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Abstract:

e Random forests are a powerful learning algorithm. However, when dealing with time series, the
time-dependent structure is lost, assuming the observations are independent. We propose some
variants of random forests for time series. The idea is to replace standard bootstrap with a de-
pendent block bootstrap to subsample time series during tree construction. We present numerical
experiments on electricity load forecasting. The first, at a disaggregated level and the second at a
national level focusing on atypical periods. For both, we explore a heuristic for the choice of the
block size. Additional experiments with generic time series data are also available.
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1. INTRODUCTION

Random forests were introduced in 2001 by Breiman in [1] and are since then one of the
most popular algorithms in machine learning [2]. The popularity comes from the wide range
of applications in which they are known to perform well on even high dimensional, are fast
to compute and easy to tune. Successful applications can be cited: chemo-informatics [3],
ecology [4, 5], 3D object recognition [6] and time series prediction [7, 8, 9, 10, 11].

Suppose that we have a random sequence (X¢,Y:),c, € X x ) such that

and the error ¢ is such that E[e;|X;] = 0. The purpose of random forests is to estimate, by
only observing a training sample D,, = ((X1,Y1), ..., (Xy, Y,)), the regression function

VeeX, f(z)=E[|X, =al.

Random forests can be related to two main sources, regression trees [12] and bagging
[13]. Regression trees are constructed by a recursive partitioning of the input space based on
some criterion to estimate the regression function f. At each step of the tree construction,
a split is selected (a variable and a location on the variable) based on the evaluation of the
criterion among all the admissible splits based on all the variables. The cell is cut in two
on the selected split and the previous step is reiterated on the new cells. A tree is then a
piecewise constant decomposition of the input space. A binary tree can be associated to the
input space partitioning. Each node corresponds to a test matching how the input space was
cut. An illustration is given in Figure 1 of a partitioning in the two-dimensional space and
its associated binary tree. The principle of bagging (short form of bootstrap aggregating) is
to create M randomly generated training sets by randomly sampling ., observations with
or without replacement from the set D,, and to construct on each set a predictor. Once the
predictors are constructed, the bagging prediction for a new observation x is an aggregation,
generally the empirical mean, of the predictions given by the M predictors for the point x.
This procedure aims to improve stability and accuracy of the base predictor. In the context
of random forests the predictors are regression trees. In order to explain the random forest
procedure we then have to explicit the construction of one tree.
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Figure 1: A partitioning of [0, 1]? and the associated binary tree.
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The first step is the bootstrap/subsampling: «,, points are selected with or without
replacement among the n realisations. Then a tree is constructed based on these o, selected
points. At each node of the tree the best split (the variable and the location on this variable)
is determined by minimising the intra-node variance. This is commonly called the CART
criterion introduced in [12]. Instead of minimising this criterion among all the admissible
splits based on all the variables the choice of inputs is restricted to a random subset of fixed
size My . This procedure is then iterated on each node produced after binary splitting until
stopping conditions are met. The first stopping rule is when the variance in a node is equal
to zero. Since this is rarely the case a second condition is that the number of observations in
a node must be greater than a given threshold.

Even if the theoretical settings of random forests was until recently restricted to the
i.i.d. case, a theoretical study extending it to the time-dependent case is proposed in [14].
In addition, applications on time series could be found, as previously cited, in [7, 10], in
electricity load forecasting [8], [9], [11].

The bootstrap step determines which observations are chosen to construct a tree. The
original bootstrap which we call standard (or i.i.d.) bootstrap from [15] consists of randomly
drawing ., observations among the n with or without replacement. Note that we use here an
abuse of language, the bootstrap is standardly defined as drawing n observations among the
n observations with replacement. The goal of this bootstrap is to replicate the distribution
of D,,. However, this is adapted to the case of independent and identically distributed obser-
vations. When the data has an underlying dependence structure as for time series the i.i.d.
hypothesis is not verified anymore and using the standard bootstrap destroys the dependence
structure. We illustrate this phenomenon for a dataset from [16] which is described in Section
3.1. We observe in Figure 2 the original load over the month of January. Using the standard
bootstrap we obtain the series in Figure 3 and immediately note that the structure we had
in the original series is all gone. By contrast, using a moving block bootstrap, described in
Section 2, using a block length of 24 hours we recover similar patterns as in the original series
of Figure 4.
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Figure 2: Original load hourly sampled.
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Figure 3: Bootstrapped load. Figure 4: Block bootstrapped load

with block size of 24h.

