Supplementary Material for
 "The Extended Chen-Poisson Lifetime Distribution"

Authors: Ivo Sousa-Ferreira (i) \boxtimes
- Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Portugal
- CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Portugal ivo.ferreira@staff.uma.pt
Ana Maria Abreu
- Departamento de Matemática, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Portugal
- CIMA - Centro de Investigação em Matemática e Aplicações, Portugal abreu@staff.uma.pt
Cristina Rocha
- Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Portugal
- CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Portugal cmrocha@fc.ul.pt

Accepted: November 2021

1. PROOF OF PROPOSITION 3.3

This section provides the Proof of Proposition 3.3 regarding the monotonicity study of the probability density function (pdf) of the ECP distribution.

Proof of Proposition 3.3:

The first derivative of the pdf (3.4) of the ECP distribution is given by

$$
f^{\prime}(t ; \lambda, \gamma, \phi)=\frac{f(t ; \lambda, \gamma, \phi)}{t}\left\{\gamma-1-\gamma t^{\gamma}\left[-1+\lambda \mathrm{e}^{t^{\gamma}}\left(1-\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t^{\gamma}}\right)}\right)\right]\right\}, \quad t>0
$$

where $\lambda, \gamma>0$ and $\phi \in \mathbb{R} \backslash\{0\}$. The sign of $f^{\prime}(t ; \lambda, \gamma, \phi)$ is the sign of the expression in curly brackets and $f^{\prime}(t ; \lambda, \gamma, \phi)$ is zero when that expression is zero. Consider the change of variable $u=\mathrm{e}^{t^{\gamma}}$ and rewrite the expression in curly brackets as $g(u ; \lambda, \gamma, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$,

[^0]where $r_{1}(u ; \lambda, \phi)=\log (u)\left[-1+\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)\right]$ for $u>1$. The monotonicity study of the pdf is done separately for $\phi<0$ (distribution of the minimum) and $\phi>0$ (distribution of the maximum).

1. For $\phi<0$ (distribution of the minimum):
 is never zero when $\phi<0$.

Case 1.1. $(\phi<0,0<\gamma \leq 1$ and $\lambda \geq 1)$
If $\phi<0,0<\gamma \leq 1$ and $\lambda \geq 1$, then $g(u ; \lambda, \gamma, \phi)<0$ and, therefore, $f(t ; \lambda, \gamma, \phi)$ is monotonically decreasing.

Case 1.2. $(\phi<0, \gamma=1$ and $0<\lambda<1)$
Here, from $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)$ takes values less or greater than 1 and so there exists at least one solution of this equation. Let u_{0} be one of these solutions, that is, $\lambda u_{0}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{0}\right)}\right)=1$. Given that $1-\phi \mathrm{e}^{\lambda\left(1-u_{0}\right)}>1$, then $\lambda u_{0}=1 /\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{0}\right)}\right)<1$ and so $u_{0}<1 / \lambda$. Accordingly, u_{0} belongs to the interval $(1,1 / \lambda)$, with $0<\lambda<1$. Let $r_{2}(u ; \lambda, \phi)=-1+\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)$, so its first derivative is $r_{2}^{\prime}(u ; \lambda, \phi)=\lambda\left[1-\phi(1-u \lambda) \mathrm{e}^{\lambda(1-u)}\right]$. Evaluating $r_{2}^{\prime}(u ; \lambda, \phi)$ at u_{0}, it follows that $r_{2}^{\prime}\left(u_{0} ; \lambda, \phi\right)>$ 0 , for $u_{0} \in(1,1 / \lambda)$. Hence, $r_{2}(u ; \lambda, \phi)$ is monotonically increasing and u_{0} is the only solution, if it exists. Thus, $g(u ; \lambda, \gamma, \phi)=-\log (u) r_{2}(u ; \lambda, \phi)$ also has just a single zero at u_{0}, when it exists, because $\log (u)>0$ for $u>1$. However, since $\lim _{u \rightarrow 1} r_{2}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$, u_{0} only exists if $-1+(1-\phi) \lambda<0$. Therefore, it is necessary to split this case into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 1.2.1. $\left(\phi<0, \gamma=1\right.$ and $\left.0<\lambda<(1-\phi)^{-1}\right)$
If $0<\lambda<(1-\phi)^{-1}$, then $r_{2}(u ; \lambda, \phi)$ has a zero at u_{0} and, since $r_{2}(u ; \lambda, \phi)$ is monotonically increasing, it follows that $g(u ; \lambda, \gamma, \phi)=-\log (u) r_{2}(u ; \lambda, \phi)$ is positive until u_{0}, it has a zero at u_{0} and it is negative thereafter. Therefore, $f(t ; \lambda, \gamma, \phi)$ is unimodal. In this sub-case, the mode is equal to $\log \left(u_{0}\right)^{1 / \gamma}$, where u_{0} is the root of the non-linear equation $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)=1$, for $\gamma=1$ and $0<\lambda<(1-\phi)^{-1}$.

Sub-case 1.2.2. $\left(\phi<0, \gamma=1\right.$ and $\left.(1-\phi)^{-1} \leq \lambda<1\right)$
If $(1-\phi)^{-1} \leq \lambda<1$, then $r_{2}(u ; \lambda, \phi)$ is always greater than or equal to 0 and, consequently, $g(u ; \lambda, \gamma, \phi)$ is always less than or equal to 0 . Therefore, $f(t ; \lambda, \gamma, \phi)$ is monotonically decreasing.

Case 1.3. $(\phi<0,0<\gamma<1$ and $0<\lambda<1)$
Here, from $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{1} be one of these solutions, that is, $r_{1}\left(u_{1} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. Given that $(\gamma-1) / \gamma<0$ for $0<\gamma<1$, then $r_{1}\left(u_{1} ; \lambda, \phi\right)<0$, which implies that $\lambda u_{1}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{1}\right)}\right)<1$ since $\log \left(u_{1}\right)>0$ for $u_{1}>1$. Moreover, it is known that $1-\phi \mathrm{e}^{\lambda\left(1-u_{1}\right)}>1$ implies that $u_{1}<1 / \lambda$. Accordingly, u_{1} belongs to the interval $(1,1 / \lambda)$, with $0<\lambda<1$. The first derivative of $r_{1}(u ; \lambda, \phi)$ is given by $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\log (u))-\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$. Evaluating $r_{1}^{\prime}(u ; \lambda, \phi)$ at $u_{1} \in(1,1 / \lambda)$, it follows that it can take both negative and positive values. In addition, as $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$, it is clear that $r_{1}^{\prime}(u ; \lambda, \phi)$ can be initially negative or positive. Therefore, it is necessary to split this case into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 1.3.1. $\left(\phi<0,0<\gamma<1\right.$ and $\left.0<\lambda<(1-\phi)^{-1}\right)$
If $0<\lambda<(1-\phi)^{-1}$, then $r_{1}^{\prime}(u ; \lambda, \phi)$ is initially negative and, furthermore, as $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$ it is seen that $r_{1}^{\prime}(u ; \lambda, \phi)=0$ has at least one root. Let u_{2} be one of these solutions, that is, $r_{1}^{\prime}\left(u_{2} ; \lambda, \phi\right)=0$, but now u_{2} belongs to the interval $(1,1 / \lambda)$ with $0<\lambda<(1-\phi)^{-1}$. Thus, it follows that

$$
\begin{cases}r_{1}^{\prime}(u ; \lambda, \phi)<0, \text { if } & u<u_{2} \\ r_{1}^{\prime}(u ; \lambda, \phi)=0, \text { if } & u=u_{2} \\ r_{1}^{\prime}(u ; \lambda, \phi)>0, \text { if } & u>u_{2}\end{cases}
$$

