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1. PROOF OF PROPOSITION 3.3

This section provides the Proof of Proposition 3.3 regarding the monotonicity study of
the probability density function (pdf) of the ECP distribution.

Proof of Proposition 3.3:

The first derivative of the pdf (3.4) of the ECP distribution is given by

f ′(t;λ, γ, φ) =
f(t;λ, γ, φ)

t

{
γ − 1− γtγ

[
− 1 + λetγ

(
1− φeλ(1−etγ )

)]}
, t > 0,

where λ, γ > 0 and φ ∈ R\{0}. The sign of f ′(t;λ, γ, φ) is the sign of the expression in curly
brackets and f ′(t;λ, γ, φ) is zero when that expression is zero. Consider the change of vari-
able u = etγ and rewrite the expression in curly brackets as g(u;λ, γ, φ) = γ− 1− γr1(u;λ, φ),
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where r1(u;λ, φ) = log(u)
[
− 1 + λu(1− φeλ(1−u))

]
for u > 1. The monotonicity study of the

pdf is done separately for φ < 0 (distribution of the minimum) and φ > 0 (distribution of the
maximum).

1. For φ < 0 (distribution of the minimum):
If φ < 0, then 1 < 1− φeλ(1−u) < 1− φ since 0 < eλ(1−u) < 1, for u > 1. Hence, 1− φeλ(1−u)

is never zero when φ < 0.

Case 1.1. (φ < 0, 0 < γ ≤ 1 and λ ≥ 1)
If φ < 0, 0 < γ ≤ 1 and λ ≥ 1, then g(u;λ, γ, φ) < 0 and, therefore, f(t;λ, γ, φ) is monotoni-
cally decreasing.

Case 1.2. (φ < 0, γ = 1 and 0 < λ < 1)
Here, from g(u;λ, γ, φ) = 0 it is straightforward to see that λu(1− φeλ(1−u)) takes values
less or greater than 1 and so there exists at least one solution of this equation. Let u0

be one of these solutions, that is, λu0(1− φeλ(1−u0)) = 1. Given that 1− φeλ(1−u0) > 1,
then λu0 = 1/(1− φeλ(1−u0)) < 1 and so u0 < 1/λ. Accordingly, u0 belongs to the interval
(1, 1/λ), with 0 < λ < 1. Let r2(u;λ, φ) = −1 + λu(1− φeλ(1−u)), so its first derivative is
r′2(u;λ, φ) = λ[1−φ(1−uλ)eλ(1−u)]. Evaluating r′2(u;λ, φ) at u0, it follows that r′2(u0;λ, φ) >

0, for u0 ∈ (1, 1/λ). Hence, r2(u;λ, φ) is monotonically increasing and u0 is the only solution,
if it exists. Thus, g(u;λ, γ, φ) = − log(u)r2(u;λ, φ) also has just a single zero at u0, when
it exists, because log(u) > 0 for u > 1. However, since limu→1 r2(u;λ, φ) = −1 + (1− φ)λ,
u0 only exists if −1 + (1− φ)λ < 0. Therefore, it is necessary to split this case into two
sub-cases, depending on the relationship between the parameters λ and φ.

Sub-case 1.2.1. (φ < 0, γ = 1 and 0 < λ < (1− φ)−1)
If 0 < λ < (1− φ)−1, then r2(u;λ, φ) has a zero at u0 and, since r2(u;λ, φ) is monoton-
ically increasing, it follows that g(u;λ, γ, φ) = − log(u)r2(u;λ, φ) is positive until u0, it
has a zero at u0 and it is negative thereafter. Therefore, f(t;λ, γ, φ) is unimodal. In
this sub-case, the mode is equal to log(u0)1/γ , where u0 is the root of the non-linear
equation λu(1− φeλ(1−u)) = 1, for γ = 1 and 0 < λ < (1− φ)−1.

Sub-case 1.2.2. (φ < 0, γ = 1 and (1− φ)−1 ≤ λ < 1)
If (1− φ)−1 ≤ λ < 1, then r2(u;λ, φ) is always greater than or equal to 0 and, conse-
quently, g(u;λ, γ, φ) is always less than or equal to 0. Therefore, f(t;λ, γ, φ) is mono-
tonically decreasing.

Case 1.3. (φ < 0, 0 < γ < 1 and 0 < λ < 1)
Here, from g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or
greater than (γ − 1)/γ and so there exists at least one solution of this equation. Let u1

be one of these solutions, that is, r1(u1;λ, φ) = (γ − 1)/γ. Given that (γ − 1)/γ < 0 for
0 < γ < 1, then r1(u1;λ, φ) < 0, which implies that λu1(1− φeλ(1−u1)) < 1 since log(u1) > 0
for u1 > 1. Moreover, it is known that 1− φeλ(1−u1) > 1 implies that u1 < 1/λ. Accordingly,
u1 belongs to the interval (1, 1/λ), with 0 < λ < 1. The first derivative of r1(u;λ, φ) is given
by r′1(u;λ, φ) = u−1

[
uλ(1− φeλ(1−u))

(
1 + log(u)

)
−

(
1− φλ2u2eλ(1−u) log(u)

)]
. Evaluating

r′1(u;λ, φ) at u1 ∈ (1, 1/λ), it follows that it can take both negative and positive values. In
addition, as limu→1 r′1(u;λ, φ) = −1 + (1− φ)λ, it is clear that r′1(u;λ, φ) can be initially
negative or positive. Therefore, it is necessary to split this case into two sub-cases, depending
on the relationship between the parameters λ and φ.
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Sub-case 1.3.1. (φ < 0, 0 < γ < 1 and 0 < λ < (1− φ)−1)
If 0 < λ < (1 − φ)−1, then r′1(u;λ, φ) is initially negative and, furthermore, as
limu→∞ r′1(u;λ, φ) = ∞ it is seen that r′1(u;λ, φ) = 0 has at least one root. Let u2

be one of these solutions, that is, r′1(u2;λ, φ) = 0, but now u2 belongs to the interval
(1, 1/λ) with 0 < λ < (1− φ)−1. Thus, it follows that

r′1(u;λ, φ) < 0, if u < u2

r′1(u;λ, φ) = 0, if u = u2

r′1(u;λ, φ) > 0, if u > u2

.

