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1. INTRODUCTION

Many coherent reliability systems, such as series, parallel, fail-safe and r-out-of-n sys-
tems, have all become useful and essential reliability structures in practice. For example, in
the architecture of network circuits, series circuit configurations are often used to manage
voltage drops to add to equal voltage, and for all the components in the circuit to share the
same equal current and the resistance to sum to equal total resistance. Similarly, parallel
circuit configurations are made use of so that all the components in the circuit can share the
same equal voltage, and with branch current adding to equal total current and resistance
diminishing to equal total resistance.

A fail-safe system is one that is designed so as to remain safe in the event of a failure;
it is not designed to prevent failure, but it is intended to mitigate failure when it does occur.
An elevator is a good example of a fail-safe system as it is designed with special brakes that
are held back by the tension of the cable, so that if the cable does snap, the loss of tension
would force the special brakes to be applied, thus averting an accident. Another recent
practical application of fail-safe system (2-out-of-3 system, to be specific) is in the autonomous
parking system in a car which consists of three computers and a sensor to determine an
appropriate parking manoeuvre in a given situation. While the three computers take the
specific information from the sensor into account and plan the steering and acceleration to
successfully park, they would compare their results and only if at least two of them are in
agreement, the car would park with that manoeuvre agreed by the majority of computers.

It is, therefore, quite important to understand the reliability and ageing characteristics
of such coherent reliability systems commonly used in practice. Stochastic orders are useful
tools for the purpose of comparative reliability evaluation and relative ageing of systems; one
may refer to the book length accounts by Müller and Stoyan [26] and Shaked and Shanthiku-
mar [33] for various stochastic orders, ageing notions and their applications to a wide range
of problems arising from different fields. The earliest and pioneering work in this regard was
carried out nearly five decades ago by Pledger and Proschan [28] and Proschan and Sethu-
raman [29]. There have been numerous subsequent developments in this direction, too many
to list here, as a matter of fact. But, interested readers may refer to the following articles
for some key results: Deshpande and Kochar [9], Saunders [32], Boland et al. [7], Kochar and
Korwar [17], Dykestra et al. [11], Khaledi and Kochar [15], Kochar and Xu [18], Zhao and
Balakrishnan [34], Zhao et al. [29], Balakrishnan et al. [2], and Barmalzan et al. [5]. Detailed
reviews of all the developments in this regard have also been presented by Kochar [16] and
Balakrishnan and Zhao [3].

Even though there is a huge body of literature on various types of comparisons of
different reliability systems, as witnessed in the reviews of Kochar [16] and Balakrishnan and
Zhao [4], most of the references cited therein and also all the papers mentioned above only
deal with the case of independent and non-identical components. Very few papers have dealt
with the case when the components in a system are dependent; see, for example, Rezapour
and Alamatsaz [31], Li and Fang [21], Ding and Zhang [10], Cai et al. [8], Fang et al. [12],
and Barmalzan et al. [6].



Orderings and ageing of reliability systems with dependent components... 199

Many systems in practice will include a number of components that are homogeneous,
like battery packs, circuits, airbags, etc.; but, the assumption that their lifetimes are in-
dependent may not be realistic and yet is one that is usually made in order to make the
corresponding models and subsequent derivations simpler. As the components in a system
will be functioning simultaneously, the functioning of one is likely to impact the functioning of
others. Moreover, these components may all be manufactured by the same producer, and so
may share the same manufacturing environment. It is, therefore, quite reasonable to expect
some dependence between them!

In this work, we consider reliability systems with dependent components, with the joint
distribution being modeled by a general Archimedean copula, and the lifetime of components
following accelerated failure time and modified proportional hazards distributions. We then
establish several characterization results for series, fail-safe, 2-out-of-n and parallel systems
through comparisons with average systems in terms of hazard rate, reversed hazard rate and
mean residual life orders.

There are several different ways to model dependence [see Kotz et al. [19]], and one
convenient way is through the use of copulas [Nelsen [27]]. Here, in this work, we use an
Archimedean copula to represent the joint distribution of the lifetimes of n components
in the system, as it is a well-known family of copulas with many prominent copulas, such
as independence, Ali-Mikhail-Haq, Gumbel-Hougaard, Clayton, and Frank copulas, all as
special cases. It is for this reason that we assume the Archimedean copula to model the joint
distribution of lifetimes of components.