This means that $r_{1}(u ; \lambda, \phi)$ decreases until u_{2} and then increases. So, u_{2} is the only solution of the non-linear equation $r_{1}^{\prime}(u ; \lambda, \phi)=0$. Note that if u_{2} minimizes $r_{1}(u ; \lambda, \phi)$, then u_{2} maximizes $g(u ; \lambda, \gamma, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ for $0<\gamma<1$ and $0<\lambda<(1-$ $\phi)^{-1}$. Therefore, $g(u ; \lambda, \gamma, \phi)$ is unimodal. Since $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$, then $g(u ; \lambda, \gamma, \phi)$ is initially negative for $0<\gamma<1$ and goes to $-\infty$ as $u \rightarrow \infty$. As $g(u ; \lambda, \gamma, \phi)$ is unimodal, then two situations can occur depending on whether the maximum of this function is negative or positive. If the maximum of $g(u ; \lambda, \gamma, \phi)$ is less than or equal to 0 , that is, $g\left(u_{2} ; \lambda, \gamma, \phi\right) \leq 0$, then $f(u ; \lambda, \gamma, \phi)$ is monotonically decreasing. On the other hand, if the maximum of $g(u ; \lambda, \gamma, \phi)$ is greater than 0 , that is, $g\left(u_{2} ; \lambda, \gamma, \phi\right)>0$, then $g(u ; \lambda, \gamma, \phi)$ will have two zeros because it is unimodal. This means that, in this situation, $g(u ; \lambda, \gamma, \phi)=0$ has two solutions, say $u_{1,1}$ and $u_{1,2}$, which can only be obtained using numerical methods. Remembering that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$, it follows that $f(u ; \lambda, \gamma, \phi)$ is decreasing-increasing-decreasing (DID).

Sub-case 1.3.2. $\left(\phi<0,0<\gamma<1\right.$ and $\left.(1-\phi)^{-1}<\lambda<1\right)$
If $(1-\phi)^{-1} \leq \lambda<1$, then $r_{1}^{\prime}(u ; \lambda, \phi) \geq 0$. Therefore, $r_{1}(u ; \lambda, \phi)$ is monotonically increasing and, consequently, $g(u ; \lambda, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ is monotonically decreasing. Moreover, it is known that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=$ $-\infty$. So $g(u ; \lambda, \gamma, \phi)<0$ for $0<\gamma<1$ and $(1-\phi)^{-1} \leq \lambda<1$. This shows that $f(u ; \lambda, \gamma, \phi)$ is monotonically decreasing.

Case 1.4. $(\phi<0, \gamma>1$ and $\lambda \geq 1)$
Here, from $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that once again $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{3} be one of these solutions, that is, $r_{1}\left(u_{3} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. Given that $(\gamma-1) / \gamma<1$ for $\gamma>1$, then $r_{1}(u ; \lambda, \phi)<1$, for $u>1$. Since $\log \left(u_{3}\right)>0$, for $u_{3}>1$, from $r_{1}(u ; \lambda, \phi)=$ $\log (u)\left[-1+\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)\right]$ it is not possible to obtain the upper bound of the interval to which u_{3} belongs. However, it can be seen that $r_{1}(u ; \lambda, \phi)>0$, for $u>1$ and $\lambda \geq 1$. Then, $r_{1}(u ; \lambda, \phi)$ is never zero and it belongs to the interval $(0,1)$. Thus, in this case, $g(u ; \lambda, \gamma, \phi)=$ $\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ can be seen as a straight line with slope $-\gamma$ and vertical intercept $\gamma-1$. Consequently, $g(u ; \lambda, \gamma, \phi)$ is monotonically decreasing and u_{3} is the only solution. In fact, since $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$ for $\gamma>1$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$, it turns out that $g(u ; \lambda, \gamma, \phi)$ is initially positive and will eventually become negative as $u \rightarrow \infty$. Therefore, it follows that $f(t ; \lambda, \gamma, \phi)$ is unimodal. In this case, the mode is equal to $\log \left(u_{3}\right)^{1 / \gamma}$, where u_{3} is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $\gamma>1$ and $\lambda \geq 1$.

Case 1.5. $(\phi<0, \gamma>1$ and $0<\lambda<1)$
From $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{4} be one
of these solutions, that is, $r_{1}\left(u_{4} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. As in the previous case, it is not possible to obtain the upper bound of the interval to which u_{4} belongs. An added difficulty is that now $r_{1}(u ; \lambda, \phi)=\log (u) r_{2}(u ; \lambda, \phi)$, where $r_{2}(u ; \lambda, \phi)=-1+\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)$, can be negative, positive or even zero since $\log (u)>0$ and $r_{2}(u ; \lambda, \phi)>-1$, for $u>1$ and $0<\lambda<$ 1. From Case 1.3., it is known that $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\log (u))-(1-\right.$ $\left.\left.\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$ and $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$. Therefore, this case will be separated into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 1.5.1. $\left(\phi<0,0<\gamma<1\right.$ and $\left.0<\lambda<(1-\phi)^{-1}\right)$
If $0<\lambda<(1-\phi)^{-1}$, then $r_{1}^{\prime}(u ; \lambda, \phi)$ is initially negative and, given that $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$, it will eventually become positive as $u \rightarrow \infty$. From Sub-case 1.3.1., it follows that $r_{1}(u ; \lambda, \phi)$ decreases until a given point and increases thereafter. Hence, $g(u ; \lambda, \gamma, \phi)$ is unimodal. However, in contrast to Sub-case 1.3.1, it is seen that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$, for $\gamma>1$. This means that, although $g(u ; \lambda, \gamma, \phi)$ is unimodal, it is initially positive and, consequently, it has only one root which will be denoted by $u_{4,1}$. Thus, $f(t ; \lambda, \gamma, \phi)$ is unimodal. In this case, the mode is equal to $\log \left(u_{4,1}\right)^{1 / \gamma}$, where $u_{4,1}$ is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $0<\gamma<1$ and $0<\lambda<(1-\phi)^{-1}$.

Sub-case 1.5.2. $\left(\phi<0,0<\gamma<1\right.$ and $\left.(1-\phi)^{-1} \leq \lambda<1\right)$
If $(1-\phi)^{-1} \leq \lambda<1$, then $r_{1}^{\prime}(u ; \lambda, \phi) \geq 0$. As in Sub-case 1.3.2., it follows that $r_{1}(u ; \lambda, \phi)$ is monotonically increasing and, consequently, $g(u ; \lambda, \gamma, \phi)$ is monotonically decreasing. However, in contrast to Sub-case 1.3.1, it is seen that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$, for $\gamma>1$. Thus, $g(u ; \lambda, \gamma, \phi)$ is initially positive and, because it is monotonically decreasing, it has one root which will be denoted by $u_{4,2}$. Therefore, $f(u ; \lambda, \gamma, \phi)$ is also unimodal and the mode is equal to $\log \left(u_{4,2}\right)^{1 / \gamma}$, where $u_{4,2}$ is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $0<\gamma<1$ and $(1-\phi)^{-1} \leq \lambda<1$.
2. For $\phi>0$ (distribution of the maximum):

If $\phi>0$, then $1-\phi<1-\phi \mathrm{e}^{\lambda(1-u)}<1$ since $0<\mathrm{e}^{\lambda(1-u)}<1$, for $u>1$. Hence, $1-\phi \mathrm{e}^{\lambda(1-u)}$ can be negative, positive or even zero when $\phi>0$. Note that the first derivative of $1-\phi \mathrm{e}^{\lambda(1-u)}$ is given by $\lambda \phi \mathrm{e}^{\lambda(1-u)}$, which is always positive for $u>1$ and $\lambda, \phi>0$. Then, $1-\phi \mathrm{e}^{\lambda(1-u)}$ is monotonically increasing and is zero at $u^{*}=1+\lambda^{-1} \log (\phi)$.