This means that r1(u;λ, φ) decreases until u2 and then increases. So, u2 is the only
solution of the non-linear equation r′1(u;λ, φ) = 0. Note that if u2 minimizes r1(u;λ, φ),
then u2 maximizes g(u;λ, γ, φ) = γ − 1− γr1(u;λ, φ) for 0 < γ < 1 and 0 < λ < (1−
φ)−1. Therefore, g(u;λ, γ, φ) is unimodal. Since limu→1 g(u;λ, γ, φ) = γ − 1 < 0 and
limu→∞ g(u;λ, γ, φ) = −∞, then g(u;λ, γ, φ) is initially negative for 0 < γ < 1 and goes
to −∞ as u →∞. As g(u;λ, γ, φ) is unimodal, then two situations can occur depend-
ing on whether the maximum of this function is negative or positive. If the maximum
of g(u;λ, γ, φ) is less than or equal to 0, that is, g(u2;λ, γ, φ) ≤ 0, then f(u;λ, γ, φ)
is monotonically decreasing. On the other hand, if the maximum of g(u;λ, γ, φ) is
greater than 0, that is, g(u2;λ, γ, φ) > 0, then g(u;λ, γ, φ) will have two zeros because
it is unimodal. This means that, in this situation, g(u;λ, γ, φ) = 0 has two solutions,
say u1,1 and u1,2, which can only be obtained using numerical methods. Remember-
ing that limu→1 g(u;λ, γ, φ) = γ− 1 < 0 and limu→∞ g(u;λ, γ, φ) = −∞, it follows that
f(u;λ, γ, φ) is decreasing-increasing-decreasing (DID).

Sub-case 1.3.2. (φ < 0, 0 < γ < 1 and (1− φ)−1 < λ < 1)
If (1− φ)−1 ≤ λ < 1, then r′1(u;λ, φ) ≥ 0. Therefore, r1(u;λ, φ) is monotonically in-
creasing and, consequently, g(u;λ, φ) = γ−1−γr1(u;λ, φ) is monotonically decreasing.
Moreover, it is known that limu→1 g(u;λ, γ, φ) = γ − 1 < 0 and limu→∞ g(u;λ, γ, φ) =
−∞. So g(u;λ, γ, φ) < 0 for 0 < γ < 1 and (1− φ)−1 ≤ λ < 1. This shows that
f(u;λ, γ, φ) is monotonically decreasing.

Case 1.4. (φ < 0, γ > 1 and λ ≥ 1)
Here, from g(u;λ, γ, φ) = 0 it is straightforward to see that once again r1(u;λ, φ) takes values
less or greater than (γ − 1)/γ and so there exists at least one solution of this equation.
Let u3 be one of these solutions, that is, r1(u3;λ, φ) = (γ − 1)/γ. Given that (γ − 1)/γ < 1
for γ > 1, then r1(u;λ, φ) < 1, for u > 1. Since log(u3) > 0, for u3 > 1, from r1(u;λ, φ) =
log(u)

[
− 1 + λu(1− φeλ(1−u))

]
it is not possible to obtain the upper bound of the interval to

which u3 belongs. However, it can be seen that r1(u;λ, φ) > 0, for u > 1 and λ ≥ 1. Then,
r1(u;λ, φ) is never zero and it belongs to the interval (0, 1). Thus, in this case, g(u;λ, γ, φ) =
γ − 1− γr1(u;λ, φ) can be seen as a straight line with slope −γ and vertical intercept γ − 1.
Consequently, g(u;λ, γ, φ) is monotonically decreasing and u3 is the only solution. In fact,
since limu→1 g(u;λ, γ, φ) = γ − 1 > 0 for γ > 1 and limu→∞ g(u;λ, γ, φ) = −∞, it turns out
that g(u;λ, γ, φ) is initially positive and will eventually become negative as u →∞. Therefore,
it follows that f(t;λ, γ, φ) is unimodal. In this case, the mode is equal to log(u3)1/γ , where
u3 is the root of the non-linear equation r1(u;λ, φ) = (γ − 1)/γ, for γ > 1 and λ ≥ 1.

Case 1.5. (φ < 0, γ > 1 and 0 < λ < 1)
From g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or greater
than (γ − 1)/γ and so there exists at least one solution of this equation. Let u4 be one
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of these solutions, that is, r1(u4;λ, φ) = (γ − 1)/γ. As in the previous case, it is not pos-
sible to obtain the upper bound of the interval to which u4 belongs. An added difficulty
is that now r1(u;λ, φ) = log(u)r2(u;λ, φ), where r2(u;λ, φ) = −1 + λu(1− φeλ(1−u)), can be
negative, positive or even zero since log(u) > 0 and r2(u;λ, φ) > −1, for u > 1 and 0 < λ <

1. From Case 1.3., it is known that r′1(u;λ, φ) = u−1
[
uλ(1− φeλ(1−u))

(
1 + log(u)

)
−

(
1−

φλ2u2eλ(1−u) log(u)
)]

and limu→1 r′1(u;λ, φ) = −1 + (1− φ)λ. Therefore, this case will be
separated into two sub-cases, depending on the relationship between the parameters λ and
φ.

Sub-case 1.5.1. (φ < 0, 0 < γ < 1 and 0 < λ < (1− φ)−1)
If 0 < λ < (1 − φ)−1, then r′1(u;λ, φ) is initially negative and, given that
limu→∞ r′1(u;λ, φ) = ∞, it will eventually become positive as u →∞. From Sub-case
1.3.1., it follows that r1(u;λ, φ) decreases until a given point and increases thereafter.
Hence, g(u;λ, γ, φ) is unimodal. However, in contrast to Sub-case 1.3.1, it is seen that
limu→1 g(u;λ, γ, φ) = γ − 1 > 0, for γ > 1. This means that, although g(u;λ, γ, φ) is
unimodal, it is initially positive and, consequently, it has only one root which will be
denoted by u4,1. Thus, f(t;λ, γ, φ) is unimodal. In this case, the mode is equal to
log(u4,1)1/γ , where u4,1 is the root of the non-linear equation r1(u;λ, φ) = (γ − 1)/γ,
for 0 < γ < 1 and 0 < λ < (1− φ)−1.

