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1. INTRODUCTION

The data type of measured variables is important to determine the statistical methods
for summarizing and testing the relationship or independence between variables [9]. Ana-
lyzing categorical data is generally less tractable and may require much effort for selecting
appropriate statistical methods, such as log-linear models, logistic regression, and chi-square
tests. The contingency table approach is one of the frequently used methods to summa-
rize the joint distribution of two categorical variables. An example of r-by-c contingency
table showing the joint distribution of categorical variables X and Y is given in Table 1.
Here, nij (i = 1, 2, ..., r and j = 1, 2, ..., c) represents the frequencies of joint occurrences,
ni+ =

∑c
j=1 nij and n+j =

∑r
i=1 nij are row and column totals (i.e., row/column marginals),

and n =
∑r

i=1 ni+ =
∑c

j=1 n+j =
∑c

j=1

∑r
i=1 nij is the grand total of contingency table that

also refers to sample size.

Table 1: An example of r-by-c contingency table.

Y1 Y2 · · · Yc Total

X1 n11 n12 · · · n1c n1+

X2 n21 n21 · · · n2c n2+

· · · ...
... · · · ...

...
Xr nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n

Specification of the joint probability distribution of Table 1 is crucial since it plays
a key role in the type of statistical analysis used. The distribution of a contingency table
may be one of multinomial, product multinomial, hypergeometric, and Poisson based on the
cell counts that are fixed such that row/column marginals or totals. The inference about
the independence between categorical variables can be evaluated using the appropriate sam-
pling distribution and statistical hypotheses. The hypotheses for testing the independence of
categorical variables in Table 1 is defined as

(1.1)
H0 : π1j = π2j = ... = πrj ,

H1 : πij 6= πkj at least one i, j, k, i 6= k,

where πij is the hypothesized cell probability of the i-th row and the j-th column, and π̂ij

is the estimated cell probability from sampling distribution. There are several methods for
estimating cell probabilities, i.e., πij , and testing a hypothesis (1.1) depending on the joint
distributions [13, 8].

Pearson’s chi-square test statistic is widely used for testing the hypothesis (1.1). How-
ever, it is not a gold standard and may not be appropriate for small samples [1]. There exist
various test statistics proposed to test the independence, where each performs better under
certain conditions, such as sample size, number of rows and columns, sampling methods, etc.
In this study, we used the most common of these methods, which are:



Performance comparison of independence tests in two-way contingency tables 221

(i) Pearson’s chi-square test;

(ii) likelihood ratio test;

(iii) Freeman–Tukey test;

(iv) Cressie–Read test;

(v) Fisher–Freeman–Halton’s exact test.

A hypothesis established from a contingency table, considering the purpose of the study,
could be tested using different statistical test procedures. The results of the hypothesis tests
might be in the opposite direction for the variety of hypothesis tests. It is a crucial issue since
it may mislead the researcher in their studies. Therefore, it is essential to choose appropriate
statistical tests or methods to achieve correct and unbiased conclusions. In this study, we
aimed to compare different test procedures and related test statistics under various scenarios
for the power (1− β) and the type-I error rate (α) of the test statistic. We conducted
a comprehensive simulation study using the combinations of sample size, effect size, and
sampling design. Furthermore, we applied each method to a real-life dataset for making
a fair comparison between simulation and real-life data results. This study contributed to
the literature by considering each test procedure under several conditions and comparing
the performances of each test statistic via a comprehensive simulation study. Furthermore,
the current study compared the simulation results with a real-life dataset and showed the
concordance (or discordance) between the simulation study and the real-life example. All the
analyses were performed on the R programming language (https://cran.r-project.org/)
through self-written codes available upon request to the correspondent author.

The plan of this study is as follows. The methods, statistical background, simulation
scenarios, and real datasets are explained in detail in the Material and Methods section.
The results of simulated and real datasets are presented in the Results section, and finally,
we discussed the results in the Discussion section with conclusions and future work.