The rest of this paper proceeds as follows. In Section 2, we briefly introduce some basic
stochastic orders, ageing notions and copulas that are most pertinent for the discussions
to follow in the subsequent sections; in addition, we provide a description of the accelerated
failure time and modified proportional hazards families of distributions that are used to model
the marginal distributions of lifetimes of components. In Section 3, we establish various
stochastic orderings and ageing results for the residual lives of parallel systems. In Section 4,
we similarly establish stochastic orderings and ageing results for the residual lives of series
systems. In Section 5, we develop some characterization results for some coherent systems
when the components follow an accelerated failure time model based on a comparison with
an average system. Similarly, in Section 6, we present some characterization results for some
coherent systems when the components follow a modified proportional hazards distribution
based on a comparison with an average system. Finally, in Section 7, we present some
concluding remarks and also some problems that will be of interest for further research.

2. DEFINITIONS AND KEY NOTIONS

We describe in this section some basic concepts about stochastic orders, copulas and
two general families of lifetime distributions that are essential for subsequent developments.
We assume through out that all random variables under consideration are lifetime variables
and so are nonnegative, and we use “increasing” to mean “nondecreasing” and “decreasing”
to mean “nonincreasing”. We assume all the expectations involved to exist, and for ease of
notation, we use a

sgn
= b to denote that both sides of an equality have the same sign.
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2.1. Stochastic orders

Let X and Y be random variables with density functions fX and fY , distribution
functions FX and FY , survival functions F̄X = 1−FX and F̄Y = 1−FY , hazard rate functions
hX = fX/F̄X and hY = fY /F̄Y , and reversed hazard rate functions h̃X = fX/FX and h̃Y =
fY /FY , respectively.

Definition 2.1. Then, X is said to be larger than Y in:

(i) usual stochastic order (denoted by X ≥st Y ) if F̄X(t) ≥ F̄Y (t), for all t ∈ R, or
equivalently, E[φ(X)] ≥ E[φ(Y )] for all increasing functions φ : R → R;

(ii) hazard rate order (denoted by X ≥hr Y ) if and only if hY (t) ≥ hX(t), for all
t ∈ R, or equivalently, F̄X(t)/F̄Y (t) is increasing in t ∈ R;

(iii) reversed hazard rate order (denoted by X ≥rh Y ) if and only if h̃X(t) ≥ h̃Y (t),
for all t ∈ R, or equivalently, FX(t)/FY (t) is increasing in t ∈ R;

(iv) mean residual life order (denoted by X ≥mrl Y ) if E(Xt) ≥ E(Yt), for all t ∈ R,
where E(Xt) = E(X − t|X > t) and E(Yt) = E(Y − t|Y > t) are the mean resid-
ual lives of X and Y , respectively.

Then, the following implications are well-known between these orders:

X ≥hr[rh] Y =⇒ X ≥st Y ;

see, for example, Müller and Stoyan [26] and Shaked and Shanthikumar [33] for extensive
discussions on various stochastic orderings, their inter-relationships, and their properties and
applications.

2.2. Ageing notions

Ageing, in reliability analysis, describes the variation in the performance of a unit over
time. Several different measures and measure-based stochastic orders have been discussed in
the literature pertaining to ageing characteristics of life distributions. Two most commonly
used notions are through hazard and reversed hazard rates.

Definition 2.2. A random variable X is said to be ageing faster than Y in:

(i) hazard rate (denoted by X ≥c Y ) if hY (t)/hX(t) is increasing in t ∈ R (Kalash-
nikov and Rachev, [14]);

(ii) reversed hazard rate (denoted by X ≥b Y ) if h̃X(t)/h̃Y (t) is increasing in t ∈ R
(Rezaei et al., [30]).

For more details on the relative ageing by increasing hazard ratio and reversed hazard
ratio functions, one may refer to Lai and Xie [20], Misra and Francis [25] and Hazra and
Misra [14].
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2.3. Archimedean copulas

As mentioned earlier in Section 1, a plethora of stochastic orders and stochastic com-
parisons of random variables have been discussed in the literature; but, most of them involve
only comparisons of marginal distributions of the underlying variables, without taking into
account possible dependence between variables, with some exceptions, of course! Here, we
consider characterizations of some reliability systems assuming the components to be depen-
dent under an Archimedean copula.

Archimedean copulas are widely used for modeling dependence between variables due
to their mathematical tractability as well as their ability to model a wide range of dependence
structures. For a decreasing continuous function φ : [0,∞) −→ [0, 1] with φ(0) = 1, φ(+∞) =
0 and ψ = φ−1 being the pseudo-inverse,

Cφ(u1, ..., un) = φ(ψ(u1) + ···+ ψ(un)), ui ∈ [0, 1],(2.1)

is said to be an Archimedean copula with generator φ if (−1)kφ[k](x) ≥ 0 for k = 0, ..., n− 2
and (−1)n−2φ[n−2](x) is decreasing and convex, with φ[k](x) denoting the k-the derivative of
the generator φ(x) with respect to x.