Sub-case 1.5.2. (φ < 0, 0 < γ < 1 and (1− φ)−1 ≤ λ < 1)
If (1−φ)−1 ≤ λ < 1, then r′1(u;λ, φ) ≥ 0. As in Sub-case 1.3.2., it follows that r1(u;λ, φ)
is monotonically increasing and, consequently, g(u;λ, γ, φ) is monotonically decreasing.
However, in contrast to Sub-case 1.3.1, it is seen that limu→1 g(u;λ, γ, φ) = γ−1 > 0, for
γ > 1. Thus, g(u;λ, γ, φ) is initially positive and, because it is monotonically decreasing,
it has one root which will be denoted by u4,2. Therefore, f(u;λ, γ, φ) is also unimodal
and the mode is equal to log(u4,2)1/γ , where u4,2 is the root of the non-linear equation
r1(u;λ, φ) = (γ − 1)/γ, for 0 < γ < 1 and (1− φ)−1 ≤ λ < 1.

2. For φ > 0 (distribution of the maximum):
If φ > 0, then 1− φ < 1− φeλ(1−u) < 1 since 0 < eλ(1−u) < 1, for u > 1. Hence, 1− φeλ(1−u)

can be negative, positive or even zero when φ > 0. Note that the first derivative of 1−φeλ(1−u)

is given by λφeλ(1−u), which is always positive for u > 1 and λ, φ > 0. Then, 1− φeλ(1−u) is
monotonically increasing and is zero at u∗ = 1 + λ−1 log(φ).

Case 2.1. (φ > 0, 0 < γ < 1 and λ > 1)
Here, from g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or
greater than (γ − 1)/γ and so there exists at least one solution of this equation. Let u5

be one of these solutions, that is, r1(u5;λ, φ) = (γ − 1)/γ. Given that (γ − 1)/γ < 0 for
0 < γ < 1, then r1(u5;λ, φ) < 0, which implies that λu5(1− φeλ(1−u5)) < 1 since log(u5) > 0
for u5 > 1. Then λ(1− φeλ(1−u5)) < 1 and so u5 < 1− λ−1 log[φ−1(1− λ−1)], for λ > 1 and
φ > 0. Accordingly, u5 belongs to the interval

(
1, 1− λ−1 log[φ−1(1− λ−1)]

)
. It is noteworthy

that u5 only exists if 1−λ−1 log[φ−1(1−λ−1)] > 1, which implies that φ > 1−λ−1 for λ > 1.
The first derivative of r1(u;λ, φ) is given by r′1(u;λ, φ) = u−1

[
uλ(1− φeλ(1−u))

(
1 + log(u)

)
−(

1− φλ2u2eλ(1−u) log(u)
)]

. Evaluating r′1(u;λ, φ) at u5, it follows that it can take both
negative and positive values. In addition, since limu→1 r′1(u;λ, φ) = −1 + (1− φ)λ it is clear
that r′1(u;λ, φ) can be initially negative or positive. Therefore, it is necessary to split this
case into two sub-cases, depending on the relationship between the parameters λ and φ.



Supplementary Material for “The extended Chen-Poisson lifetime distribution” 5

Sub-case 2.1.1. (0 < φ ≤ 1− λ−1, 0 < γ < 1 and λ > 1)
If 0 < φ ≤ 1− λ−1 with λ > 1, then r′1(u;λ, φ) ≥ 0. Therefore, r1(u;λ, φ) is mono-
tonically increasing and, consequently, g(u;λ, φ) = γ− 1− γr1(u;λ, φ) is monotonically
decreasing. Moreover, limu→1 g(u;λ, γ, φ) = γ − 1 < 0 for 0 < γ < 1 and
limu→∞ g(u;λ, γ, φ) = −∞. Therefore, g(u;λ, γ, φ) < 0 for 0 < φ ≤ 1− λ−1, 0 < γ < 1
and λ > 1. This shows that f(u;λ, γ, φ) is monotonically decreasing.

Sub-case 2.1.2. (φ > 1− λ−1, 0 < γ < 1 and λ > 1)
If φ > 1 − λ−1 for λ > 1, then r′1(u;λ, φ) is initially negative and, furthermore,
as limu→∞ r′1(u;λ, φ) = ∞ it is seen that r′1(u;λ, φ) has at least one root. Let u6

be one of these solutions, that is, r′1(u6;λ, φ) = 0, where u6 belongs to the interval(
1, 1− λ−1 log[φ−1(1− λ−1)]

)
with φ > 1− λ−1 and λ > 1. Thus, it follows that
r′1(u;λ, φ) < 0, if u < u6

r′1(u;λ, φ) = 0, if u = u6

r′1(u;λ, φ) > 0, if u > u6

.

This means that r1(u;λ, φ) decreases until u6 and then increases. So, u6 is the only
solution of the non-linear equation r′1(u;λ, φ) = 0. Note that if u6 minimizes r1(u;λ, φ),
then u6 maximizes g(u;λ, γ, φ) = γ − 1− γr1(u;λ, φ) for φ > 1− λ−1, 0 < γ < 1 and
λ > 1. Therefore, g(u;λ, γ, φ) is unimodal. Since limu→1 g(u;λ, γ, φ) = γ − 1 < 0 and
limu→∞ g(u;λ, γ, φ) = −∞, then g(u;λ, γ, φ) is initially negative for 0 < γ < 1 and goes
to −∞ as u →∞. As g(u;λ, γ, φ) is unimodal, then two situations can occur depending
on whether the maximum of this function is negative or positive. If the maximum of
g(u;λ, γ, φ) is less than or equal to 0, that is, g(u6;λ, γ, φ) ≤ 0, then f(u;λ, γ, φ) is
monotonically decreasing. On the other hand, if the maximum of g(u;λ, γ, φ) is greater
than 0, that is, g(u6;λ, γ, φ) > 0, then g(u;λ, γ, φ) will have two zeros because it is
unimodal. This means that, in this situation, g(u;λ, γ, φ) = 0 has two solutions, say
u5,1 and u5,2, which can only be obtained using numerical methods. Thus, it follows
that f(u;λ, γ, φ) is DID.