2. MATERIAL AND METHODS

The statistical methods proposed to test the hypothesis (1.1) are detailed in subsection
2.1. These methods use the observed (nij) and expected (Eij) frequencies to compute test
statistics. All test statistics are asymptotically chi-square distributed with degrees of freedom
(r − 1)(c− 1).

2.1. Test Statistics

The most common test statistic proposed to test independence between categorical
variables is the Pearson’s chi-square statistic [1],which takes the difference between observed
and expected frequencies into account. The test statistic (χ2) is

(2.1) χ2 =
r∑

i=1

c∑
j=1

(nij − Eij)
2

Eij
.

https://cran.r-project.org/
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The likelihood ratio test statistic is another approach to test independence [1]. Unlike
Pearson’s chi-square statistic, it is based on the ratio of the observed and expected frequencies.
The test statistic is

(2.2) G2 = 2×
r∑

i=1

c∑
j=1

nij × log
(

nij

Eij

)
.

The Freeman and Tukey test statistic aims to approximate Binomial or Poisson distri-
bution to normal distribution by stabilizing the variance [7, 2]. It is based on the differences
between the square root of observed and expected frequencies. The test statistic is

(2.3) FT2 =
r∑

i=1

c∑
j=1

(√
nij +

√
nij + 1−

√
4× Eij + 1

)2
.

Cressie and Read [4] proposed the power divergence family as a generalization of
goodness-of-fit test. It is flexible and converges to other well-known test statistics based
on the choice of tuning parameter λ. The family of power divergence test statistic is

(2.4) PD =
2

λ× (λ + 1)
×

r∑
i=1

c∑
j=1

πij ×

[(
nij

Eij

)λ

− 1

]
.

The power divergence test statistic converges to Pearson’s chi-square, likelihood ratio,
and Freeman–Tukey statistics when λ equals 1, 0 and 0.5, respectively. They [4] suggested
taking λ as 2/3, called the Cressie–Read test statistic, as being an excellent compromise
between Pearson’s chi-square and likelihood ratio test statistics [4]. The test statistic is

(2.5) CR =
9
5
×

r∑
i=1

c∑
j=1

nij ×

[(
nij

Eij

)2/3

− 1

]
.

In addition to the above-mentioned test statistics, we evaluated the Fisher–Freeman
Halton (FFH) exact test statistic [6], which is the extension of Fisher’s exact test to r-by-c
tables. The Fisher–Freeman–Halton test statistic gives the exact p-value, which is calculated
from sequentially generated contingency tables until one of the cells in the given margin
is equal 0. This method becomes computationally intensive as the sample size increases.
To overcome this problem, the Monte Carlo approach that selects samples randomly from
the contingency tables is recommended [1]. In this study, we used large sample sizes. How-
ever, we benefited from the Monte-Carlo approach to decrease the computation time of the
FFH test statistic.

2.2. Simulation Scenarios

We conducted a comprehensive simulation study using the R language environment [12].
We considered several factors such as sample size (n), effect size (w), and sampling design
in the simulation. We used two different contingency tables, with dimensions of 5-by-5 and
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5-by-2, in all simulation scenarios. Simulation scenarios consist of all possible combinations
of:

• Sample size (n): {100, 200, 500} for the 5-by-5 table and {40, 80, 200} for the 5-by-2
table as small, medium and large, respectively,

• Effect size: (w): {0.10, 0.30, 0.50} as small, medium, and large [3],

• Sampling design: balanced (0.20, 0.20, 0.20, 0.20, 0.20),
almost balanced (0.15, 0.15, 0.20, 0.25, 0.25) and
imbalanced row margins (0.05, 0.05, 0.30, 0.30, 0.30),