2.4. Accelerated failure time and modified proportional hazards distributions

Let X1, ..., Xn be random variables with Xi having hi(t), for i = 1, ..., n, as marginal
hazard functions. Then, they are said to have an accelerated failure time family of distri-
butions if, for all t ≥ 0, hi(t) = h(λit), for i = 1, ..., n, where h(·) is some baseline hazard
function and λi > 0 are scale parameters (also called acceleration constants). Upon noting
now that the cumulative hazard rate functions of Xi are given by Hi(t) = 1

λi
H(λit), and

then using the relationship between cumulative hazard function and survival function of a
distribution, we arrive at the form of cumulative distribution function for this family as

Si(t) = e−Hi(t) = e
− 1

λi
H(λit) = {e−H(λit)}1/λi = {S(λit)}1/λi ,(2.2)

for t ≥ 0, and i = 1, ..., n; see, for example, Marshall and Olkin (2007) for details.

In the context of nonparametric rank tests, two families of distributions with

G1(x) = (F (x))α, α > 0, Ḡ2(x) = (S(x))β , β > 0,(2.3)

known as “Lehmann families”, have been used extensively as nonparametric alternatives for
tests for stochastic orderings. Upon combining the two families in (2.3), we can obtain an
unified family of distributions with cumulative distribution function of the form

G(x) = 1− {1− (F (x))α}β, α, β > 0,(2.4)

where F (·) is some baseline distribution function. Now, we may introduce acceleration con-
stants λi (i = 1, ..., n), as in (2.2), to arrive at a general form of accelerated failure time
distribution with its cumulative distribution function as

Fi(t) = 1− {1− (F (λit))α}β , t > 0, α, β > 0,(2.5)
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for i = 1, ..., n. It is evident that the accelerated failure time model in (2.2) is a special case
of (2.5) when α = 1 and β = 1/λi.

Yet another flexible family of useful lifetime distributions, offered by Marshll and Olkin
[23], has a survival function of the form

S∗(t) =
αS(t)

1− ᾱS(t)
, t > 0, 0 < α < 1, ᾱ = 1− α,(2.6)

where S is some baseline survival function and α is referred to as a tilt parameter. Here
again, by introducing acceleration constants λi (i = 1, ..., n), as in (2.2), we arrive at a family
of modified proportional hazards family of distributions with its survival function as

Si(t) =
αS(λit)

1− ᾱS(λit)
, t > 0, λi > 0, 0 < α < 1, ᾱ = 1− α,(2.7)

for i = 1, ..., n. The name “modified proportional hazards model” stems from the fact that
the hazard functions of S and S∗ in (2.6) satisfy the relationship

hS∗(t) = hS(t)
1

1− ᾱS(t)
,(2.8)

which is indeed a modification of the proportional hazards assumption, with the multiplicative
term varying over t, rather than being a constant.

3. RESULTS FOR RESIDUAL LIVES OF PARALLEL SYSTEMS

Let Xn:n denote the lifetime of a parallel system consisting of n dependent components
whose joint distribution is given by an Archimedean copula. Then, the survival function,
density function, hazard rate function and reversed hazard rate function of the residual life
variable Xn:n(t) at x, given that the parallel system has survived till time t, are given by

FXn:n(t)(x) =
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

1− φ(nψ[F (t)])
, x, t ≥ 0,(3.1)

fXn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

1− φ(nψ[F (t)])
, x, t ≥ 0,(3.2)

hXn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

1− φ(nψ[F (x+ t)])
, x, t ≥ 0,(3.3)

h̃Xn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

φ(nψ[F (x+ t)])− φ(nψ[F (t)])
x, t ≥ 0,(3.4)

where φ is the generator and ψ = φ−1. One question that we may ask here is, between two
parallel systems with n and m components, which one is more reliable. Of course, this can
be formulated using any particular stochastic order, as seen in the following theorems.

Theorem 3.1. If u ln′[1− φ(u)] is decreasing in u ∈ R+, then for m ≥ n, we have

Xm:m(t) ≥hr Xn:n(t).
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Proof: With the hazard rate function of Xn:n(t) as given in (3.3), for obtaining the
desired result, it is sufficient to show that hXn:n(t)(x)− hXm:m(t)(x) ≤ 0, for any x ∈ R+. We
have

I(x) = hXn:n(t)(x)− hXm:m(t)(x)

=
f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))

1− φ(nψ(F (x+ t)))

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
1− φ(mψ(F (x+ t)))

}
sgn
= u ln′[1− φ(u)]

∣∣
u=nψ(F (x+t))

− u ln′[1− φ(u)]
∣∣
u=mψ(F (x+t))

.(3.5)

Now, by using the decreasing property of u ln′[1− φ(u)] with respect to u ∈ R+, for m ≥ n,
we readily observe from (3.5) that hXn:n(t)(x) ≥ hXm:m(t)(x), for x ∈ R+. Thus, the theorem
gets established.