We list here a few papers using blocks bootstrap in the forecasting literature. The first
one is [17] in which they use a sieve bootstrap to perform bagging with exponential smoothing
models. They use exponential smoothing to decompose the data, then fit an autoregressive
model to the residuals, and generate new residuals from this AR process. Finally, they fit
the exponential smoothing model that was used for decomposition to all bootstrapped series.
Another work is from [18] who propose a method of bagging which is as follows. After
applying a Box-Cox transformation to the data, the series is decomposed into trend, seasonal
and remainder components. The remainder component is then bootstrapped using the moving
block bootstrap, defined in Section 2, the trend and seasonal components are added back, and
the Box-Cox transformation is inverted. For each one of these bootstrapped time series, a
model among several exponential smoothing models is chosen, using the bias-corrected AIC.
Then, point forecasts are calculated using all the different models and the resulting forecasts
are combined using the median. A companion paper [19] explores experimentally the value
of bagging for time series forecasting. More generally, we refer to the special issue presented
in [20] for more details about the recent developments in bootstraps methods for dependent
data.

Our strategy is mainly motivated by the results on random forests in the time-dependent
case in [14], proven using a block decomposition on the entries (Xj,Y;);;<,- The proofs rely
on a lemma from [21] that shows that the blocks are close to being in(fef)endent, under the
condition that the block length is well-chosen. But it should be noted that after obtaining
the bootstrap sample, the procedure to build a tree is unchanged and flipping the data after
bootstrap will not change the resulting tree. The data are, in that sense and at this stage,
considered to be exchangeable since the splitting criterion is unchanged and since it does not
take into account the time dependence between the observations. We then try to make the
data, before this stage, as much compatible with the underlying independence hypothesis.
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A typical example of weak dependence is the m-dependent case, for which considering block
bootstrap of length at least m allows to recover exchangeability. In the general weak de-
pendence case, it is reasonable to consider that performing block bootstrap with a suitably
chosen block-length could make the data more compatible with the exchangeable hypothesis.
The aim of this work is to show that, based on the theoretical work in [14], the forecast-
ing performance could be improved by replacing the bootstrap step by what we call block
bootstrap variants, to subsample time series during the tree construction phase and thereby
keep the dependence structure. This intuition is supported by the experiment reported in
Appendix 2 (with time shuffling) illustrating that preserving the temporal structure is, at
least empirically, beneficial.

Since random forests were already introduced in this introduction. The next section
presents the different block bootstrap variants, the new algorithm and a new way to compute
the variable importance. We then present two numerical experiments. The first one is based
on an application to load forecasting of a building from the dataset described in [16] and see
how the variants may perform. The second one on the French national forecasting problem
and explore a heuristic on the choice of the new parameter.

2. RANDOM FORESTS FOR TIME SERIES

2.1. Block bootstrap variants

Non-overlapping block bootstrap. A first variant isfoundin [22]: the non-overlapping
block bootstrap. The idea is to construct a number of non-overlapping blocks and then to draw
uniformly, with replacement, among the constructed blocks. More precisely, let [, be the size
of a block and B > 1 the greatest integer such that [, B < n. The blocks are then constructed
in the following way

Bb = ((X(b—l)ln-i-l?}/(b—l)ln—kl)v ceey (Xblna }/bln))7 b= 17 ceey B.

The bootstrap set Dj, is then obtained by drawing K blocks, (Bj, ..., Bj ), uniformly with
replacement in the collection of non-overlapping blocks(Bb)lgbS g for a suitably chosen K.

Moving block bootstrap. [23] and [24] introduced the so-called moving block boot-
strap. The idea is, instead of picking randomly one observation among the n observations
as for the standard bootstrap, the moving block bootstrap pick randomly a block of [,, con-
secutive observations. Repeating this step and concatenating all the selected blocks, we get
a new time series with a preserved structure at least in each block. More precisely, let us
denote by B;, = (X4, Y3), ..., (Xit1,,—1, Yit1,,—1)) the block of size [,, beginning with the ob-
servation (X;,Y;) for i € {1,...,n — 1+ 1}. The procedure then consists to draw randomly
K indices (), .4« uniformly on the set {1,...,n — I, + 1} and associate one block to each
index, (Br,),<;< - The bootstrap set is then defined as D} = (By,, ..., Bry).