Case 2.1. $(\phi>0,0<\gamma<1$ and $\lambda>1)$
Here, from $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{5} be one of these solutions, that is, $r_{1}\left(u_{5} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. Given that $(\gamma-1) / \gamma<0$ for $0<\gamma<1$, then $r_{1}\left(u_{5} ; \lambda, \phi\right)<0$, which implies that $\lambda u_{5}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{5}\right)}\right)<1$ since $\log \left(u_{5}\right)>0$ for $u_{5}>1$. Then $\lambda\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{5}\right)}\right)<1$ and so $u_{5}<1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]$, for $\lambda>1$ and $\phi>0$. Accordingly, u_{5} belongs to the interval ($\left.1,1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]\right)$. It is noteworthy that u_{5} only exists if $1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]>1$, which implies that $\phi>1-\lambda^{-1}$ for $\lambda>1$. The first derivative of $r_{1}(u ; \lambda, \phi)$ is given by $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\log (u))-\right.$ $\left.\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$. Evaluating $r_{1}^{\prime}(u ; \lambda, \phi)$ at u_{5}, it follows that it can take both negative and positive values. In addition, since $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$ it is clear that $r_{1}^{\prime}(u ; \lambda, \phi)$ can be initially negative or positive. Therefore, it is necessary to split this case into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 2.1.1. $\left(0<\phi \leq 1-\lambda^{-1}, 0<\gamma<1\right.$ and $\left.\lambda>1\right)$
If $0<\phi \leq 1-\lambda^{-1}$ with $\lambda>1$, then $r_{1}^{\prime}(u ; \lambda, \phi) \geq 0$. Therefore, $r_{1}(u ; \lambda, \phi)$ is monotonically increasing and, consequently, $g(u ; \lambda, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ is monotonically decreasing. Moreover, $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0 \quad$ for $0<\gamma<1$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$. Therefore, $g(u ; \lambda, \gamma, \phi)<0$ for $0<\phi \leq 1-\lambda^{-1}, 0<\gamma<1$ and $\lambda>1$. This shows that $f(u ; \lambda, \gamma, \phi)$ is monotonically decreasing.

Sub-case 2.1.2. $\left(\phi>1-\lambda^{-1}, 0<\gamma<1\right.$ and $\left.\lambda>1\right)$
If $\phi>1-\lambda^{-1}$ for $\lambda>1$, then $r_{1}^{\prime}(u ; \lambda, \phi)$ is initially negative and, furthermore, as $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$ it is seen that $r_{1}^{\prime}(u ; \lambda, \phi)$ has at least one root. Let u_{6} be one of these solutions, that is, $r_{1}^{\prime}\left(u_{6} ; \lambda, \phi\right)=0$, where u_{6} belongs to the interval $\left(1,1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]\right)$ with $\phi>1-\lambda^{-1}$ and $\lambda>1$. Thus, it follows that

$$
\left\{\begin{array}{l}
r_{1}^{\prime}(u ; \lambda, \phi)<0, \text { if } \quad u<u_{6} \\
r_{1}^{\prime}(u ; \lambda, \phi)=0, \text { if } \quad u=u_{6} \\
r_{1}^{\prime}(u ; \lambda, \phi)>0, \text { if } \quad u>u_{6}
\end{array}\right.
$$

This means that $r_{1}(u ; \lambda, \phi)$ decreases until u_{6} and then increases. So, u_{6} is the only solution of the non-linear equation $r_{1}^{\prime}(u ; \lambda, \phi)=0$. Note that if u_{6} minimizes $r_{1}(u ; \lambda, \phi)$, then u_{6} maximizes $g(u ; \lambda, \gamma, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ for $\phi>1-\lambda^{-1}, 0<\gamma<1$ and $\lambda>1$. Therefore, $g(u ; \lambda, \gamma, \phi)$ is unimodal. Since $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$, then $g(u ; \lambda, \gamma, \phi)$ is initially negative for $0<\gamma<1$ and goes to $-\infty$ as $u \rightarrow \infty$. As $g(u ; \lambda, \gamma, \phi)$ is unimodal, then two situations can occur depending on whether the maximum of this function is negative or positive. If the maximum of $g(u ; \lambda, \gamma, \phi)$ is less than or equal to 0 , that is, $g\left(u_{6} ; \lambda, \gamma, \phi\right) \leq 0$, then $f(u ; \lambda, \gamma, \phi)$ is monotonically decreasing. On the other hand, if the maximum of $g(u ; \lambda, \gamma, \phi)$ is greater than 0 , that is, $g\left(u_{6} ; \lambda, \gamma, \phi\right)>0$, then $g(u ; \lambda, \gamma, \phi)$ will have two zeros because it is unimodal. This means that, in this situation, $g(u ; \lambda, \gamma, \phi)=0$ has two solutions, say $u_{5,1}$ and $u_{5,2}$, which can only be obtained using numerical methods. Thus, it follows that $f(u ; \lambda, \gamma, \phi)$ is DID.

Case 2.2. $(\phi>0, \gamma=1$ and $\lambda>1)$
Here, from $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)$ takes values less or greater than 1 and so there exists at least one solution of this equation. Let u_{7} be one of these solutions, that is, $\lambda u_{7}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{7}\right)}\right)=1$. Given that $u_{7}>1$, then $\lambda\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{7}\right)}\right)<1$ and so $u_{7}<1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]$, for $\lambda>1$ and $\phi>0$. Accordingly, u_{7} belongs to the interval $\left(1,1-\lambda^{-1} \log \left[\phi^{-1}\left(1-\lambda^{-1}\right)\right]\right)$ and u_{7} only exists if $\phi>1-\lambda^{-1}$ for $\lambda>1$. Evaluating $r_{2}^{\prime}(u ; \lambda, \phi)=\lambda\left[1-\phi(1-u \lambda) \mathrm{e}^{\lambda(1-u)}\right]$ at u_{7}, it follows that $r_{2}^{\prime}\left(u_{7} ; \lambda, \phi\right)>\lambda$. Hence, $r_{2}(u ; \lambda, \phi)$ is monotonically increasing and u_{7} is the only solution when it exists. Thus, for $\gamma=1$, $g(u ; \lambda, \gamma, \phi)=-\log (u) r_{2}(u ; \lambda, \phi)$ also has a single zero at u_{7}, when it exists, because $\log (u)>0$ for $u>1$. However, since $\lim _{u \rightarrow 1} r_{2}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$, once again it is seen that u_{7} only exists if $\phi>1-\lambda^{-1}$ for $\lambda>1$. Therefore, it is necessary to split this case into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 2.2.1. $\left(0<\phi \leq 1-\lambda^{-1}, \gamma=1\right.$ and $\left.\lambda>1\right)$
If $0<\phi \leq 1-\lambda^{-1}$ and $\gamma=1$, then $r_{2}(u ; \lambda, \phi)$ is always greater than or equal to 0 and, consequently, $g(u ; \lambda, \gamma, \phi)$ is always less than or equal to 0 . Therefore, $f(t ; \lambda, \gamma, \phi)$ is monotonically decreasing.