Remark 3.1. Theorem 3.1 shows that, for some Archimedean copulas, parallel sys-
tems with more redundancy is more reliable in the sense of hazard rate order; that is, a
parallel system with less (dependent) components will possess a higher hazard rate than a
parallel system with less components.

Example 3.1. It should be mentioned that the condition “u ln′[1− φ(u)] is decreas-
ing” in Theorem 3.1 is quite general and holds for many Archimedean copulas. We now
demonstrate this with the following examples:

1. If φ1(u) = e−u
θ
, for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′[1− φ1(u)] = − tφ′1(u)
1− φ1(u)

=
θuθe−u

θ

1− e−uθ ,

which is decreasing in u ∈ R+;

2. If φ2(u) = 1− (1− e−u)θ, for θ ∈ [0, 1) (Li and Li [22]), we have

u ln′[1− φ2(u)] = − uφ′2(u)
1− φ2(u)

=
θue−u

1− e−u
,

which is decreasing in u ∈ R+;

3. If φ3(u) = 1√
u+1

(Li and Li [22]), we have

u ln′[1− φ3(u)] = − uφ′3(u)
1− φ3(u)

=
1

4(
√
u+ 1)

,

which is decreasing in u ∈ R+;

4. If φ4(u) = 1
2e
u
(
eu − 1

2

)−1 (Ali-Mikhail-Haq copula, Nelsen [27]), we have

u ln′[1− φ4(u)] = − uφ′4(u)
1− φ4(u)

=
ueu

2(eu − 1
2)(eu − 1)

,

which is decreasing in u ∈ R+.
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Example 3.2. Consider the standard exponential distribution as baseline distribution
function. Assume that φ(u) = 1√

u+1
, t = 5, n = 5 and m = 10.

Figure 1 presents plots of the hazard rate functions of hX5:5(1/x− 1) and hX10:10(1/x−
1), from which it can be observed that the value of hX10:10(5)(1/x− 1) is always smaller than
that of hX5:5(5)(1/x− 1) on the interval (0, 1). Thus, the results of Theorem 3.1 is validated
in this case.

0.2 0.4 0.6 0.8 1.0

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

hazard rate function of X10:10
hazard rate function of X5:5

Figure 1: Plots of hazard rate functions of hX5:5(1/x− 1) and hX10:10(1/x− 1).

Theorem 3.2. If u ln′[φ(mψ(F (t)))− φ(u)] is increasing with respect to u ∈ R+, then

for m ≥ n, we have Xn:n(t) ≥rh Xm:m(t).

Proof: With reversed hazard rate function of Xn:n(t) as given in (3.4), for establishing
the desired result, we need to show that h̃Xn:n(t)(x) ≤ h̃Xm:m(t)(x), for any x ∈ R+. Because
φ′(x) ≤ 0, we have

I(x) = h̃Xn:n(t)(x)− h̃Xm:m(t)(x)

=
f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
≥ f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(mψ[F (t)])

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
sgn
= u ln′[φ(u)− φ(mψ(F (t)))] | u=mψ(F (x+t))

− u ln′[φ(u)− φ(mψ(F (t)))] | u=nψ(F (x+t)).(3.6)

Using the increasing property of u ln′[φ(mψ(F (t)))− φ(u)] with respect to u ∈ R+, form ≥ n,
we readily observe from (3.6) that I(x) ≥ 0, for x ∈ R+. Thus, the theorem gets established.



Orderings and ageing of reliability systems with dependent components... 205

Remark 3.2. Theorem 3.2 shows that, for some Archimedean copulas, a parallel sys-
tem with more (dependent) components will possess a higher reversed hazard rate than a
parallel system with less components.

Theorem 3.3. If u ln′
[
− φ′(u)

1−φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n, we have

Xn:n(t) ≥c Xm:m(t).

Proof: With the hazard rate functions of Xn:n(t) and Xm:m(t) as given in (3.3), we
have

I(x) =
hXn:n(t)(x)
hXm:m(t)(x)

=
n

m
× φ′(nψ{F (x+ t)])

1− φ(nψ[F (x+ t)])
×
{

φ′(mψ[F (x+ t)])
1− φ(mψ[F (x+ t)])

}−1

.

Because φ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=
{

φ′(nψ(F (x+ t)))
1− φ(nψ(F (x+ t)))

}′
× φ′(mψ(F (x+ t)))

1− φ(mψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
1− φ(nψ(F (x+ t)))

×
{

φ′(mψ(F (x+ t)))
1− φ(mψ(F (x+ t)))

}′
sgn
= −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

+
φ′(nψ(F (x+ t)))

1− φ(nψ(F (x+ t)))

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

+
φ′(mψ(F (x+ t)))

1− φ(mψ(F (x+ t)))

}
= u ln′

[
− φ′(u)

(1− φ(u))

]∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− φ′(u)

(1− φ(u))

]∣∣∣∣∣
u=nψ(F (x+t))

.