Circular block bootstrap. When studying the moving block bootstrap we can note
that less weight is given to the endpoints of the time series which also leads in theory to
non negligible bias when computing the mean. A way to correct this issue is given in [25]
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introducing the so-called circular block bootstrap. The idea is to wrap the time series writing
X; = X, where i, =1 mod n, Xy := X,, and then use the same procedure as in the moving
block bootstrap where the index I is drawn uniformly on the set {1,...,n} instead.

Note that in each above variant, taking /,, = 1 we recover the standard bootstrap of [15].
For a given number of selected observations in each tree a,, the number of blocks K is such
that K = 72.

2.2. Proposed random forest for time series

Our proposition in order to incorporate the dependence structure is by replacing the first
step for the construction of a random tree in the random forest building procedure, namely
replacing the standard bootstrap step with one of the block bootstrap variants recalled in
Section 2.1.

Note that the proposed algorithm only considers the dependence during the bootstrap-
ping phase, directly on the entries (Xj,Y;);<,<,. Once the bootstrap sample is drawn the
splitting is done as in the independent case. The adapted algorithm is found in Algorithm 1
underlining the modification with respect to the original random forest procedure.

input: (X1,Y1),...,(X, Ya))

parameters: M, a,, My, Ty, Iy

stopping criteria: the variance in the node is zero or the number of
observations in a node is below the threshold 7,

for j «— 1toMdo
Construct the jth tree:

e Draw a, < n observations using a block bootstrap variant with parameter /,,.

e  Repeat recursively on each resulting node the following steps until a stopping
criterion is met:
—  Ateach node, select randomly m;,, variables

—  Select the best split using the variance criterion among the previously
chosen variables.

—  Cut according to the chosen split.

end
output for a new observation x: mean of the M predictions given by the
trees for x.

Algorithm 1: Random forest for time series.

Note that here, we consider the bootstrap directly on the entries (Xj,Y;);,,,, and
thus keeping the black box design of the random forests. Even if the time series nature of the
data is forgotten after the bootstrap step, it should be noted that to include the time as a
dependent variable could provide an indirect way to weakly take into account, at some extent,
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the temporal nature of the data. Works on blocks bootstraps in the forecasting literature
presented in Section 1 use generally the block bootstrap on the residuals after removing trends
and seasonality. However, using such a procedure in our experiments (by bootstrapping the
residuals of a pilot random forest) led to worse performance and further explain our approach.

2.3. Block permutation importance

Random forests can be used to rank with respect to a decreasing order of importance the
variables. One way to measure the significance of a variable is the Mean Decrease Accuracy
introduced in [1] which stems from the idea that if a variable is not important, then permuting
its value should not change the prediction accuracy.

For each tree, we have access to the so-called out-of-bag observations denoted by OO B,
composed of the observations not included in the bootstrap sample D] used to construct the
m-th tree. The OOB,, sample can then be used to estimate the out-of-bag error denoted
by errOOB,,. In order to compute the importance of the variable X&), the values of the
j-th variable are randomly permuted in the OOB sample and we compute for each tree an
out-of-bag error estimation for the permuted observations. The importance of the variable
X ) is then obtained by averaging the difference between the out-of-bag error before and

after permutation. More formally, if, for the m-th tree, we denote by errOOB}, the OOB,,
sample’s error when the j-th variable is permuted, then the importance of the variable X (7)
is defined by

M —

vI(X0) = % 3 (erTOOB% = eTTOOBm>.
m=1

The higher the increase in the prediction error after the permutation of the j-th variable in

the out-of-bag observations, the more important the variable is. However, if the permutation

of XU) does not change much the error prediction then the importance of the considered

variable is small.