Sub-case 2.2.2. $\left(\phi>1-\lambda^{-1}, \gamma=1\right.$ and $\left.\lambda>1\right)$
If $\phi>1-\lambda^{-1}$ and $\lambda>1$, then $r_{2}(u ; \lambda, \phi)$ has a zero at u_{7} and, since $r_{2}(u ; \lambda, \phi)$ is
monotonically increasing, it follows that $g(u ; \lambda, \gamma, \phi)=-\log (u) r_{2}(u ; \lambda, \phi)$ is positive until u_{7}, it has a zero at u_{7} and it is negative thereafter. In this sub-case, the mode is equal to $\log \left(u_{7}\right)^{1 / \gamma}$, where u_{7} is the root of the non-linear equation $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)=1$, for $\phi>1-\lambda^{-1}, \gamma=1$ and $\lambda>1$.

Case 2.3. $(\phi>0, \gamma>1$ and $\lambda>1)$
From $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{8} be one of these solutions, that is, $r_{1}\left(u_{8} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. Given that $(\gamma-1) / \gamma<1$ for $\gamma>1$, then $r_{1}(u ; \lambda, \phi)<1$, for $u>1$. Since $\log \left(u_{8}\right)>0$, for $u_{8}>1$, from $r_{1}(u ; \lambda, \phi)$ it is not possible to obtain the upper bound of the interval to which u_{8} belongs. An added difficulty is that $r_{1}(u ; \lambda, \phi)=\log (u) r_{2}(u ; \lambda, \phi)$ can be negative, positive or even zero since $1-\phi<1-\phi \mathrm{e}^{\lambda(1-u)}<1$, which implies that $-1+\lambda u(1-\phi)<r_{2}(u ; \lambda, \phi)<-1+\lambda u$, for $u>1, \lambda>1$ and $\phi>0$. In addition, it is known that $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\right.$ $\left.\log (u))-\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$ and $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda$. Therefore, this case will be separated into two sub-cases, depending on the relationship between the parameters λ and ϕ.

Sub-case 2.3.1. $\left(0<\phi \leq 1-\lambda^{-1}, \gamma>1\right.$ and $\left.\lambda>1\right)$
If $0<\phi \leq 1-\lambda^{-1}$ with $\lambda>1$, then $r_{1}^{\prime}(u ; \lambda, \phi) \geq 0$. It follows that $r_{1}(u ; \lambda, \phi)$ is monotonically increasing and, consequently, $g(u ; \lambda, \gamma, \phi)=\gamma-1-\gamma r_{1}(u ; \lambda, \phi)$ is monotonically decreasing. However, in contrast to Sub-case 2.1.1, it is seen that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$, for $\gamma>1$. Thus, $g(u ; \lambda, \gamma, \phi)$ is initially positive and, because it is monotonically decreasing with $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$, it has one root which will be denoted by $u_{8,1}$. Therefore, $f(u ; \lambda, \gamma, \phi)$ is unimodal and the mode is equal to $\log \left(u_{8,1}\right)^{1 / \gamma}$, where $u_{8,1}$ is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $0<\phi \leq 1-\lambda^{-1}, \gamma>1$ and $\lambda>1$.

Sub-case 2.3.2. $\left(\phi>1-\lambda^{-1}, \gamma>1\right.$ and $\left.\lambda>1\right)$
If $\phi>1-\lambda^{-1}$ with $\lambda>1$, then $r_{1}^{\prime}(u ; \lambda, \phi)$ is initially negative and, given that $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$, it will eventually become positive as $u \rightarrow \infty$. From Sub-case 2.1.2, it follows that $r_{1}(u ; \lambda, \phi)$ decreases until a given point and increases thereafter. Hence, $g(u ; \lambda, \gamma, \phi)$ is unimodal. However, in contrast to Sub-case 2.1.2, it is seen that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$, for $\gamma>1$. This means that, although $g(u ; \lambda, \gamma, \phi)$ is unimodal, it is initially positive and, consequently, it has only one root which will be denoted by $u_{8,2}$. Thus, $f(t ; \lambda, \gamma, \phi)$ is also unimodal. In this case, the mode is equal to $\log \left(u_{8,2}\right)^{1 / \gamma}$, where $u_{8,2}$ is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $\phi>1-\lambda^{-1}, \gamma>1$ and $\lambda>1$.

Case 2.4. $(\phi>0,0<\gamma<1$ and $0<\lambda \leq 1)$
From $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so this equation has at least one solution. Let u_{9} be one of these solutions, that is, $r_{1}\left(u_{9} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. As in Case 2.1, given that $(\gamma-1) / \gamma<0$ for $0<\gamma<1$ then $r_{1}\left(u_{9} ; \lambda, \phi\right)<0$, which implies that $\lambda u_{9}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{9}\right)}\right)<1$ since $\log \left(u_{9}\right)>0$ for $u_{9}>1$. Then $\lambda\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{9}\right)}\right)<1$ and so $\mathrm{e}^{\lambda\left(1-u_{9}\right)}>\phi^{-1}\left(1-\lambda^{-1}\right)$. However, in contrast to Case 2.1, from $r_{1}(u ; \lambda, \phi)$ it is not possible to obtain the upper bound of the interval to which u_{9} belongs for $0<\lambda \leq 1$. Nonetheless, knowing that $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\right.$ $\left.\log (u))-\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$ and since $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda<0$, it is clear that $r_{1}^{\prime}(u ; \lambda, \phi)$ is always initially negative for $\phi>0$ and $0<\lambda \leq 1$. Furthermore, as
$\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$, it is seen that $r_{1}^{\prime}(u ; \lambda, \phi)$ has at least one root. Let u_{10} be one of these solutions, that is, $r_{1}^{\prime}\left(u_{10} ; \lambda, \phi\right)=0$, where $u_{10}>1$. As in Sub-case 2.1.2, it can be seen that $r_{1}(u ; \lambda, \phi)$ decreases until u_{10} and increases thereafter. So, u_{10} is the only solution of the non-linear equation $r_{1}^{\prime}(u ; \lambda, \phi)=0$. Hence, $g(u ; \lambda, \gamma, \phi)$ is unimodal. Note that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1<0$ for $0<\gamma<1$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$. Consequently, as described in Sub-case 2.1.2, $f(u ; \lambda, \gamma, \phi)$ can take two different shapes depending on whether the maximum of $g(u ; \lambda, \gamma, \phi)$, that is, $g\left(u_{10} ; \lambda, \gamma, \phi\right)$, is negative or positive. If the maximum of $g(u ; \lambda, \gamma, \phi)$ is less than or equal to 0 , then $f(u ; \lambda, \gamma, \phi)$ is monotonically decreasing. On the other hand, if the maximum of $g(u ; \lambda, \gamma, \phi)$ is greater than 0 , then $f(u ; \lambda, \gamma, \phi)$ is DID because $g(u ; \lambda, \gamma, \phi)$ has two zeros and it is unimodal. Thus, in this second situation, $g(u ; \lambda, \gamma, \phi)=0$ has two solutions, say $u_{9,1}$ and $u_{9,2}$, which can only be obtained using numerical methods.