Due to the assumption that u ln′
[
− φ′(u)

1−φ(u)

]
is decreasing in u ∈ R+, we get the required result

from the above equation.

Remark 3.3. Theorem 3.3 shows that, for some Archimedean copulas, a parallel sys-
tem with less redundancy (with dependence between components) ages faster in hazard rate
than a parallel system with more redundancy. Some illustrations of the result in Theorem
3.3 can be seen in Part (i) of Example 3.4 of Ding and Zhang [10].

Theorem 3.4. If u ln′
[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
is decreasing in u ∈ R+, then for m ≥ n, we

have Xm:m(t) ≥b Xn:n(t).

Proof: With the reversed hazard rate functions of Xm:m(t) and Xn:n(t) as given in
(3.4), we have

I(x) =
h̃Xn:n(t)(x)

h̃Xm:m(t)(x)

=
n

m
× φ′(nψ[F (x+ t)])
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

×
{

φ′(mψ{F (x+ t)])
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}−1

.
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Because φ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=
{

φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

}′
× φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

×
{

φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}′
sgn
= −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

− φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
≤ −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(mψ[F (t)])

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

− φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
= u ln′

[
− φ′(u)
φ(u)− φ(mψ[F (t)])

]∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− φ′(u)
φ(u)− φ(mψ[F (t)])

]∣∣∣∣∣
u=nψ(F (x+t))

.

Due to assumption that u ln′
[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
is decreasing in u ∈ R+, from the above

equation, we find I(x) to be decreasing, as required.

Remark 3.4. Theorem 3.4 shows that, for some Archimedean copulas, under the
decreasing property of the function u ln′

[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
with respect to u ∈ R+, a parallel

system with more redundancy ages faster in terms of the reversed hazard rate than a parallel
system with less redundancy.

4. RESULTS FOR RESIDUAL LIVES OF SERIES SYSTEMS

Let X1:n denote the lifetime of a series system consisting of n dependent components
whose joint distribution is given by an Archimedean copula. Then, the distribution func-
tion, density function, hazard rate function and reversed hazard rate function of residual life
variable X1:n(t) at x, given that the series system has survived till time t, are given by

F̄X1:n(t)(x) =
φ
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.1)

fX1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.2)

hX1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.3)

h̃X1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.4)

respectively, where φ is the generator and ψ = φ−1. Now, we examine between two series
systems with n and m components, which one is more reliable.
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Theorem 4.1. If u ln′ φ(u) is decreasing in u ∈ R+, then form ≥ n, we haveX1:n(t) ≥hr
X1:m(t).

Proof: With the hazard rate functions of X1:n(t) and X1:m(t) as given in (4.3), we
have

I(x) = hX1:n(t)(x)− hX1:m(t)(x)

=
f(x+ t)ψ′

(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

)
×

{
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (x+ t)

)) −
mψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
mψ
(
F̄ (x+ t)

)) }
sgn
= u ln′ φ(u) | u=mψ(F̄ (x+t)) − u ln′ φ(u) | u=nψ(F̄ (x+t)).

By using the decreasing property of u ln′ φ(u), for m ≥ n, we readily observe that I(x) ≤ 0.
Thus, the theorem gets established.

Remark 4.1. Theorem 4.1 shows that, for some Archimedean copulas, a series system
with less (dependent) components is more reliable in the sense of hazard rate order; that is,
a series system with less (dependent) components will possess a lower hazard function than
a series system with more components.

Example 4.1. The condition “u ln′ φ(u) is decreasing” in Theorem 4.1 is quite general
and can be verified for many well-known Archimedean copulas. For example, we consider the
following:

1. If φ1(u) = e−u
θ
, for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′[φ1(u)] = −θuθ,

which is decreasing in u ∈ R+;

2. If φ2(u) = (θu+ 1)−
1
θ (Clayton copula, Nelsen [27]), we have

u ln′[φ2(u)] = − u

θu+ 1
,

which is decreasing in u ∈ R+.

Example 4.2. Consider the standard exponential distribution as baseline distribution
function. Assume that φ(u) = (θu+ 1)−

1
θ , θ = 2, t = 2, n = 4 and m = 10.

Figure 2 presents plots of the hazard rate functions of hX1:4(1/x−1) and hX1:10(1/x−1),
from which it can be observed that the value of hX1:14(1/x− 1) is always smaller than that
of hX1:10(1/x− 1) on the interval (0, 1). Thus, the result of Theorem 4.1 is validated in this
case.
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Figure 2: Plots of hazard rate functions of hX1:4(1/x− 1) and hX1:10(1/x− 1).