Case 2.2. (φ > 0, γ = 1 and λ > 1)
Here, from g(u;λ, γ, φ) = 0 it is straightforward to see that λu(1− φeλ(1−u)) takes values less
or greater than 1 and so there exists at least one solution of this equation. Let u7 be one of
these solutions, that is, λu7(1− φeλ(1−u7)) = 1. Given that u7 > 1, then λ(1− φeλ(1−u7)) < 1
and so u7 < 1− λ−1 log[φ−1(1− λ−1)], for λ > 1 and φ > 0. Accordingly, u7 belongs to the
interval

(
1, 1− λ−1 log[φ−1(1− λ−1)]

)
and u7 only exists if φ > 1−λ−1 for λ > 1. Evaluating

r′2(u;λ, φ) = λ[1− φ(1− uλ)eλ(1−u)] at u7, it follows that r′2(u7;λ, φ) > λ. Hence, r2(u;λ, φ)
is monotonically increasing and u7 is the only solution when it exists. Thus, for γ = 1,
g(u;λ,γ,φ) =− log(u)r2(u;λ,φ) also has a single zero at u7, when it exists, because log(u) > 0
for u > 1. However, since limu→1 r2(u;λ, φ) = −1 + (1− φ)λ, once again it is seen that u7

only exists if φ > 1− λ−1 for λ > 1. Therefore, it is necessary to split this case into two
sub-cases, depending on the relationship between the parameters λ and φ.

Sub-case 2.2.1. (0 < φ ≤ 1− λ−1, γ = 1 and λ > 1)
If 0 < φ ≤ 1− λ−1 and γ = 1, then r2(u;λ, φ) is always greater than or equal to 0 and,
consequently, g(u;λ, γ, φ) is always less than or equal to 0. Therefore, f(t;λ, γ, φ) is
monotonically decreasing.

Sub-case 2.2.2. (φ > 1− λ−1, γ = 1 and λ > 1)
If φ > 1− λ−1 and λ > 1, then r2(u;λ, φ) has a zero at u7 and, since r2(u;λ, φ) is
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monotonically increasing, it follows that g(u;λ, γ, φ) = − log(u)r2(u;λ, φ) is positive
until u7, it has a zero at u7 and it is negative thereafter. In this sub-case, the mode is
equal to log(u7)1/γ , where u7 is the root of the non-linear equation λu(1−φeλ(1−u)) = 1,
for φ > 1− λ−1, γ = 1 and λ > 1.

Case 2.3. (φ > 0, γ > 1 and λ > 1)
From g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or greater
than (γ − 1)/γ and so there exists at least one solution of this equation. Let u8 be one
of these solutions, that is, r1(u8;λ, φ) = (γ − 1)/γ. Given that (γ − 1)/γ < 1 for γ > 1,
then r1(u;λ, φ) < 1, for u > 1. Since log(u8) > 0, for u8 > 1, from r1(u;λ, φ) it is not
possible to obtain the upper bound of the interval to which u8 belongs. An added dif-
ficulty is that r1(u;λ, φ) = log(u)r2(u;λ, φ) can be negative, positive or even zero since
1− φ < 1− φeλ(1−u) < 1, which implies that −1 + λu(1− φ) < r2(u;λ, φ) < −1 + λu, for
u > 1, λ > 1 and φ > 0. In addition, it is known that r′1(u;λ, φ) = u−1

[
uλ(1− φeλ(1−u))

(
1 +

log(u)
)
−

(
1− φλ2u2eλ(1−u) log(u)

)]
and limu→1 r′1(u;λ, φ) = −1 + (1− φ)λ. Therefore, this

case will be separated into two sub-cases, depending on the relationship between the param-
eters λ and φ.

Sub-case 2.3.1. (0 < φ ≤ 1− λ−1, γ > 1 and λ > 1)
If 0 < φ ≤ 1− λ−1 with λ > 1, then r′1(u;λ, φ) ≥ 0. It follows that r1(u;λ, φ) is mono-
tonically increasing and, consequently, g(u;λ, γ, φ) = γ − 1 − γr1(u;λ, φ) is mono-
tonically decreasing. However, in contrast to Sub-case 2.1.1, it is seen that
limu→1 g(u;λ, γ, φ) = γ − 1 > 0, for γ > 1. Thus, g(u;λ, γ, φ) is initially positive and,
because it is monotonically decreasing with limu→∞ g(u;λ, γ, φ) = −∞, it has one root
which will be denoted by u8,1. Therefore, f(u;λ, γ, φ) is unimodal and the mode is equal
to log(u8,1)1/γ , where u8,1 is the root of the non-linear equation r1(u;λ, φ) = (γ − 1)/γ,
for 0 < φ ≤ 1− λ−1, γ > 1 and λ > 1.

Sub-case 2.3.2. (φ > 1− λ−1, γ > 1 and λ > 1)
If φ > 1 − λ−1 with λ > 1, then r′1(u;λ, φ) is initially negative and, given that
limu→∞ r′1(u;λ, φ) = ∞, it will eventually become positive as u →∞. From Sub-case
2.1.2, it follows that r1(u;λ, φ) decreases until a given point and increases thereafter.
Hence, g(u;λ, γ, φ) is unimodal. However, in contrast to Sub-case 2.1.2, it is seen that
limu→1 g(u;λ, γ, φ) = γ − 1 > 0, for γ > 1. This means that, although g(u;λ, γ, φ) is
unimodal, it is initially positive and, consequently, it has only one root which will be
denoted by u8,2. Thus, f(t;λ, γ, φ) is also unimodal. In this case, the mode is equal to
log(u8,2)1/γ , where u8,2 is the root of the non-linear equation r1(u;λ, φ) = (γ − 1)/γ,
for φ > 1− λ−1, γ > 1 and λ > 1.

Case 2.4. (φ > 0, 0 < γ < 1 and 0 < λ ≤ 1)
From g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or greater
than (γ− 1)/γ and so this equation has at least one solution. Let u9 be one of these solutions,
that is, r1(u9;λ, φ) = (γ − 1)/γ. As in Case 2.1, given that (γ − 1)/γ < 0 for 0 < γ < 1
then r1(u9;λ, φ) < 0, which implies that λu9(1− φeλ(1−u9)) < 1 since log(u9) > 0 for u9 > 1.
Then λ(1− φeλ(1−u9)) < 1 and so eλ(1−u9) > φ−1(1− λ−1). However, in contrast to Case
2.1, from r1(u;λ, φ) it is not possible to obtain the upper bound of the interval to which
u9 belongs for 0 < λ ≤ 1. Nonetheless, knowing that r′1(u;λ, φ) = u−1

[
uλ(1− φeλ(1−u))

(
1 +

log(u)
)
−

(
1− φλ2u2eλ(1−u) log(u)