where different sample sizes were used for 5-by-5 and 5-by-2 contingency tables while effect
sizes and sampling designs were similar. The sample sizes were chosen so that the contingency
tables were not sparse. Furthermore, the effect sizes were specified as in the literature [3].
Data were generated under product multinomial distribution via an R package rTableICC [5]
by setting row marginal and total sample size fixed. Cell probabilities were specified according
to changing effect size and sampling design. We compared each method using type I error rate
and power. Each simulation scenario was repeated 10, 000 times. Each generated contingency
table was tested with the Pearson’s chi-square test, likelihood ratio test, Freeman–Tukey test,
Cressie–Read test, and Fisher–Freeman–Halton’s exact test. The type-I error rate of each test
statistic was calculated as the proportion of false rejection obtained from 10, 000 replications
when the null hypothesis was true, i.e., the effect size is w = 0. The power of each test, on the
other hand, was calculated as the proportion of rejection obtained from 10, 000 replications
assuming that the null hypothesis was false, i.e., the effect size is w 6= 0. The power and
type-I error rate of the Pearson’s chi-square test, likelihood ratio test, Freeman–Tukey test,
and Cressie–Read tests statistics were obtained using the underlying Chi-square distribution.
The comparison for the result of the Fisher–Freeman–Halton’s exact test was evaluated using
a p-value against the level of statistical significance. The statistical significance was taken as
p < 0.05 in all simulation scenarios.

2.3. Real-life datasets

In addition to the simulation study, we evaluated the selected methods on real datasets.
The first of the datasets is related to suicides. Suicides adversely affect not only the person
who committed suicide, but also the people around the person, communities, and countries.
According to the World Health Organization [17], suicide leads to a serious public health
issue. Therefore, we decided to examine the specific causes of suicide within education level
in Turkey in the year 2018. The datasets were provided by the Turkish Statistical Institute
[15] and are represented in Table 2.

Nowadays, one of the major issues in the world, which is the infection of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV2), also known as COVID-19, has led to the
global pandemic. Therefore, another dataset, which is taken from Ozsurekci et al. [10], was
chosen to be used in this study. The children who were infected with or exposed to COVID-19
might have developed multisystem inflammatory syndrome (MIS-C) due to the triggering of the
immune system. They compared children with MIS-C (n = 30) and severe/critical cases with
COVID-19 (n=22) in terms of respiratory support systems. This information is given in Table 3.
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Table 2: Contingency table between causes of suicide and education level.

Causes

Marital FinancialEducation Level

Conflict Difficulty
Disease Emotional Other

Never received formal education 9 (7.14%) 4 (1.63%) 53 (7.91%) 4 (4.71%) 53 (6.31%)
Primary School 27 (21.43%) 53 (21.54%) 155 (23.13%) 10 (11.76%) 174 (20.71%)
Secondary School 60 (47.62%) 74 (30.08%) 197 (29.40%) 37 (43.57%) 269 (32.02%)
High School 22 (17.93%) 81 (32.93%) 170 (25.37%) 23 (27.06%) 205 (24.40%)
Graduate 8 (6.35%) 34 (13.82%) 95(14.18%) 11 (12.92%) 139 (16.55%)

Table 3: Contingency table between disease group and respiratory support system.

Group

Cases Severe/Critical casesRespiratory Support

with MIS-C with COVID-19

None 14 (46.67%) 6 (27.27%)
Oxygen Only 7 (23.33%) 8 (36.36%)
High Flow Support 0 (0.00%) 2 (9.09%)
Non-invasive ventilation 6 (20.00%) 0 (0.00%)
Invasive mechanical ventilation 3 (10.00%) 6 (27.27%)

3. RESULTS

The performance of the test statistics was compared according to type-I error rate and
power. The power of test statistics were presented in Figures 1 and 2 while the type-I error
rates were presented in Figures 3 and 41. In each figure, effect sizes and sampling designs
were given in the rows and columns, respectively. The test statistics were given on the x-axis
and the sample size was indicated using different line type within each figure. Although we
graphically presented the power and type-I error rate results in Figures 1–4, it was not easy
to read exact values from corresponding figures when the points and lines were overlapped
or test statistics slightly differed. Therefore, we provided the findings of Figures 1–4 with
supplementary tables in the Appendix section.