Theorem 4.2. If u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n,

we have X1:n(t) ≥rh X1:m(t).

Proof: With the reversed hazard rate functions of X1:n(t) and X1:m(t) as given in
(4.4), for m ≥ n, we have

I(x) = h̃X1:n(t)(x)− h̃X1:m(t)(x)

=
f(x+ t)ψ′

(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
mψ
(
F̄ (t)

))
− φ

(
mψ
(
F̄ (x+ t)

))}
≥

f(x+ t)ψ′
(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
mψ
(
F̄ (x+ t)

))}
sgn
= u ln′

[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
| u=nψ(F̄ (x+t))

− u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
| u=mψ(F̄ (x+t)).(4.5)

Using the decreasing property of u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
in u ∈ R+, for m ≥ n, we readily

observe from (4.5) that I(x) ≥ 0. Thus, the theorem gets established.

Remark 4.2. Theorem 4.2 shows that, for some Archimedean copulas, a series system
with less (dependent) components will possess lower reversed hazard rate than a series system
with more components.

Theorem 4.3. If u ln′
[
−φ′(u)
φ(u)

]
is decreasing (increasing) in u ∈ R+, then for m ≥ n,

we have X1:m(t) ≥c (≤c)X1:n(t).
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Proof: With the hazard rate functions of X1:m(t) and X1:n(t) as given in (4.3), we
have

I(x) =
hX1:n(t)(x)
hX1:m(t)(x)

=
n

m
×
φ′
(
nψ
[
F̄ (x+ t)

])
φ
(
nψ
[
F̄ (x+ t)

]) ×{φ′(mψ[F̄ (x+ t)
])

φ
(
mψ
[
F̄ (x+ t)

]) }−1

.

By differentiating this function, we find

I ′(x)
sgn
=

{
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ(F̄ (x+ t))

) }′ × φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ(F̄ (x+ t))

)
−
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ(F̄ (x+ t))

) ×{φ′(mψ(F̄ (x+ t))
)

φ
(
mψ(F̄ (x+ t))

) }′
sgn
= nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

− φ′(nψ(F̄ (x+ t)))
φ(nψ(F̄ (x+ t)))

}
− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

− φ′(mψ(F̄ (x+ t)))
φ(mψ(F̄ (x+ t)))

}
= u ln′

[
−φ

′(u)
φ(u)

]∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′
[
−φ

′(u)
φ(u)

]∣∣∣∣∣
u=mψ(F̄ (x+t))

≥ (≤) 0,

according to whether u ln′
[
−φ′(u)
φ(u)

]
is decreasing (or increasing) in u ∈ R+, for m ≥ n. Thus,

the theorem gets established.

Remark 4.3. Theorem 4.3 shows that, for some Archimedean copulas, under the
decreasing (increasing) property of the function u ln′

[
−φ′(u)
φ(u)

]
, a series system with less (de-

pendent) components ages faster (ages slower) in terms of hazard rate than a series system
with more components. Some illustrations of the result in Theorem 4.3 can be seen in Part
(ii) of Example 3.4 of Ding and Zhang [10].

Theorem 4.4. If u ln′
[
− φ′(u)

φ(nψ[F̄ (t)])−φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n,

we have X1:n(t) ≥b X1:m(t).

Proof: With the reversed hazard rate functions of X1:m(t) and X1:n(t) as given in
(4.4), we have

I(x) =
h̃X1:n(t)(x)

h̃X1:m(t)(x)

=
n

m
×

φ′
(
nψ
[
F̄ (x+ t)

])
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ
[
F̄ (x+ t)

]) ×{ φ′
(
mψ
[
F̄ (x+ t)

])
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ
[
F̄ (x+ t)

])}−1

.
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As φ(x) is decreasing, for m ≥ n, we obtain

I ′(x)
sgn
=

{
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ(F̄ (x+ t))

)}′ × φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ(F̄ (x+ t))

)
−

φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ(F̄ (x+ t))

) ×{ φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ(F̄ (x+ t))

)}′
sgn
= nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

+
φ′(nψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(nψ(F̄ (x+ t)))

}

− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

+
φ′(mψ(F̄ (x+ t)))

φ
(
mψ
[
F̄ (t)

])
− φ(mψ(F̄ (x+ t)))

}

≥ nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

+
φ′(nψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(nψ(F̄ (x+ t)))

}

− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

+
φ′(mψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(mψ(F̄ (x+ t)))

}

= u ln′
[
− φ′(u)
φ
(
nψ
[
F̄ (t)

])
− φ(u)

]∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′
[
− φ′(u)
φ
(
nψ
[
F̄ (t)

])
− φ(u)

]∣∣∣∣∣
u=mψ(F̄ (x+t))

.