)]
and since limu→1 r′1(u;λ, φ) = −1 + (1− φ)λ < 0, it is

clear that r′1(u;λ, φ) is always initially negative for φ > 0 and 0 < λ ≤ 1. Furthermore, as
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limu→∞ r′1(u;λ, φ) = ∞, it is seen that r′1(u;λ, φ) has at least one root. Let u10 be one
of these solutions, that is, r′1(u10;λ, φ) = 0, where u10 > 1. As in Sub-case 2.1.2, it can
be seen that r1(u;λ, φ) decreases until u10 and increases thereafter. So, u10 is the only
solution of the non-linear equation r′1(u;λ, φ) = 0. Hence, g(u;λ, γ, φ) is unimodal. Note that
limu→1 g(u;λ, γ, φ) = γ − 1 < 0 for 0 < γ < 1 and limu→∞ g(u;λ, γ, φ) = −∞. Consequently,
as described in Sub-case 2.1.2, f(u;λ, γ, φ) can take two different shapes depending on whether
the maximum of g(u;λ, γ, φ), that is, g(u10;λ, γ, φ), is negative or positive. If the maximum
of g(u;λ, γ, φ) is less than or equal to 0, then f(u;λ, γ, φ) is monotonically decreasing. On the
other hand, if the maximum of g(u;λ, γ, φ) is greater than 0, then f(u;λ, γ, φ) is DID because
g(u;λ, γ, φ) has two zeros and it is unimodal. Thus, in this second situation, g(u;λ, γ, φ) = 0
has two solutions, say u9,1 and u9,2, which can only be obtained using numerical methods.

Case 2.5. (φ > 0, γ = 1 and 0 < λ ≤ 1)
From g(u;λ, γ, φ) = 0 it is straightforward to see that λu(1− φeλ(1−u)) takes values less
or greater than 1 and so there exists at least one solution of this equation. Let u11 be
one of these solutions, that is, λu11(1− φeλ(1−u11)) = 1. Given that u11 > 1, then λ(1−
φeλ(1−u11)) < 1 and so eλ(1−u11) > φ−1(1− λ−1). In contrast to Case 2.2, it is not possible
to obtain the upper bound of the interval to which u11 belongs for 0 < λ ≤ 1. Nonetheless,
knowing that r′1(u;λ, φ) = u−1

[
uλ(1−φeλ(1−u))

(
1+ log(u)

)
−

(
1−φλ2u2eλ(1−u) log(u)

)]
and

limu→1 r′1(u;λ, φ) = −1+(1−φ)λ < 0, it is clear that r′1(u;λ, φ) is always initially negative for
φ > 0 and 0 < λ ≤ 1. Furthermore, as limu→∞ r′1(u;λ, φ) = ∞ it is seen that r′1(u;λ, φ) has
at least one root. Let u12 be one of these solutions, that is, r′1(u12;λ, φ) = 0, where u12 > 1.
As in Case 2.4, it can be seen that r1(u;λ, φ) decreases until u12 and increases thereafter.
So, u12 is the only solution of the non-linear equation r′1(u;λ, φ) = 0. Hence, g(u;λ, γ, φ) is
unimodal. However, in contrast to Case 2.4, it is seen that limu→1 g(u;λ, γ, φ) = γ − 1 = 0
for γ = 1 and limu→∞ g(u;λ, γ, φ) = −∞. This means that, in this situation, g(u;λ, γ, φ) = 0
has two solutions, say u11,1 and u11,2, which can only be obtained using numerical methods.
Although g(u;λ, γ, φ) has two zeros, it is initially equal to 0 and, because it is unimodal, it
crosses the horizontal axis only once, more precisely at u11,2, with u11,2 > u11,1. Therefore,
f(t;λ, γ, φ) is unimodal and the mode is equal to log(u11,2)1/γ , where u11,2 is the root of the
non-linear equation λu(1− φeλ(1−u)) = 1, for γ = 1 and 0 < λ ≤ 1.

Case 2.6.(φ > 0, γ > 1 and 0 < λ ≤ 1)
From g(u;λ, γ, φ) = 0 it is straightforward to see that r1(u;λ, φ) takes values less or greater
than (γ − 1)/γ and so there exists at least one solution of this equation. Let u13 be one
of these solutions, that is, r1(u13;λ, φ) = (γ − 1)/γ. Given that (γ − 1)/γ < 1 for γ > 1,
then r1(u;λ, φ) < 1, for u > 1. However, as in Case 2.3, from r1(u;λ, φ) it is not possible to
obtain the upper bound of the interval to which u13 belongs, since log(u13) > 0 for u13 > 1.
An added difficulty is that r1(u;λ, φ) = log(u)r2(u;λ, φ), where r2(u;λ, φ) = −1 + λu(1−
φeλ(1−u)), can be negative, positive or even zero since 1−φ < 1−φeλ(1−u) < 1, which implies
that −1 + λu(1− φ) < r2(u;λ, φ) < −1 + λu, for u > 1, 0 < λ ≤ 1 and φ > 0. Nonetheless,
knowing that r′1(u;λ, φ) = u−1

[
uλ(1−φeλ(1−u))

(
1+ log(u)

)
−

(
1−φλ2u2eλ(1−u) log(u)

)]
and

limu→1 r′1(u;λ, φ) = −1+(1−φ)λ < 0, it is clear that r′1(u;λ, φ) is always initially negative for
φ > 0 and 0 < λ ≤ 1. Furthermore, as limu→∞ r′1(u;λ, φ) = ∞ it is seen that r′1(u;λ, φ) has
at least one root. Let u14 be one of these solutions, that is, r′1(u14;λ, φ) = 0, where u14 > 1.
As in Cases 2.4 and 2.5, it can be seen that r1(u;λ, φ) decreases until u14 and increases
thereafter. Therefore, u14 is the only solution of the non-linear equation r′1(u;λ, φ) = 0.
Hence, g(u;λ, γ, φ) is unimodal. However, in contrast to Cases 2.4 and 2.5, it is seen that



8 I. Sousa-Ferreira, A.M. Abreu and C. Rocha

limu→1 g(u;λ, γ, φ) = γ − 1 > 0 for γ > 1 and limu→∞ g(u;λ, γ, φ) = −∞. This means that,
although g(u;λ, γ, φ) is unimodal, it is initially positive and, consequently, it has only one
root, denoted by u13. Thus, f(t;λ, γ, φ) is unimodal. In this case, the mode is equal to
log(u13)1/γ , where u13 is the root of the non-linear equation r1(u;λ, φ) = (γ − 1)/γ, for γ > 1
and 0 < λ ≤ 1.