Case 2.5. $(\phi>0, \gamma=1$ and $0<\lambda \leq 1)$
From $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)$ takes values less or greater than 1 and so there exists at least one solution of this equation. Let u_{11} be one of these solutions, that is, $\lambda u_{11}\left(1-\phi \mathrm{e}^{\lambda\left(1-u_{11}\right)}\right)=1$. Given that $u_{11}>1$, then $\lambda(1-$ $\left.\phi \mathrm{e}^{\lambda\left(1-u_{11}\right)}\right)<1$ and so $\mathrm{e}^{\lambda\left(1-u_{11}\right)}>\phi^{-1}\left(1-\lambda^{-1}\right)$. In contrast to Case 2.2 , it is not possible to obtain the upper bound of the interval to which u_{11} belongs for $0<\lambda \leq 1$. Nonetheless, knowing that $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\log (u))-\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$ and $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda<0$, it is clear that $r_{1}^{\prime}(u ; \lambda, \phi)$ is always initially negative for $\phi>0$ and $0<\lambda \leq 1$. Furthermore, as $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$ it is seen that $r_{1}^{\prime}(u ; \lambda, \phi)$ has at least one root. Let u_{12} be one of these solutions, that is, $r_{1}^{\prime}\left(u_{12} ; \lambda, \phi\right)=0$, where $u_{12}>1$. As in Case 2.4, it can be seen that $r_{1}(u ; \lambda, \phi)$ decreases until u_{12} and increases thereafter. So, u_{12} is the only solution of the non-linear equation $r_{1}^{\prime}(u ; \lambda, \phi)=0$. Hence, $g(u ; \lambda, \gamma, \phi)$ is unimodal. However, in contrast to Case 2.4, it is seen that $\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1=0$ for $\gamma=1$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$. This means that, in this situation, $g(u ; \lambda, \gamma, \phi)=0$ has two solutions, say $u_{11,1}$ and $u_{11,2}$, which can only be obtained using numerical methods. Although $g(u ; \lambda, \gamma, \phi)$ has two zeros, it is initially equal to 0 and, because it is unimodal, it crosses the horizontal axis only once, more precisely at $u_{11,2}$, with $u_{11,2}>u_{11,1}$. Therefore, $f(t ; \lambda, \gamma, \phi)$ is unimodal and the mode is equal to $\log \left(u_{11,2}\right)^{1 / \gamma}$, where $u_{11,2}$ is the root of the non-linear equation $\lambda u\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)=1$, for $\gamma=1$ and $0<\lambda \leq 1$.

Case 2.6. $(\phi>0, \gamma>1$ and $0<\lambda \leq 1)$
From $g(u ; \lambda, \gamma, \phi)=0$ it is straightforward to see that $r_{1}(u ; \lambda, \phi)$ takes values less or greater than $(\gamma-1) / \gamma$ and so there exists at least one solution of this equation. Let u_{13} be one of these solutions, that is, $r_{1}\left(u_{13} ; \lambda, \phi\right)=(\gamma-1) / \gamma$. Given that $(\gamma-1) / \gamma<1$ for $\gamma>1$, then $r_{1}(u ; \lambda, \phi)<1$, for $u>1$. However, as in Case 2.3, from $r_{1}(u ; \lambda, \phi)$ it is not possible to obtain the upper bound of the interval to which u_{13} belongs, since $\log \left(u_{13}\right)>0$ for $u_{13}>1$. An added difficulty is that $r_{1}(u ; \lambda, \phi)=\log (u) r_{2}(u ; \lambda, \phi)$, where $r_{2}(u ; \lambda, \phi)=-1+\lambda u(1-$ $\left.\phi \mathrm{e}^{\lambda(1-u)}\right)$, can be negative, positive or even zero since $1-\phi<1-\phi \mathrm{e}^{\lambda(1-u)}<1$, which implies that $-1+\lambda u(1-\phi)<r_{2}(u ; \lambda, \phi)<-1+\lambda u$, for $u>1,0<\lambda \leq 1$ and $\phi>0$. Nonetheless, knowing that $r_{1}^{\prime}(u ; \lambda, \phi)=u^{-1}\left[u \lambda\left(1-\phi \mathrm{e}^{\lambda(1-u)}\right)(1+\log (u))-\left(1-\phi \lambda^{2} u^{2} \mathrm{e}^{\lambda(1-u)} \log (u)\right)\right]$ and $\lim _{u \rightarrow 1} r_{1}^{\prime}(u ; \lambda, \phi)=-1+(1-\phi) \lambda<0$, it is clear that $r_{1}^{\prime}(u ; \lambda, \phi)$ is always initially negative for $\phi>0$ and $0<\lambda \leq 1$. Furthermore, as $\lim _{u \rightarrow \infty} r_{1}^{\prime}(u ; \lambda, \phi)=\infty$ it is seen that $r_{1}^{\prime}(u ; \lambda, \phi)$ has at least one root. Let u_{14} be one of these solutions, that is, $r_{1}^{\prime}\left(u_{14} ; \lambda, \phi\right)=0$, where $u_{14}>1$. As in Cases 2.4 and 2.5 , it can be seen that $r_{1}(u ; \lambda, \phi)$ decreases until u_{14} and increases thereafter. Therefore, u_{14} is the only solution of the non-linear equation $r_{1}^{\prime}(u ; \lambda, \phi)=0$. Hence, $g(u ; \lambda, \gamma, \phi)$ is unimodal. However, in contrast to Cases 2.4 and 2.5 , it is seen that
$\lim _{u \rightarrow 1} g(u ; \lambda, \gamma, \phi)=\gamma-1>0$ for $\gamma>1$ and $\lim _{u \rightarrow \infty} g(u ; \lambda, \gamma, \phi)=-\infty$. This means that, although $g(u ; \lambda, \gamma, \phi)$ is unimodal, it is initially positive and, consequently, it has only one root, denoted by u_{13}. Thus, $f(t ; \lambda, \gamma, \phi)$ is unimodal. In this case, the mode is equal to $\log \left(u_{13}\right)^{1 / \gamma}$, where u_{13} is the root of the non-linear equation $r_{1}(u ; \lambda, \phi)=(\gamma-1) / \gamma$, for $\gamma>1$ and $0<\lambda \leq 1$.

2. ELEMENTS OF THE OBSERVED INFORMATION MATRIX

The elements of the observed information, $\boldsymbol{I}(\lambda, \gamma, \phi)$, are given by