Due to the assumption that u ln′
[
− φ′(u)

φ(nψ[F̄ (t)])−φ(u)

]
is decreasing in u∈R+, we have I ′(x)> 0.

Thus, the theorem gets established.

Remark 4.4. Theorem 4.4 shows that, for some Archimedean copulas, a series system
with less (dependent) components ages faster in terms of reversed hazard rate than a series
system with more components.

Example 4.3. We note that the condition “u ln′
[
− φ′(u)

φ(mψ[F̄ (t)])−φ(u)

]
is decreasing” in

Theorem 4.4 holds in many cases. For example, consider φ(u(x, t)) = e−u and 0 < a(t) ≤ 1
and also φ(u(x, t)) < a(t) for all t ∈ [0,∞). We then have

u ln′
[
− φ′(u)
a− φ(u)

]
= u

{
φ′′(u)
φ′(u)

− φ′(u)
a− φ(u)

}
=

−au
a− e−u

to be decreasing in u ∈ R+.

5. SYSTEMS WITH DEPENDENT ACCELERATION FAILURE TIME
COMPONENTS

One of the common reliability structures in practice is a r-out-of-n system. This system,
consisting of n components, works iff at least r components work. It includes parallel, fail-safe
and series systems all as special cases when r = 1, r = n− 1 and r = n, respectively. In this
section, we develop some characterization results for these systems when the components are
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dependent with an Archimedean copula and the component lifetimes follow an accelerated
failure time distribution in (2.5) based on a comparison with the “average system”. The
results established here complete and extend some results of Cai et al. [8].

Using the copula representation for the joint distribution of X1, ..., Xn in (2.1), we have
in this case

F̄1:n(x) = φ

(
n∑
k=1

ψ((1− Fα(λkx))β)

)
, x > 0,(5.1)

F̄2:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx))β)


− (n− 1)φ

(
n∑
k=1

ψ((1− Fα(λkx))β)

)
, x > 0,(5.2)

Ḡ(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx))β)

, x > 0.(5.3)

The expressions in (5.1) and (5.2) correspond to the survival functions of the series
system (i.e., r = n) and of the fail-safe system (r = n− 1), respectively. The expression in
(5.3) corresponds to the survival function of an “average series system”, whose lifetime is
denoted by Y . This average series system can be explained by a randomization process as
follows: From a series system comprising n components, one randomly selected component
may be removed to obtain a series system with (n− 1) remaining components; out of the
n such (n− 1)-component series systems, we then randomly select one of them, and that is
what the average series system is here. The expression of the survival function given in (5.3)
then becomes clear.

Theorem 5.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: (i) By definition, X1:n ≤mrl X2:n iff ∀t > 0, we have∫∞
0 F̄2:n(x+ t) dx

F̄2:n(t)
≥
∫∞
0 F̄1:n(x+ t) dx

F̄1:n(t)
.(5.4)

Upon using (5.1) and (5.2) in (5.4) and Theorem 2.A.6 of Shaked and Shanthikumar [33] and
some simplifications, ∀t > 0,

φ

(
n∑
i=1

ψ((1− Fα(λkt))β)

)
×
∫ ∞

0

 n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)

dx
≥

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)


×
∫ ∞

0

[
φ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))β)

)]
dx.(5.5)
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Similarly, from (5.1) and (5.3), we see that Y ≥mrl X1:n iff ∀t > 0,∫∞
0

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkx+ λkt))β)

)
dx

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkt))β)

)
≥
∫∞
0 φ

(∑n
i=1 ψ((1− Fα(λkx+ λkt))β)

)
dx

φ(
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.6)

The equivalence of the inequalities in (5.5) and (5.6) yields Part (i) immediately.

(ii) By definition, X1:n ≤hr X2:n iff ∀x, t > 0, we have

F̄2:n(x+ t)
F̄2:n(t)

≥ F̄1:n(x+ t)
F̄1:n(t)

.(5.7)

Upon using (5.1) and (5.2) in (5.7) and simplification, ∀x, t > 0,

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)

×

[
φ

(
n∑
k=1

ψ((1− Fα(λkt))β)

)]

≥
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkt))β)

×

[
φ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))β)

)]
.(5.8)

Similarly, from (5.1) and (5.3), we see that Y ≥hr X1:n iff ∀x, t > 0,

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkx+ λkt))β)

)
1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkt))β)

)
≥

φ
(∑n

k=1 ψ((1− Fα(λkx+ λkt))β)
)

φ(
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.9)

The equivalence of the inequalities in (5.8) and (5.9) yields Part (ii) immediately.

(iii) This can be proved in a manner similar to Part (ii).