2. ELEMENTS OF THE OBSERVED INFORMATION MATRIX

The elements of the observed information, I(λ, γ, φ), are given by
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where m =
∑n

i=1 δi is the observed number of events.

3. SOME PROGRAMS DEVELOPED IN R SOFTWARE

This section provides the R programming codes to reproduce the results of the simula-
tion study discussed in Section 3.4.

#=========================================================
# function to calculate the expected value of a variable
# with extended Chen -Poisson distribution
#=========================================================
Echenpois <- function(lambda , gamma , phi) {

if ((!is.numeric(lambda)) || (!is.numeric(gamma))
|| (!is.numeric(phi)))

stop("non -numeric argument ")
if ((min(lambda) <= 0) || (min(gamma) <= 0) ||

(min(phi) == 0))
stop(" Invalid arguments ")

func <- function(y) {(phi*exp(-phi*y)*
((log(1-lambda ^(-1)*log(y)))^(1/ gamma)))/
(1-exp(-phi))}
integral <-integrate(Vectorize(func),

lower = 0, upper = 1)
arr <-array(c(integral$value ,integral$abs.error),

dim=c(1,2))
dimnames(arr)<-list("",c(" estimate ",

" integral abs. error <"))
return(arr)

}

#=========================================================
# function to generate pseudo -random data from an extended
# Chen -Poisson distribution , considering random censoring
#=========================================================
# lambda , gamma , phi: parameter values;
# n: sample size; p: percentage of censoring

rchenpoi <- function(lambda , gamma , phi , n, p) {
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temp <- matrix(0, nrow=n, ncol =1);
t.event <- matrix(0, nrow=n, ncol =1);
cens <- matrix(0, nrow=n, ncol =1)

u<-runif(n,0,1) # for time -to-events
t.event <- (log(1-(log(1-(log((exp(phi) -1)*u+1))/

phi))/lambda))^(1/ gamma)

# determine maux associated to percentage of censoring p
if(p==0){temp <-t.event ;cens <-rep(1,n)}
if(p!=0){maux <- Echenpois(lambda=lambda , gamma=gamma ,

phi=phi)[1]/p

# for random censoring
cax <-runif(n,0,maux)
for (i in 1:n) {

if (t.event[i]<=cax[i]) {
temp[i]<-t.event[i] ;cens[i]<-1}

if (t.event[i]>cax[i]) {
temp[i]<-cax[i] ;cens[i]<-0}

}}
return(list(temp=temp , cens=cens))

}

#=========================================================
# log -likelihood function of the extended Chen -Poisson
# distribution
#=========================================================
# param: vector of parameter; cens: censoring vector;
# temp: times vector; n: sample size
# Note: In order to ensure that the estimate of phi is:
# positive , then consider exp(param [3])
# negative , then consider log (1/(1+ exp(param [3])))

param = numeric (0)
fvero <- function(param , cens , temp , n) {

vetsoma = 0

p1 <- exp(param [1]) # lambda
p2 <- exp(param [2]) # gamma
p3 <- exp(param [3]) # phi

vetsoma = lapply (1:n, function(z) {
aux <- (-log(p3/(1-exp(-p3)))-cens[z]*(p1+log(p1*p2))-
(p2 -1)*cens[z]*log(temp[z])-cens[z]*( temp[z]^p2)+
p1*cens[z]*exp(temp[z]^p2) -(1-cens[z])*
log((1-exp(-p3*exp(p1*(1-exp(temp[z]^p2)))))/p3)+
p3*cens[z]*exp(p1*(1-exp(temp[z]^p2)))); sum(aux)})

llike <- sum(unlist(vetsoma))
return(llike)

}

#=========================================================
# function to calculate the observed information matrix
#=========================================================
# param: vector of parameter; cens: censoring vector;
# temp: times vector; n: sample size
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hess <- function(param , cens , temp , n) {
aux11 =0; aux12 =0; aux13 =0; aux22 =0; aux23 =0; aux33 =0

p1 <- param [1] # lambda
p2 <- param [2] # gamma
p3 <- param [3] # phi

# second derivative with respect to lambda
aux11 <- lapply (1:n, function(z) {

hessiL = ((( cens[z]*(-1 + exp(exp(p1 -
exp((temp[z])^p2)*p1)*p3))^2)/(p1^2) +
((-1 + exp((temp[z])^p2))^2*p3^2)/
exp(2*(-1 + exp((temp[z])^p2))*p1) +
cens[z]*exp(p1 - 2*exp((temp[z])^p2)*p1 +
exp(p1 - exp((temp[z])^p2)*p1)*p3)*
(-1 + exp((temp[z])^p2))^2*p3*
(-exp(exp((temp[z])^p2)*p1) +
exp(exp((temp[z])^p2)*p1 +
exp(p1 - exp((temp[z])^p2)*p1)*p3) - exp(p1)*p3) +
exp(p1 - exp((temp[z])^p2)*p1)*
(-1 + exp((temp[z])^p2))^2*
(-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))*p3*
(-1 + exp(p1 - exp((temp[z])^p2)*p1)*p3))/
((-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2));

sum(hessiL)})

a11 <- sum(unlist(aux11))

# second derivative of lambda with respect to gamma
aux12 <- lapply (1:n, function(z) {

hessiLG = ((1/( -1+( exp(exp(p1 -exp((temp[z])^p2)*p1)*
p3)))^2)*(exp((temp[z])^p2 -2*exp((temp[z])^p2)*p1)*
(temp[z])^p2*(exp(p1)*p3*(exp((temp[z])^p2+
exp((temp[z])^p2)*p1)*p1-exp((temp[z])^p2 +
exp((temp[z])^p2)*p1+exp(p1- exp((temp[z])^p2)*p1)*
p3)*p1-exp(exp((temp[z])^p2)*p1)*(1 + p1) +
exp(exp((temp[z])^p2)*p1+exp(p1 - exp((temp[z])^p2)*
p1)*p3)*(1 + p1) - exp(p1 + exp(p1 -
exp((temp[z])^p2)*p1)*p3)*p1*p3 + exp((temp[z])^p2+
p1 + exp(p1 - exp((temp[z])^p2)*p1)*p3)*p1*p3) +
cens[z]*(exp(2*exp((temp[z])^p2)*p1) -
2*exp(2*exp((temp[z])^p2)*p1 + exp(p1 -
exp((temp[z])^p2)*p1)*p3)+exp(2*exp((temp[z])^p2)*p1+
2*exp(p1-exp((temp[z])^p2)*p1)*p3)-exp((temp[z])^p2+
p1+exp((temp[z])^p2)*p1+exp(p1-exp((temp[z])^p2)*p1)*
p3)*p1*p3 + exp((temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*p1*p3 + exp(p1 +
exp((temp[z])^p2)*p1+exp(p1-exp((temp[z])^p2)*p1)*p3)*
(1 + p1)*p3 - exp(p1 + exp((temp[z])^p2)*p1 +
2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*(1 + p1)*p3 +
exp(2*p1+exp(p1-exp((temp[z])^p2)*p1)*p3)*p1*p3^2 -
exp((temp[z])^p2+2*p1+exp(p1-exp((temp[z])^p2)*p1)*
p3)*p1*p3^2))*log(temp[z])));