$$
\begin{aligned}
& \frac{\partial^{2} \ell}{\partial \lambda^{2}}=-\frac{m}{\lambda^{2}}-\phi^{2} \sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{\left(\mathrm{e}^{t_{i}^{\gamma}}-1\right)^{2} \mathrm{e}^{2 \lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}}{\left(\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1\right)^{2}} \\
& -\phi \sum_{i=1}^{n}\left(\delta_{i} \mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)}}-1\right) \frac{\left(\mathrm{e}^{t_{i}^{\gamma}}-1\right)^{2} \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t} i_{i}^{\gamma}\right)}}{\mathrm{e}^{\left.\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{\gamma}\right.}\right)}-1}, \\
& \frac{\partial^{2} \ell}{\partial \lambda \partial \gamma}=-\sum_{i=1}^{n} \delta_{i} t_{i}^{\gamma} \mathrm{e}^{t_{i}^{\gamma}} \log \left(t_{i}\right)-\lambda \phi \sum_{i=1}^{n} \delta_{i} \frac{t_{i}^{\gamma} \log \left(t_{i}\right) \mathrm{e}^{2 t_{i}^{\gamma}+\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}}{\mathrm{e}^{\mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)}}-1} \\
& +\lambda \phi^{2} \sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{t_{i}^{\gamma}\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right) \log \left(t_{i}\right) \mathrm{e}^{t_{i}^{\gamma}+2 \lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}}{\left(\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1\right)^{2}} \\
& +\phi \sum_{i=1}^{n} \frac{\left(\lambda \mathrm{e}^{t_{i}^{\gamma}}+(\lambda+1)\left(\delta_{i} \mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1\right)\right) t_{i}^{\gamma} \log \left(t_{i}\right) \mathrm{e}^{t_{i}^{\gamma}+\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}{\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1}, \\
& \frac{\partial^{2} \ell}{\partial \lambda \partial \phi}=-\sum_{i=1}^{n}\left(\delta_{i} \mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1\right) \frac{\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right) \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}{\mathrm{e}^{\left.\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{\gamma}\right.}\right)}-1} \\
& -\phi \sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right) \mathrm{e}^{2 \lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)}}}{\left(\mathrm{e}^{\left.\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t^{\gamma}}\right)}-1\right)^{2}},\right.} \\
& \frac{\partial^{2} \ell}{\partial \gamma^{2}}=-\frac{m}{\gamma^{2}}+\sum_{i=1}^{n} \delta_{i} t_{i}^{\gamma} \log \left(t_{i}\right)^{2}\left(1-\lambda\left(t_{i}^{\gamma}+1\right) \mathrm{e}^{t_{i}^{\gamma}}\right) \\
& -\lambda^{2} \phi^{2} \sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{t_{i}^{2 \gamma} \log \left(t_{i}\right)^{2} \mathrm{e}^{2 t_{i}^{\gamma}+2 \lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}}{\left(\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}-1\right)^{2}} \\
& +\lambda \phi \sum_{i=1}^{n}\left(\delta_{i} \mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)}}-1\right) \frac{t_{i}^{\gamma} \log \left(t_{i}\right)^{2}\left(1+t_{i}^{\gamma}\left(1-\lambda \mathrm{e}^{t_{i}^{\gamma}}\right)\right) \mathrm{e}^{t_{i}^{\gamma}+\lambda\left(1-\mathrm{e}_{i}^{t_{i}^{\gamma}}\right)}}{\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{\tau_{i}^{\gamma}}\right)}}-1},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \ell}{\partial \gamma \partial \phi}=\lambda \sum_{i=1}^{n}\left(\delta_{i} \mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{\gamma_{i}^{\gamma}}\right)}}-1\right) \frac{t_{t}^{\gamma} \log \left(t_{i} \mathrm{e}^{t_{i}^{\gamma}+\lambda\left(1-\mathrm{e}^{\tau_{i}^{\gamma}}\right)}\right.}{\mathrm{e}^{\left.\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{\gamma_{i}}\right.}\right)}-1} \\
& +\lambda \phi \sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{t_{i}^{\gamma} \log \left(t_{i}\right) \mathrm{e}^{\left.t_{i}^{\gamma}+2 \lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right.}\right)}}{\left(\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}^{t_{i}^{\gamma}}\right)}}-1\right)^{2}}, \\
& \frac{\partial^{2} \ell}{\partial \phi^{2}}=-\frac{m}{\phi^{2}}+\frac{n \mathrm{e}^{\phi}}{\left(\mathrm{e}^{\phi}-1\right)^{2}}-\sum_{i=1}^{n}\left(1-\delta_{i}\right) \frac{\mathrm{e}^{2 \lambda\left(1-\mathrm{e}^{t \gamma_{i}^{\gamma}}\right)+\phi \mathrm{e}^{\lambda}\left(1-\mathrm{e}_{i}^{t^{\gamma}}\right)}}{\left(\mathrm{e}^{\phi \mathrm{e}^{\lambda\left(1-\mathrm{e}_{i}^{\tau_{i}^{\gamma}}\right)}}-1\right)^{2}},
\end{aligned}
$$

where $m=\sum_{i=1}^{n} \delta_{i}$ is the observed number of events.

3. SOME PROGRAMS DEVELOPED IN R SOFTWARE

This section provides the R programming codes to reproduce the results of the simulation study discussed in Section 3.4.


```
# function to calculate the expected value of a variable
# with extended Chen-Poisson distribution
#============================================================
Echenpois <- function(lambda, gamma, phi) {
    if ((!is.numeric(lambda)) || (!is.numeric(gamma))
            || (!is.numeric(phi)))
        stop("non-numeric argument")
    if ((min(lambda) <= 0) || (min(gamma) <= 0) ||
            (min(phi) == 0))
        stop("Invalid arguments")
    func <- function(y) {(phi*exp(-phi*y)*
    ((log(1-lambda^(-1)*log(y)))^(1/gamma)))/
    (1-exp(-phi))}
    integral<-integrate(Vectorize(func),
                            lower = 0, upper = 1)
    arr<-array(c(integral$value,integral$abs.error),
                    dim=c(1,2))
    dimnames(arr)<-list("",c("estimate ",
                            " integral abs. error <"))
    return(arr)
}
```


\# function to generate pseudo-random data from an extended
\# Chen-Poisson distribution, considering random censoring