Next, from the copula representation for the joint distribution of X1, ..., Xn in (2.1),
we have, in this case, for x > 0,

Fn:n(x) = φ

(
n∑
k=1

ψ(1− (1− Fα(λkx))β)

)
,(5.10)

Fn−1:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ(1− (1− Fα(λkx))β)


− (n− 1)φ

(
n∑
k=1

ψ(1− (1− Fα(λkx))β)

)
,(5.11)

and let Z have its distribution function as

H(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ(1− (1− Fα(λkx))β)

, x > 0.(5.12)
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The expression in (5.10) corresponds to the survival function of a parallel system (i.e.,
r = 1), while the expression in (5.11) corresponds to the survival function of a 2-out-of-n
system. The expression in (5.12) corresponds to the survival function of an “average parallel
system”, whose lifetime is denoted here by Z. This average parallel system can once again
be explained by a randomization process as follows: From a parallel system consisting of
n components, one randomly selected component may be removed to obtain a parallel sys-
tem with (n− 1) remaining components; out of the n such (n− 1)-component parallel sys-
tems, we randomly select one of them, and that is what the average parallel system is here.
The expression of the survival function given in (5.12) then becomes clear.

Theorem 5.2. In the special case when n = 2, we have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be established in a manner analogous to Theorem 5.1, and we there-
fore do not present it here for the sake of brevity.

We now present a complete characterization result for the special case when n = 2.

Theorem 5.3. We have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: In Theorem 3.1, we have characterization between X1:n and X2:n based on
characterization between X1:n and Y . For the case when n = 2, it is simply a characterization
betweenX1:2 andX2:2 based on characterization betweenX1:2 andY . Similarly, inTheorem3.2,
we have characterization between Xn−1:n and Xn:n based on characterization between Z and
Xn:n, which in the case when n = 2, is simply a characterization between X1:2 and X2:2 based
on characterization between Z and X2:2. As the left hand sides of both results are the same
variables, the characterization results on the right hand sides must be equivalent. Thus, the
characterization of X1:2 and Y must be equivalent to the characterization of Z and X2:2.

6. SYSTEMS WITH DEPENDENT MODIFIED PROPORTIONAL
HAZARDS COMPONENTS

In this section, we assume that the n components in a reliability system are dependent
with their component lifetimes following a modified proportional hazards model in (2.7)
and their joint distribution being represented by an Archimedean copula in (2.1). We then
establish some characterization results for series, fail-safe, 2-out-of-n and parallel systems in
this general setup using mean residual life, hazard rate and reversed hazard orders based on
a comparison with the “average system”. The results established here complete and extend
some results of Cai et al. [8].
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In this case, from (2.1), we have

F̄1:n(x) = φ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.1)

F̄2:n(x) =
n∑
l=1

φ

 n∑
l=1,k 6=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

)
− (n− 1)φ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.2)

Ḡ(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

), x > 0,(6.3)

where φ is the generator and ψ = φ−1. The expressions in (6.1)–(6.3) correspond to the
survival functions of series, fail-safe and average series systems in this case, respectively. We
use Y to denote the lifetime of the average series system whose survival function is given in
(6.3)

Theorem 6.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: This can be established in a manner analogous to Theorem 5.1, and we there-
fore do not present it here for the sake of brevity.

Next, from the copula representation for the joint distribution of X1, ..., Xn in (2.1),
we find in this case

Fn:n(x) = φ

(
n∑
k=1

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

))
, x > 0,(6.4)

Fn−1:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

)
− (n− 1)φ

(
n∑
k=1

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

))
, x > 0,(6.5)

and let Z be a random variable with its distribution function as

H(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

), x > 0.(6.6)

The expressions in (6.4)–(6.6) correspond to the distribution functions of parallel,
2-out-of-n and average parallel systems in this case.
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Theorem 6.2. We have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be proved in a manner analogous to Theorem 6.1, and we therefore
do not present the proof here for the sake of brevity.

Theorem 6.3. In the special case when n = 2, we have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: This can be proved in a way similar to Theorem 5.3, and we therefore do not
describe it here.

7. CONCLUDING REMARKS

In this work, we have considered reliability systems with dependent components having
accelerated failure time and modified proportional hazards distributions and having a joint
distribution represented by a general Archimedean copula. We have focused especially on
series, fail-safe, 2-out-of-n and parallel systems, and have then established some characteri-
zation results for these systems through comparisons with average systems in terms of mean
residual life, hazard rate and reversed hazard rate orders. It will naturally be of interest
to extend these results to the case of general (n− r + 1)-out-of-n systems and sequential
(n− r + 1)-out-of-n systems as discussed by Barmalzan et al. [6] under the general setting
considered here; one may see Misra and Francis [25] for some results in this regard under
a restricted setting. We are currently working on these problems and hope to report the
findings in a future paper.
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