sum(hessiLG)})

a12 <- sum(unlist(aux12))

# second derivative of lambda with respect to phi
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aux13 <- lapply (1:n, function(z) {hessiLP = ((exp(p1 -
2*exp((temp[z])^p2)*p1)*(1 - exp((temp[z])^p2))*
(exp(exp((temp[z])^p2)*p1) - (1 + cens[z])*
exp(exp((temp[z])^p2)*p1 + exp(p1 - exp((temp[z])^p2)*
p1)*p3) + cens[z]*exp(exp((temp[z])^p2)*p1+2*exp(p1 -
exp((temp[z])^p2)*p1)*p3) - (-1 + cens[z])*exp(p1 +
exp(p1 - exp((temp[z])^p2)*p1)*p3)*p3))/((-1 +
exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2));

sum(hessiLP)})

a13 <- sum(unlist(aux13))

# second derivative with respect to gamma
aux22 <- lapply (1:n, function(z) {

hessiG = (cens[z]/(p2^2) + (1/(( -1 + exp(exp(p1 -
exp((temp[z])^p2)*p1)*p3))^2))*((( temp[z])^p2*
(exp((temp[z])^p2+p1)*p1*p3*((-exp(exp((temp[z])^p2)*
p1))*(1 + (temp[z])^p2) + exp(exp((temp[z])^p2)*p1 +
exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+( temp[z])^p2) +
exp((temp[z])^p2 + exp((temp[z])^p2)*p1)*(temp[z])^p2
*p1 - exp((temp[z])^p2+exp((temp[z])^p2)*p1+exp(p1 -
exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*p1 +
exp((temp[z])^p2+p1+exp(p1 -exp((temp[z])^p2)*p1)*p3)*
(temp[z])^p2*p1*p3)+cens[z]*(-exp(2*exp((temp[z])^p2)*
p1) + 2*exp(2*exp((temp[z])^p2)*p1 + exp(p1 -
exp((temp[z])^p2)*p1)*p3)-exp(2*exp((temp[z])^p2)*p1+
2*exp(p1-exp((temp[z])^p2)*p1)*p3)+exp((temp[z])^p2+
2*exp((temp[z])^p2)*p1)*(1+( temp[z])^p2)*p1-
2*exp((temp[z])^p2 + 2*exp((temp[z])^p2)*p1 +
exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+( temp[z])^p2)*p1+
exp((temp[z])^p2+2*exp((temp[z])^p2)*p1+2*exp(p1 -
exp((temp[z])^p2)*p1)*p3)*(1 + (temp[z])^p2)*p1 +
exp((temp[z])^p2+p1+exp((temp[z])^p2)*p1+exp(p1 -
exp((temp[z])^p2)*p1)*p3)*(1 + (temp[z])^p2)*p1*p3 -
exp((temp[z])^p2 + p1 + exp((temp[z])^p2)*p1 +
2*exp(p1-exp((temp[z])^p2)*p1)*p3)*(1+( temp[z])^p2)*
p1*p3 - exp (2*( temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
exp(p1 - exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*
p1^2*p3+exp (2*( temp[z])^p2+p1+exp((temp[z])^p2)*p1 +
2*exp(p1 - exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*
p1^2*p3 - exp (2*( temp[z])^p2 + 2*p1 + exp(p1 -
exp((temp[z])^p2)*p1)*p3)*(temp[z])^p2*p1^2*p3^2))*
log((temp[z]))^2)/exp(2*exp((temp[z])^p2)*p1)));

sum(hessiG)})

a22 <- sum(unlist(aux22))

# second derivative of gamma with respect to phi
aux23 <- lapply (1:n, function(z) {

hessiGP = ((exp((temp[z])^p2+p1 -2*exp((temp[z])^p2)*
p1)*(temp[z])^p2*p1*(-exp(exp((temp[z])^p2)*p1)+(1+
cens[z])*exp(exp((temp[z])^p2)*p1 + exp(p1 -
exp((temp[z])^p2)*p1)*p3)-cens[z]*
exp(exp((temp[z])^p2)*p1+2*exp(p1-exp((temp[z])^p2)*
p1)*p3)+(-1+ cens[z])*exp(p1+exp(p1-exp((temp[z])^p2)*
p1)*p3)*p3)*log(temp[z]))/((-1+exp(exp(p1-
exp((temp[z])^p2)*p1)*p3))^2));

sum(hessiGP)})
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a23 <- sum(unlist(aux23))

# second derivative with respect to phi
aux33 <- lapply (1:n, function(z) {

hessiP = (-(exp(p3)/((-1+exp(p3))^2)) -((-1+cens[z])*
exp(2*p1 -2*exp((temp[z])^p2)*p1+exp(p1-
exp((temp[z])^p2)*p1)*p3))/
((-1 + exp(exp(p1 - exp((temp[z])^p2)*p1)*p3))^2) +
cens[z]/(p3^2));

sum(hessiP)})

a33 <- sum(unlist(aux33))

matrix(c(a11 , a12 , a13 , a12 , a22 , a23 , a13 , a23 , a33),
nrow=3, byrow=T)

}

#=========================================================
# Set parameter values for the simulations scenarios
# n = 20, 50, 100, 500, 1000 ; p = 0, 0.1, 0.3
# lambda 0.2; gamma= 1.5; phi= 3 (hf is increasing)
# lambda 3; gamma= 0.3; phi= 20 (hf is unimodal)
# lambda 1.3; gamma= 0.2; phi= -2 (hf is decreasing)
# lambda 0.6; gamma= 0.6; phi= -3.5 (hf is bathtub -shaped)
#=========================================================
# installing and loading library MASS to use ginv()
install.packages ("MASS"); library(MASS)