When the power results are examined in Figures 1 and 2 (Tables 5 and 6 in the Ap-
pendix) for 5-by-5 and 5-by-2 contingency tables, we observe that both the effect size and the
sample size have a positive effect on power of test statistics. The statistical power of methods
increases with the increasing sample size and effect size. However, the sampling design has no
or a considerably small effect on power for each method. Among the methods considered, the
likelihood ratio test has the highest power in almost all scenarios. The Pearson’s chi-square
and the Cressie–Read test statistics had less power in almost all designs when the sample
size was small. The power of Freeman–Tukey test decreased as the sampling design became
imbalanced. We also observed that the power of the Fisher–Freeman–Halton test was higher
in the imbalanced design, except for the likelihood ratio test.

1 Figures were generated using the ggplot2 [16] package in the R programming language.
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Figure 1: Simulation results – Power of tests in 5-by-5 contingency table.

Figure 2: Simulation results – Power of tests in 5-by-2 contingency table.
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The type-I error rate results of the 5-by-5 and 5-by-2 tables are given in Figures 3
and 4 (Tables 7 and 8 in the Appendix). According to the results, the likelihood ratio test
was generally liberal generating type I error rates above the nominal level. Nevertheless, we
observed that the type-I error rate of the likelihood ratio test was close to the nominal level as
the sample size increased. In the balanced sampling design with the larger sample sizes, the
type-I error rate of all test statistics, except for the likelihood ratio test statistic, was close to
the nominal level. The Freeman–Tukey test statistic had a remarkably higher type-I error rate
than the nominal level in small samples for balanced and almost balanced designs. However,
it had the lowest type-I error rate below the nominal level in the imbalanced sampling design
with a small sample size. In balanced and almost balanced designs, the Pearson’s chi-square
test, Cressie–Read test, and Fisher–Freeman–Halton test were better at controlling the type-I
error rate at the nominal level in almost all sample sizes. However, in the imbalanced sampling
design, Cressie–Reed and Pearson’s chi-square test statistics were generally conservative for
the small sample size and had type-I error rates closer to the nominal level as the sample size
increased. Finally, the Fisher–Freeman–Halton test statistic had type-I error rates very close
to the nominal level for the imbalanced sampling design.

Figure 3: Simulation results – Type I error rates in 5-by-5 contingency table.

The results of real datasets are represented in Table 4. The suicide dataset (Table 2) had
small effect size (i.e., w = 0.16), large sample size (i.e., n = 1967), and imbalanced design accord-
ing to the row probabilities (i.e., 0.063, 40.2131, 0.324, 0.255, and 0.146). Therefore, the sui-
cide dataset corresponds to the simulation combination that was small effect size, large sample
size, and imbalanced sampling design with the 5-by-5 table (bottom-right panel of Figure 1).
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Figure 4: Simulation results – Type I error rates in 5-by-2 contingency table.

Although we found a statistically significant association between education level and suicide
(p < 0.001 for all test statistics), the degree of association was not high (w = 0.16). Under this
simulation scenario, the power of the Pearson and Cressie–Read test statistics was lower than
the likelihood ratio test, which was similar to the real dataset results. On the other hand, the
COVID-19 dataset had a large effect size (i.e., w = 0.46), small sample size (i.e., n = 52), and
imbalanced sampling design according to the row probabilities (i.e., 0.385, 0.289, 0.039, 0.115,
and 0.173). This dataset corresponds to the simulation combination of large effect size, small
sample size, and imbalanced sampling design with the 5-by-2 table (upper-right panel of
Figure 2). In the COVID-19 dataset, all test statistics found a significant association between
disease group and respiratory support system. According to the simulation results, there
were slight differences between methods under a similar scenario in the COVID-19 dataset.
Nonetheless, the power of likelihood ratio and Fisher–Freeman–Halton test statistics were
higher than other methods. We observed results similar to simulation results in the COVID-
19 dataset. The power of the likelihood ratio test statistic was the highest as compared to
other methods. In addition, we saw that the Freeman–Tukey and Fisher–Freeman–Halton
tests were almost similar to the likelihood ratio test.