\# lambda, gamma, phi: parameter values;
\# n : sample size; $p:$ percentage of censoring
rchenpoi <- function(lambda, gamma, phi, n, p) \{

```
    temp <- matrix(0, nrow=n, ncol=1);
    t.event <- matrix(0, nrow=n, ncol=1);
    cens <- matrix(0, nrow=n, ncol=1)
    u<-runif(n,0,1) # for time-to-events
    t.event <- (log(1-(log(1-(log((exp (phi)-1)*u+1))/
                                    phi))/lambda))^(1/gamma)
    # determine maux associated to percentage of censoring p
    if (p==0){temp<-t.event ;cens<-rep (1,n)}
    if(p!=0){maux <- Echenpois(lambda=lambda, gamma=gamma,
                                    phi=phi)[1]/p
    # for random censoring
    cax<-runif(n,0,maux)
    for (i in 1:n) {
        if (t.event[i]<=cax[i]) {
            temp[i]<-t.event[i] ;cens[i]<-1}
            if (t.event[i]>cax[i]) {
            temp[i]<-cax[i] ;cens[i]<-0}
    }}
    return(list(temp=temp, cens=cens))
}
#===========================================================
# log-likelihood function of the extended Chen-Poisson
# distribution
#=============================================================
# param: vector of parameter; cens: censoring vector;
# temp: times vector; n: sample size
# Note: In order to ensure that the estimate of phi is:
# positive, then consider exp(param[3])
# negative, then consider log(1/(1+exp(param[3])))
param = numeric(0)
fvero <- function(param, cens, temp, n) {
    vetsoma = 0
    p1 <- exp(param[1]) # lambda
    p2 <- exp(param[2]) # gamma
    p3 <- exp(param[3]) # phi
    vetsoma = lapply(1:n, function(z) {
        aux <- (-log(p3/(1-exp(-p3)))-cens[z]*(p1+log(p1*p2))-
        (p2-1)*cens[z]*log(temp[z])-cens[z]*(temp[z]^p2)+
        p1*cens[z]*exp(temp[z]^p2)-(1-cens[z])*
        log((1-\operatorname{exp}(-p3*exp(p1*(1-\operatorname{exp}(temp[z]^p2)))))/p3)+
        p3*cens[z]*exp(p1*(1-\operatorname{exp}(temp[z]^p2)))); sum(aux)})
    llike <- sum(unlist(vetsoma))
    return(llike)
}
#=============================================================
# function to calculate the observed information matrix
#=============================================================
# param: vector of parameter; cens: censoring vector;
# temp: times vector; n: sample size
```

```
hess <- function(param, cens, temp, n) {
    aux11=0; aux12=0; aux13=0; aux22=0; aux23=0; aux33=0
    p1 <- param[1] # lambda
    p2 <- param[2] # gamma
    p3 <- param[3] # phi
    # second derivative with respect to lambda
    aux11 <- lapply(1:n, function(z) {
        hessiL = (((cens[z]*(-1 + exp(exp(p1 -
        exp((temp[z])^p2)*p1)*p3))^2)/(p1^2) +
        ((-1 + exp((temp[z])^p2))^2*p3^2)/
        exp(2*(-1 + exp((temp[z])^p2))*p1) +
        cens[z]*exp(p1 - 2*exp((temp[z])^p2)*p1 +
        exp(p1 - exp((temp[z])^p2)*p1)*p3)*
        (-1 + exp((temp[z])^p2))^2*p3*
        (-\operatorname{exp}(\operatorname{exp}((temp[z])^p2)*p1) +
        exp(exp((temp[z]) ^p2)*p1 +
        exp(p1 - exp((temp[z])^p2)*p1)*p3) - exp(p1)*p3) +
        exp(p1 - exp((temp[z])^p2)*p1)*
        (-1 + exp((temp[z])^p2))^2*
        (-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))*p3*
        (-1 + exp(p1 - exp((temp[z])^p2)*p1)*p3))/
        ((-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2));
    sum(hessiL)})
    a11 <- sum(unlist(aux11))
    # second derivative of lambda with respect to gamma
    aux12 <- lapply(1:n, function(z) {
        hessiLG = ((1/(-1+(exp(exp(p1-exp ((temp[z])^p2)*p1)*
        p3)) )^2)*(exp((temp[z])^p2-2*exp((temp[z])^p2)*p1)*
        (temp[z])^p2*(exp(p1)*p3*(exp((temp[z])^p2+
        exp((temp[z])^p2)*p1)*p1-exp((temp[z])^p2 +
        exp((temp[z])^p2)*p1+exp(p1- exp((temp[z])^p2)*p1)*
        p3)*p1-exp(exp((temp[z])^p2)*p1)*(1 + p1) +
        exp(exp((temp[z])^p2)*p1+exp(p1 - exp((temp[z])^p2)*
        p1)*p3)*(1 + p1) - exp(p1 + exp(p1 -
        exp((temp[z])^p2)*p1)*p3)*p1*p3 + exp((temp[z])^p2+
        p1 + exp(p1 - exp((temp[z]) ^p2)*p1)*p3)*p1*p3) +
        cens[z]*(exp(2*exp((temp[z])^p2)*p1) -
        2*exp(2*exp((temp[z])^p2)*p1 + exp(p1 -
        exp((temp[z])^p2)*p1)*p3)+exp(2* exp((temp[z])^p2)*p1+
        2*exp(p1-exp((temp[z])^p2)*p1)*p3)-exp((temp[z])^p2+
        p1+exp((temp[z])^p2)*p1+exp(p1-exp((temp[z])^p2)*p1)*
        p3)*p1*p3 + exp((temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
        2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*p1*p3 + exp(p1 +
        exp((temp[z])^p2)*p1+exp(p1-exp((temp[z])^p2)*p1)*p3)*
        (1 + p1)*p3 - exp(p1 + exp((temp[z])^p2)*p1 +
        2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*(1 + p1)*p3 +
        exp(2*p1+exp(p1-exp((temp[z])^p2)*p1)*p3)*p1*p3^2 -
        exp((temp[z])^p2+2*p1+exp(p1-exp((temp[z])^p2)*p1)*
        p3)*p1*p3^2))*log(temp[z])));
    sum(hessiLG)})
    a12 <- sum(unlist(aux12))
    # second derivative of lambda with respect to phi
```

```
aux13 <- lapply(1:n, function(z) {hessiLP = ((exp(p1 -
    2*exp((temp[z])^p2)*p1)*(1 - exp((temp[z])^p2))*
    (exp(exp((temp[z])^p2)*p1) - (1 + cens[z])*
    exp(exp((temp[z])^p2)*p1 + exp(p1 - exp((temp[z])^p2)*
    p1)*p3) + cens[z]*exp(exp((temp[z])^p2)*p1+2*exp(p1 -
    exp((temp[z])^p2)*p1)*p3) - (-1 + cens[z])*exp(p1 +
    exp(p1 - exp((temp[z])^p2)*p1)*p3)*p3))/((-1 +
    exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2));
sum(hessiLP)})
a13 <- sum(unlist(aux13))
# second derivative with respect to gamma
aux22 <- lapply(1:n, function(z) {
    hessiG = (cens[z]/(p2^2) + (1/((-1 + exp(exp(p1 -
    exp((temp[z])^p2)*p1)*p3))^2))*(((temp[z])^p2*
    (exp((temp[z])^p2+p1)*p1*p3*((-exp(exp ((temp[z])^p2)*
    p1))*(1 + (temp[z])^p2) + exp(exp((temp[z])^p2)*p1 +
    exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+(temp[z])^p2) +
    exp((temp[z])^p2 + exp((temp[z])^p2)*p1)*(temp[z])^p2
    *p1 - exp((temp[z])^p2+exp((temp[z])^p2)*p1+exp(p1 -
    exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*p1 +
    exp((temp[z])^p2+p1+exp(p1-exp((temp[z])^p2)*p1)*p3)*
    (temp[z])^p2*p1*p3)+cens[z]*(-\operatorname{exp}(2*exp((temp[z])^p2)*
    p1) + 2*exp(2*exp((temp[z])^p2)*p1 + exp(p1 -
    exp((temp[z])^p2)*p1)*p3)-exp(2*exp((temp[z])^p2)*p1+
    2*exp(p1-exp((temp[z])^p2)*p1)*p3)+exp((temp[z])^p2+
    2*exp((temp[z])^p2)*p1)*(1+(temp[z])^p2)*p1-
    2*exp((temp[z])^p2 + 2*exp((temp[z])^p2)*p1 +
    exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+(temp[z])^p2)*p1+
    exp((temp[z])^p2+2*exp((temp[z])^p2)*p1+2*exp(p1 -
    exp((temp[z])^p2)*p1)*p3)*(1 + (temp[z])^p2)*p1 +
    exp((temp[z])^p2+p1+exp((temp[z])^p2)*p1+exp(p1 -
    exp((temp[z])^p2)*p1)*p3)*(1 + (temp[z])^p2)*p1*p3 -