# sample size
n <- c(20 ,50 ,100 ,500 ,1000)

# lambda , gamma and phi parameter values
lambda <- c(0.2 ,3) # c(1.3 ,0.6)
gamma <- c(1.5 ,0.3) # c(0.2 ,0.6)
phi <- c(3,20) #c(-2,-3.5)

# vector of initial values for parameters (see below)
# Note: If in the log -likelihood function was considered:
# exp(param [3]), then put log(phi)
# log (1/(1+ exp(param [3]))), then put log(1-exp(phi))-phi
condinit.l = log(lambda)
condinit.g = log(gamma)
condinit.p = log(phi)

# percentage of censoring
p <- c(0 ,0.1 ,0.3)

# number of simulations
simul = 1000

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Program for the simulation study
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# initializing table
table1 <- data.frame ()

for (m in 1: length(p)){
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for (a in 1: length(lambda)){
for (x in 1: length(n)){
set.seed (2143)
result=data.frame (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
names(result) <- c(" lambda","Varlambda","LI","LS","gamma",

"Vargamma","LI","LS","phi","Varphi","LI","LS")
s=1

options(warn=-1) #Note: warnings are disabled because we
#have already dealt the problems in the simulations.

while (s <= simul) {
# generate the data
data = rchenpoi(lambda=lambda[a], gamma=gamma[a],

phi=phi[a], n=n[x], p=p[m])

# fit model
# par=initial values for each lambda , gamma and phi
otim <- optim(par=c(condinit.l[a],condinit.g[a],

condinit.p[a]), method ="BFGS", fn=fvero ,
cens=data$cens , temp=data$temp , n=n[x],
control=list(reltol =1e-5))

# compute the observed information matrix
# Note: If in the log -likelihood function was considered:
# exp(param [3]), then put exp(otim$par)
# log (1/(1+ exp(param [3]))), then put c(exp(otim$par [1]),
# exp(otim$par [2]),log (1/(1+ exp(otim$par [3]))))
Inf.Fisher <- hess(exp(otim$par), cens=data$cens ,

temp=data$temp , n=n[x])

if (is.nan(sum(Inf.Fisher))) { }
else {# compute the variance from the information matrix

aux <- ginv(Inf.Fisher)
vetvar <- diag(aux);
if (is.nan(sqrt(vetvar [1]))||is.nan(sqrt(vetvar [2]))||

is.nan(sqrt(vetvar [3]))) { }
else {

# compute the 95% CI of the parameters estimates
# Note: If in the log -likelihood function was considered:
# exp(param [3]), then here put
# matrix(c(exp(otim$par)- 1.96* sqrt(vetvar),
# exp(otim$par)+1.96* sqrt(vetvar)), ncol=2, byrow=F)
#
# log (1/(1+ exp(param [3]))), then here put
# matrix(c(exp(otim$par [1]) -1.96* sqrt(vetvar [1]),
# exp(otim$par [1]) +1.96* sqrt(vetvar [1]),
# exp(otim$par [2]) -1.96* sqrt(vetvar [2]),
# exp(otim$par [2]) +1.96* sqrt(vetvar [2]),
# log (1/(1+ exp(otim$par [3]))) -1.96* sqrt(vetvar [3]),
# log (1/(1+ exp(otim$par [3])))+1.96* sqrt(vetvar [3])),
# ncol=2, byrow=T)

IC <- matrix(c(exp(otim$par) -1.96* sqrt(vetvar),
exp(otim$par)+1.96* sqrt(vetvar)), ncol=2, byrow=F)

# get the results for parameter lambda
result[s,1] = exp(otim$par [1]); result[s,2] <- vetvar [1]
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result[s,3] <- IC[1,1]; result[s,4] <- IC[1,2]

# get the results for parameter gamma
result[s,5] = exp(otim$par [2]); result[s,6] <- vetvar [2]
result[s,7] <- IC[2,1]; result[s,8] <- IC[2,2]

# get the results for parameter phi
# Note: If in the log -likelihood function was considered:
# exp(param [3]), then here put exp(otim$par [3])
# log (1/(1+ exp(param [3]))), then here put
# log (1/(1+ exp(otim$par [3])))
result[s,9] = exp(otim$par [3]); result[s,10] <- vetvar [3]
result[s,11] <- IC[3,1]; result[s,12] <- IC[3,2]

s=s+1}}}
options(warn =0) # warnings turned on

L1 <- length(which(result [,3] > lambda[a]))/simul
U1 <- length(which(result [,4] < lambda[a]))/simul
L2 <- length(which(result [,7] > gamma[a]))/simul
U2 <- length(which(result [,8] < gamma[a]))/simul
L3 <- length(which(result [,11] > phi[a]))/simul
U3 <- length(which(result [,12] < phi[a]))/simul

table1 <- rbind(table1 ,c(p[m]*100, lambda[a],gamma[a],
phi[a],n[x],mean(result [,1]), mean(result [,5]),
mean(result [,9]), mean(sqrt(result [,2])),
mean(sqrt(result [,6])), mean(sqrt(result [,10])),
sum(result[,1]-lambda[a])/simul ,
sum(result[,5]-gamma[a])/simul ,
sum(result[,9]-phi[a])/simul ,
sum(( result[,1]-lambda[a])^2)/simul ,
sum(( result[,5]-gamma[a])^2)/simul ,
sum(( result[,9]-phi[a])^2)/simul ,(1-(L1+U1))*100,
(1-(L2+U2))*100, (1-(L3+U3))*100))

}}}

colnames(table1) <- c("% Cens","lambda","gamma","phi","n",
"avg(l)","avg(g)","avg(p)","sd(l)","sd(g)","sd(p)",
"bias(l)","bias(g)","bias(p)","mse(l)","mse(g)",
"mse(p)","CP(l)","CP(g)","CP(p)")

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# show results for Table 1:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
table1


	"Supplementary Material for ``The Extended Chen-Poisson Lifetime Distribution""
	1 PROOF OF PROPOSITION 3.3
	2 ELEMENTS OF THE OBSERVED INFORMATION MATRIX
	3 SOME PROGRAMS DEVELOPED IN R SOFTWARE