Table 4: Results of real datasets.

Methods
Datasets

χ2 p-value G2 p-value FT2 p-value CR p-value FFH

Causes /Education level 48.66 <0.001 52.75 <0.001 54.01 <0.001 49.67 <0.001 0.001

Res. Support /Group 11.30 0.023 14.23 0.007 13.94 0.007 11.74 0.019 0.016
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4. DISCUSSION

Previous studies in the literature evaluated the performance of various test statistics
for r -by-c contingency tables. Rudas [14] compared the Pearson’s chi-square, Cressie–Read,
and likelihood ratio statistics for 2-by-2 and 3-by-3 tables. They reported that the Pearson’s
chi-square test statistic outperformed the likelihood ratio test when the sample size was small.
Furthermore, they showed that the Cressie–Read and Pearson’s chi-square test statistics had
similar results. Parshall et al. [11] conducted a Monte Carlo simulation study to compare the
type-I error rate and power of Pearson’s chi-square, likelihood ratio, and Cressie–Read test
statistics. They generated datasets from uniform distribution and found that the likelihood
ratio test statistic failed to control the type I error rate at the nominal level. In addition
to the previously published studies, this study considered the effects of sample size, effect
size, and sampling design on the performance of various test statistics of contingency tables.
A comprehensive simulation study were conducted and the findings showed that (Figures 1–4):

• The effect size and sample size were positively associated with the power of tests.
The statistical power of each method increased as the number of samples or effect
size increased.

• Sampling design did not affect the power of tests or slightly changed it.

• The likelihood ratio test had higher type-I error rates than the nominal level in
almost all simulation scenarios. However, its statistical power was higher than other
methods. We concluded that the likelihood ratio test was generally liberal, and the
rejected null hypothesis should be validated using alternative methods.

• The Pearson’s chi-square and Cressie–Read statistics had similar results in almost
all scenarios. We mainly suggest these methods for balanced or almost balanced
sampling designs when the sample size is large.

• The Fisher–Freeman–Halton (FFH) test had similar results with Pearson’s chi-
square and Cressie–Read tests in balanced sampling designs. However, results
were promising and better than other methods in the imbalanced sampling designs.
Hence, we suggest using the FFH test when the sampling design is imbalanced.

• The Freeman–Tukey (FT) test had decreased power as the sampling design became
imbalanced. Even the type-I error rate was higher than the nominal level, except
for the imbalanced sampling design with a small sample size, the FT test was better
at controlling the type-I error rate than the likelihood ratio test.

To test the independence between variables in two-way contingency tables, one should
be aware of the sampling design, the sample size, and the effect size. The power and type-I
error rate are affected by those factors. The Pearson’s chi-square test is a frequently used
method for testing the independence in two-way contingency tables. However, we showed in
our study that the Cressie–Read and Fisher–Freeman–Halton tests are efficient alternatives
to the Pearson’s chi-square test since they are good at controlling type-I error rates at the
nominal level under certain conditions. Moreover, the power of these test statistics is as good
as or better than the Pearson’s chi-square test statistic. Therefore, researchers should consider
the effect of the above-mentioned factors before selecting the appropriate test statistic for
testing the independence in a contingency table.
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Another significant issue in the analysis of the contingency tables is whether there are
cells with zero observed frequencies and expected frequencies below 5. These cell frequencies
affect the choice of the appropriate test statistic. In this study, we counted both the number
of cells with zeros and the cells with an expected value of less than 5 for 10, 000 replication
data in each simulation scenario. The average number of cells with zeros and the average
number of cells with expected counts below 5 were calculated specifically in the small sample
size and imbalanced design for both 5-by-5 and 5-by-2 tables. The average number of cells
with zeros was 4 (16%) and the average number of cells with the expected value less than 5
was 14 (56%) in the 5-by-5 tables. For the 5-by-2 tables, these values were 1 (10%) and 5
(50%), respectively. The amount of cells with lower expected counts were in the majority as
expected. However, the amount of zero inflation were slight to moderate in some of simulation
scenarios. This study did not account for the effect of zero inflation since it was not severe in
the generated datasets. However, the effect of zero inflation should carefully considered before
selecting an appropriate test statistic in contingency tables. Lydersen [8] indicated that when
no more than 20 percent of the cells have an expected value below 5, the Fisher’s exact test
was recommended. In this study, for the small sample size and imbalanced design, we also
observed that the performance of the Fisher–Freeman–Halton test statistic was better than
other test statistics according to the both type-I error level and power. Therefore, we observed
that simulation results are concordant with the literature [8]. As a result, for a small sample
size with an imbalanced sampling design, we could say that the Fisher–Freeman–Halton test
statistic is more convenient for these conditions when considering the results.

