the age in years
Sex Nominal — Male, Female and Infant

Rings variable is selected as the variable of interest (X). For concomitant based ranking,
Shell weight (Y1) and Shucked weight (Y2) are determined as concomitant variables. The
correlations between variable of interest and concomitant variables are given in table below:

https://archive.ics.uci.edu/ml/datasets/abalone
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Table 9: Correlations between variable of Interest (X) and concomitant variables (Y ’s)
in abalone dataset for CRSS.

Variable of Interest (X) Concomitant Variable (Y ) Correlations

Rings
Shell Weight 0.627

Shucked Weight 0.420

The results obtained from abalone dataset using CRSS are given in Table 10 and
Table 11, respectively.

Table 10: MSE(bias) values for CRSS based on RSS, ERSS and PRSS.

ρxy m n RSS ERSS PRSS

0.627

5

2 0.891 (−0.029) 0.887 (−0.023) 0.909 (−0.013)
3 0.558 (−0.019) 0.554 (−0.000) 0.543 (−0.113)
4 0.395 (−0.004) 0.433 (0.127) 0.383 (−0.119)
5 0.306 (−0.009) 0.329 (−0.103) 0.295 (0.099)

10

2 0.443 (−0.002) 0.449 (0.003) 0.453 (−0.015)
3 0.279 (0.001) 0.278 (−0.001) 0.273 (0.120)
4 0.201 (0.001) 0.219 (0.119) 0.202 (0.116)
5 0.152 (−0.002) 0.173 (−0.107) 0.152 (0.093)

0.420

5

2 0.979 (0.064) 0.951 (0.009) 0.981 (−0.006)
3 0.610 (−0.008) 0.624 (−0.010) 0.751 (0.320)
4 0.440 (−0.001) 0.518 (−0.314) 0.571 (0.309)
5 0.346 (−0.004) 0.403 (−0.271) 0.450 (0.269)

10

2 0.485 (−0.000) 0.467 (−0.013) 0.479 (0.003)
3 0.305 (−0.008) 0.306 (−0.004) 0.429 (0.329)
4 0.236 (0.003) 0.313 (0.324) 0.342 (0.319)
5 0.176 (−0.040) 0.242 (−0.276) 0.258 (0.270)

Table 11: RE values for CRSS based on RSS, ERSS and PRSS.

ρxy m n RE1 RE2 RE3

0.627

5

2 1.181 1.153 1.180
3 1.215 1.266 1.280
4 1.298 1.192 1.384
5 1.358 1.268 1.425

10

2 1.203 1.150 1.118
3 1.245 1.242 1.278
4 1.269 1.163 1.268
5 1.334 1.178 1.320

0.420

5

2 1.062 1.081 1.058
3 1.135 1.086 0.900
4 1.158 1.006 0.889
5 1.193 1.020 0.885

10

2 1.050 1.119 1.063
3 1.104 1.133 0.800
4 1.095 0.810 0.756
5 1.138 0.855 0.822
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Suppose that the ρxv values are 0.627 and 0.420, respectively. For VRSS, we need to find
the value of standard deviation of the Rings variable (X). This value is

√
σ2

x = σx =
√

10.395
= 3.224. Then, we need to find the values of σ2

τ corresponding to ρxv. We use Equation (3.2)
to obtain the values of σ2

τ corresponding to ρxv. These values are given in the table below:

Table 12: The values of σ2
τ corresponding to ρxv for Rings variable in abalone dataset.

ρxv σ2
τ

0.627 16.048
0.420 48.536

Table 13: MSE(bias) values for VRSS based on RSS, ERSS and PRSS.

ρxv m n RSS ERSS PRSS

0.627

5

2 0.921 (−0.008) 0.939 (0.001) 0.934 (−0.004)
3 0.567 (0.011) 0.573 (−0.021) 0.537 (−0.256)
4 0.415 (0.002) 0.560 (0.247) 0.398 (−0.247)
5 0.321 (0.005) 0.421 (0.219) 0.318 (−0.231)

10

2 0.463 (−0.009) 0.456 (−0.001) 0.450 (−0.001)
3 0.287 (0.002) 0.291 (−0.004) 0.299 (0.250)
4 0.205 (−0.001) 0.305 (0.247) 0.224 (−0.251)
5 0.156 (−0.004) 0.235 (0.224) 0.188 (−0.231)

0.420

5

2 0.973 (−0.002) 0.986 (−0.005) 0.986 (−0.016)
3 0.635 (−0.003) 0.639 (0.004) 0.583 (−0.152)
4 0.480 (0.010) 0.536 (0.142) 0.441 (−0.143)
5 0.375 (0.005) 0.423 (0.131) 0.350 (−0.122)

10

2 0.511 (0.005) 0.496 (−0.017) 0.481 (0.007)
3 0.328 (0.006) 0.325 (0.002) 0.310 (−0.140)
4 0.234 (0.003) 0.279 (0.145) 0.231 (−0.138)
5 0.179 (−0.002) 0.216 (0.127) 0.181 (−0.124)

Table 14: RE values for VRSS based on RSS, ERSS and PRSS.

ρxv m n RE1 RE2 RE3

0.627

5

2 1.128 1.093 1.093
3 1.247 1.293 1.293
4 1.286 0.954 1.312
5 1.293 0.994 1.277

10

2 1.108 1.144 1.178
3 1.176 1.204 1.119
4 1.259 0.842 1.128
5 1.291 0.865 1.095

0.420

5

2 1.067 1.044 1.056
3 1.067 1.088 1.201
4 1.059 0.952 1.183
5 1.104 0.968 1.224

10

2 0.994 1.010 1.106
3 1.036 1.074 1.114
4 1.098 0.914 1.122
5 1.152 0.971 1.145
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6. CONCLUSION

In this study, we aimed to use ranking error models (VRSS and CRSS) to compare the
bias and MSE of the mean estimators based on RSS and some of its modified methods such
as ERSS and PRSS.

For this reason the effects of ranking errors in RSS and in some of its modified methods
are examined in the simulation study. In this study, it is deduced that ranking errors may
occur depending on the ranking method used. In VRSS, σ2

τ and ρxv change depending on the
researcher’s knowledge, experience and materials used in the study. The greater knowledge
of researcher involved in the study and the use of more appropriate materials would yield a
higher accuracy in the ranking. On the other hand, for CRSS, the accuracy of the ranking
depends on the correlation between the variable of interest (X) and the concomitant variable
(Y ) and the distribution of (X, Y ). Generally, when ρxy ≥ 0.5, the error in the ranking
decreases and the accuracy of the ranking increases. Thus, better results can be achieved
by minimizing the error in the ranking. The application is performed using abalone data set
in order to support the simulation study performed in the section 5. It is seen that similar
results were obtained in real data application and simulation study. It is observed that, RSS
and some of its modified methods such as ERSS and PRSS methods show better results than
SRS.
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