    exp((temp[z])^p2 + p1 + exp((temp[z])^p2)*p1 +
    2*exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+(temp[z])^p2)*
    p1*p3 - exp(2*(temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
    exp(p1 - exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*
    p1^2*p3+exp(2*(temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
    2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*
    p1^2*p3 - exp(2*(temp[z])^p2 + 2*p1 + exp(p1 -
    exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*p1^2*p3^2))*
    log((temp[z]))^2)/exp(2*exp((temp[z])^p2)*p1)));
sum(hessiG)})
a22 <- sum(unlist(aux22))
# second derivative of gamma with respect to phi
aux23 <- lapply(1:n, function(z) {
    hessiGP = ((exp((temp[z])^p2+p1-2*exp((temp[z])^p2)*
    p1)*(temp[z])^p2*p1*(-exp(exp((temp[z])^p2)*p1)+(1+
    cens[z])*exp(exp((temp[z])^p2)*p1 + exp(p1 -
    exp((temp[z])^p2)*p1)*p3)-cens[z]*
    exp(exp((temp[z])^p2)*p1+2*exp(p1-exp((temp[z])^p2)*
    p1)*p3)+(-1+cens[z])*exp(p1+exp(p1-exp((temp[z])^p2)*
    p1)*p3)*p3)*log(temp[z]))/((-1+exp(exp(p1-
    exp((temp[z])^p2)*p1)*p3))^2));
sum(hessiGP)})
```

```
    a23 <- sum(unlist(aux23))
    # second derivative with respect to phi
    aux33 <- lapply(1:n, function(z) {
        hessiP = (- (exp(p3)/((-1+exp (p3)) ^2))-((-1+cens[z])*
        exp(2*p1-2*exp((temp[z])^p2)*p1+exp(p1-
        exp((temp[z])^p2)*p1)*p3))/
        ((-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2) +
        cens[z]/(p3^2));
    sum(hessiP)})
    a33 <- sum(unlist(aux33))
    matrix(c(a11, a12, a13, a12, a22, a23, a13, a23, a33),
        nrow=3, byrow=T)
}
#============================================================
# Set parameter values for the simulations scenarios
# n = 20, 50, 100, 500, 1000; p = 0, 0.1, 0.3
# lambda 0.2; gamma= 1.5; phi= 3 (hf is increasing)
# lambda 3; gamma= 0.3; phi= 20 (hf is unimodal)
# lambda 1.3; gamma= 0.2; phi= -2 (hf is decreasing)
# lambda 0.6; gamma= 0.6; phi= -3.5 (hf is bathtub-shaped)
#============================================================
# installing and loading library MASS to use ginv()
install.packages("MASS"); library(MASS)
# sample size
n <- c(20,50,100,500,1000)
# lambda, gamma and phi parameter values
lambda <- c(0.2,3) # c(1.3,0.6)
gamma <- c(1.5,0.3) # c(0.2,0.6)
phi <- c(3,20) #c(-2,-3.5)
# vector of initial values for parameters (see below)
# Note: If in the log-likelihood function was considered:
# exp(param[3]), then put log(phi)
# log(1/(1+exp(param[3]))), then put log(1-exp(phi))-phi
condinit.l = log(lambda)
condinit.g = log(gamma)
condinit.p = log(phi)
# percentage of censoring
p <- c(0,0.1,0.3)
# number of simulations
simul = 1000
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Program for the simulation study
#~~~~~~~~~~~~~~~~~~
table1 <- data.frame()
for (m in 1:length(p)){
```

```
for (a in 1:length(lambda)){
for (x in 1:length(n)){
set.seed(2143)
result=data.frame ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0);
names(result) <- c("lambda","Varlambda","LI","LS","gamma",
    "Vargamma","LI","LS","phi","Varphi","LI","LS")
s=1
options(warn=-1) #Note: warnings are disabled because we
    #have already dealt the problems in the simulations.
while (s <= simul) {
# generate the data
data = rchenpoi(lambda=lambda[a], gamma=gamma[a],
    phi=phi[a], n=n[x], p=p[m])
# fit model
# par=initial values for each lambda, gamma and phi
otim <- optim(par=c(condinit.l[a],condinit.g[a],
    condinit.p[a]), method="BFGS", fn=fvero,
    cens=data$cens, temp=data$temp, n=n[x],
    control=list(reltol=1e-5))
# compute the observed information matrix
# Note: If in the log-likelihood function was considered:
# exp(param[3]), then put exp(otim$par)
# log(1/(1+exp(param[3]))), then put c(exp(otim$par[1]),
# exp(otim$par[2]),log(1/(1+exp(otim$par[3]))))
Inf.Fisher <- hess(exp(otim$par), cens=data$cens,
                            temp=data$temp, n=n[x])
if (is.nan(sum(Inf.Fisher))) { }
else {# compute the variance from the information matrix
    aux <- ginv(Inf.Fisher)
    vetvar <- diag(aux);
    if (is.nan(sqrt(vetvar[1]))||is.nan(sqrt(vetvar[2]))||
        is.nan(sqrt(vetvar[3]))) { }
    else {
# compute the 95% CI of the parameters estimates
# Note: If in the log-likelihood function was considered:
# exp(param[3]), then here put
# matrix(c(exp(otim$par)- 1.96*sqrt(vetvar),
# exp(otim$par)+1.96*sqrt(vetvar)), ncol=2, byrow=F)
#
# log(1/(1+exp(param[3]))), then here put
# matrix(c(exp(otim$par[1])-1.96*sqrt(vetvar[1]),
# exp(otim$par[1])+1.96*sqrt(vetvar[1]),
# exp(otim$par[2])-1.96*sqrt(vetvar[2]),
# exp(otim$par[2])+1.96*sqrt(vetvar[2]),
# log(1/(1+exp(otim$par[3]))) -1.96*sqrt(vetvar[3]),
# log(1/(1+exp(otim$par [3])))+1.96*sqrt(vetvar [3])),
# ncol=2, byrow=T)
IC <- matrix(c(exp(otim$par) -1.96*sqrt(vetvar),
        exp(otim$par)+1.96*sqrt(vetvar)), ncol=2, byrow=F)
        # get the results for parameter lambda
        result[s,1] = exp(otim$par[1]); result[s,2] <- vetvar[1]
```

```
result[s,3] <- IC[1,1]; result[s,4] <- IC[1,2]
# get the results for parameter gamma
result[s,5] = exp(otim$par [2]); result[s,6] <- vetvar[2]
result[s,7] <- IC[2,1]; result[s,8] <- IC[2,2]
# get the results for parameter phi
# Note: If in the log-likelihood function was considered:
# exp(param[3]), then here put exp(otim$par[3])
# log(1/(1+exp(param[3]))), then here put
# log(1/(1+exp(otim$par[3])))
result[s,9] = exp(otim$par [3]); result[s,10] <- vetvar[3]
result[s,11] <- IC[3,1]; result[s,12] <- IC[3,2]
s=s+1}}}
options(warn=0) # warnings turned on
L1 <- length(which(result[,3] > lambda[a]))/simul
U1 <- length(which(result[,4] < lambda[a]))/simul
L2 <- length(which(result[,7] > gamma[a]))/simul
U2 <- length(which(result[,8] < gamma[a]))/simul
L3 <- length(which(result[,11] > phi[a]))/simul
U3 <- length(which(result[,12] < phi[a]))/simul
table1 <- rbind(table1,c(p[m]*100,lambda[a],gamma[a],
    phi[a],n[x],mean(result[,1]), mean(result[,5]),
    mean(result[,9]), mean(sqrt(result[,2])),
    mean(sqrt(result[,6])), mean(sqrt(result[,10])),
    sum(result[,1]-lambda[a])/simul,
    sum(result[,5]-gamma[a])/simul,
    sum(result[,9]-phi[a])/simul,
    sum((result[,1]-lambda[a])^2)/simul,
    sum((result[,5]-gamma[a])^2)/simul,
    sum((result[,9]-phi[a])^2)/simul,(1-(L1+U1))*100,
    (1-(L2+U2))*100, (1-(L3+U3))*100))
```

\}\}\}
colnames (table1) <- c("\% Cens", "lambda", "gamma", "phi", "n",
"avg(l)", "avg(g)", "avg(p)", "sd(l)","sd(g)", "sd(p)",
"bias(l)", "bias(g)", "bias(p)", "mse(l)","mse(g)",
"mse (p) ", "CP (1) ", "CP (g) ", "CP (p) ")

\# show results for Table 1:

table1

[^0]: ® Corresponding author.