This study considered two-way contingency tables with dimensions 5-by-5 and 5-by-2.
In practice, researchers wish to work with contingency tables with lower dimensions due to
simplicity and less sample size. However, one may be required to work with a contingency table
having rows or columns above three. For example, in medical sciences, a binary response vari-
able such as death versus alive or healthy versus diseased might be compared between five
groups which can be summarized in a contingency table with dimensions 5-by-2. Furthermore,
a response variable with five categories like a 5-point Likert scale or reasons of suicides as in
Table 2mightbeassociatedwithanother categorical variablewithfive categories suchas the edu-
cation level. Although high-dimensional contingency tables are not frequently used or preferred
in researches, they may have to be used in some studies. Therefore, the performance of test
statistics in high-dimensional contingency tables should be carefully considered for selecting
an appropriate test statistic. Our study provided detailed results of test statistics in high-dimen-
sional contingency tables. Furthermore, this study can be extended to a more general case by
considering the dimension of contingency tables as a new factor in the simulation scenarios.

The problem of selecting the appropriate method for testing the independence in a contin-
gency table is not a recent topic; however, it is an ongoing issue since the performance of each
method is unclear for most of the scenarios. In this study, we conducted a comprehensive sim-
ulation study considering several factors, and compared the simulation results with real data
examples. Weaimedtoprovide comparative results andbringattention toother statisticalmeth-
ods than Pearson’s chi-square test, which is the most common in practice. We highlighted
that researchers should consider various factors such as sampling design, sample size, and effect
size before selecting the statistical procedures to test the independence in contingency tables.
Although we covered many scenarios in the simulation study, there still exist scenarios that are
not covered and the performances are unclear. Our study was not able to reflect the performance
of selected methods in sparse contingency tables. We leave this topic for further research.
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APPENDIX

Table 5: Simulation results – Power of tests in 5-by-5 contingency table.

Effect Size
Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Low (w = 0.1)

Balanced
100 0.0658 0.1165 0.1018 0.0677 0.0667
200 0.0968 0.1214 0.1024 0.1011 0.1002
500 0.2161 0.2315 0.2193 0.2179 0.2200

Almost
Balanced

100 0.0757 0.1346 0.1151 0.0791 0.0801
200 0.1172 0.1416 0.1189 0.1187 0.1169
500 0.2550 0.2688 0.2531 0.2557 0.2561

Imbalanced
100 0.0723 0.1289 0.0709 0.0703 0.0868
200 0.1069 0.1638 0.1332 0.1084 0.1245
500 0.2531 0.2820 0.2616 0.2559 0.2658

Medium (w = 0.3)

Balanced
100 0.4006 0.5628 0.5205 0.4221 0.4244
200 0.8280 0.8898 0.8742 0.8449 0.8556
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.3793 0.5174 0.4635 0.3958 0.4053
200 0.7792 0.8260 0.7988 0.7874 0.7940
500 0.9990 0.9991 0.9992 0.9990 0.9990

Imbalanced
100 0.4104 0.5494 0.4300 0.4096 0.5020
200 0.7810 0.8312 0.7939 0.7839 0.8366
500 0.9985 0.9986 0.9985 0.9986 0.9988

Large (w = 0.5)

Balanced
100 0.9448 0.9910 0.9867 0.9566 0.9586
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.9412 0.9713 0.9565 0.9487 0.9547
200 0.9999 0.9999 0.9999 0.9999 0.9999
500 1.0000 1.0000 1.000 1.0000 1.0000

Imbalanced
100 0.9423 0.9745 0.9560 0.9482 0.9745
200 0.9421 0.9734 0.9522 0.9477 0.9738
500 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 6: Simulation results – Power of tests in 5-by-2 contingency table.

Effect Size
Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Low (w = 0.1)

Balanced
40 0.0656 0.0950 0.0819 0.0769 0.0619
80 0.0964 0.1103 0.1002 0.0971 0.0946

200 0.1661 0.1743 0.1683 0.1681 0.1680

Almost
Balanced

40 0.0673 0.1089 0.0948 0.0735 0.0713
80 0.0899 0.1055 0.0936 0.0921 0.0906

200 0.1653 0.1735 0.1684 0.1679 0.1656

Imbalanced
40 0.0514 0.0949 0.0634 0.0531 0.0703
80 0.0912 0.1333 0.1211 0.0966 0.1027

200 0.1709 0.1826 0.1720 0.1737 0.1729

Medium (w = 0.3)

Balanced
40 0.2837 0.3494 0.3071 0.3074 0.2674
80 0.5500 0.5809 0.5527 0.5521 0.5403

200 0.9513 0.9534 0.9504 0.9515 0.9502

Almost
Balanced

40 0.2663 0.3442 0.3044 0.2768 0.2672
80 0.5260 0.5529 0.5231 0.5306 0.5216

200 0.9449 0.9462 0.9430 0.9452 0.9429

Imbalanced
40 0.2932 0.3855 0.3250 0.2962 0.3539
80 0.5625 0.6094 0.5853 0.5755 0.609

200 0.9567 0.9595 0.9571 0.9571 0.9575

Large (w = 0.5)

Balanced
40 0.7870 0.8343 0.8088 0.8124 0.7790
80 0.9890 0.9907 0.9894 0.9891 0.9888

200 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

40 0.7558 0.8012 0.7636 0.7630 0.7579
80 0.9852 0.9868 0.9849 0.9856 0.9848

200 1.0000 1.0000 1.0000 1.0000 1.0000

Imbalanced
40 0.7710 0.8137 0.7815 0.7723 0.8123
80 0.7758 0.8171 0.7850 0.7766 0.8169

200 1.0000 1.0000 1.0000 1.0000 1.0000

Table 7: Simulation results – Type I error rates in 5-by-5 contingency table.

Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Balanced
100 0.0463 0.0901 0.0761 0.0492 0.0483
200 0.0471 0.0629 0.0532 0.0493 0.0488
500 0.0478 0.0524 0.0479 0.0476 0.0479

Almost
Balanced

100 0.0503 0.0938 0.0798 0.0524 0.0507
200 0.0503 0.0660 0.0568 0.0510 0.0527
500 0.0496 0.0550 0.0503 0.0490 0.0502

Imbalanced
100 0.0454 0.0815 0.0359 0.0402 0.0476
200 0.0446 0.0800 0.0615 0.0460 0.0493
500 0.0494 0.0629 0.0619 0.0498 0.0507
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Table 8: Simulation results – Type I error rates in 5-by-2 contingency table.

Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Balanced
40 0.0472 0.0724 0.0607 0.0564 0.0452
80 0.0502 0.0597 0.0528 0.0505 0.0473

200 0.0511 0.0539 0.0512 0.0515 0.0499

Almost
Balanced

40 0.0464 0.0851 0.0729 0.0513 0.0489
80 0.0483 0.0578 0.0509 0.0500 0.0490

200 0.0498 0.0538 0.0491 0.0504 0.0508

Imbalanced
40 0.0345 0.0678 0.0418 0.0354 0.0451
80 0.0392 0.0717 0.0643 0.0428 0.0447

200 0.0462 0.0550 0.0500 0.0480 0.0498
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