In the case of dependent observations we are faced with the same issue as in the con-
struction of the random forests, namely the permutation of variable in the out-of-bag ob-
servations does not preserve the dependence structure. In the case where block instead of
standard bootstrap is used in the random forest we introduce a new variable importance
computation: the block (permutation) variable importance. However, using a block bootstrap
variant does not necessarily lead to a out-of-bag observations with constant number of con-
secutive observations but we solve this issue in the following. Let us first suppose that the
out-of-bag observations can be separated in blocks of size [, and denote by B;;, the blocks
in the out-of-observations for the m-th tree. In order to compute the importance of the j-th
variable, the permutation of the considered variable is done by only permuting the blocks
in B}, and preserving the structure in each block. We can then compute a block permuted

out-of-bag error estimation for the j-th variable denoted by errOOB,. The block variable
importance for the j-th variable is then defined by

VI (X(j)> = % f: (errOOBZﬁ — errOOBm).
m=1



290 B. Goehry, H. Yan, Y. Goude, P. Massart and J.-M. Poggi

The out-of-bag observations stemming from the block bootstrap with parameter [,
are not necessarily composed of blocks of the size [,,. In order to obtain an OOB sample
which has the same block size as in the construction of the random forest we adapt the
obtained out-of-bag observations to get a new set of blocks of out-of-bag observations as
follows. The three following cases are exclusive. First, if a block of consecutive observations
in the out-of-bag observations is of the right length [,, we add it to the block out-of-bag
observations. Second, if the length is larger than [, and less than 2[,, we draw a random
subset of consecutive observations of length [,,. Finally, if a block of consecutive observations
in the out-of-observations has a length less than [,, then the block is not kept. Then the block
out-of-bag observations is composed of the kept block observations of length [,, and satisfies
the conditions to compute the block permutation variable importance as previously defined.

3. NUMERICAL EXPERIMENTS

We consider two experiments in this work. One regarding the performance the variants
may attain on a real world application of load forecasting, at a disaggregated level, on one
of the building dataset from [16], which is composed of different building loads with hourly
observations. The other regarding the choice of the block length parameter, this time on the
French national load forecasting problem, at a more aggregated level but focusing on atypical
periods.

In the following experiments, the results are obtained over 50 runs. The parameters of
the random forest are set to default except for the my., parameter which is optimised on a
validation set and the block size parameter for which we carry out an in-depth analysis in
Section 3.2.

We run the experiments by implementing the extra features we propose in this paper as
an extension of the R package ranger [26], and thus inherit the availability in both C++ and
R. Our R package rangerts is freely available from the github repository https://github.com/
hyanworkspace/rangerts. Additional experiments with time series data are performed and the
results can be found in the same github repository as our modified R package, omitted here
for brevity reasons.

3.1. First load forecasting application: On the performance and variable impor-
tance

This experiment is based on the so-called building loads, a collection of 507 whole
buildings electrical meters made publicly available. We refer to the paper [16] for a complete
description of the collection. We consider one specific building in the building data genome
project called UnivLab Patrick. This building belongs to the college laboratory category
located in the New York time zone and has an area of around 7054 square meters. We have
access to its electricity load from the 1st January 2015 to the 31th December 2015 with a
sampling rate of one observation per hour. The weekly profile is found in Figure 5. We see a
clear daily trend as well as a clear distinction between the week and the end of the week due
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to less activity. We also have access to exogenous variables: the temperature as well as to the
schedule of the building, indicating if a day is ordinary, a break or a holiday. We decompose
the year in three parts: the training set is composed of the observations from the 1st January
to the 31st October, the validation set corresponds to the month of November and the test
set corresponds to the month of December.

450

440

Load

420

410

400

Sun  Mon Tue Wed Thu Fri Sat

Time

Figure 5: Weekly profile hourly sampled of the UnivLab Patrick dataset.

Let us denote by Y; the system load of the building at hour ¢. In this experiment, we
aim to forecast at a horizon of 24 hours. Based on the weekly profile, having hourly sampled
observations, the chosen model is inspired by [27] in which they also considered random forests
with a similar model for the same kind of problem. This results in the model described in
(1.1) with X; of the form

(3.1) X = (Yi—24, Yi_168, Tempy, Schedule;, Hour;, InstantWeek;, DayType,, Time;)

where:

e Temp, corresponds to the temperature at instant ¢;

e Schedule; take three values: Regular, Break, Holiday;

e Hour; corresponds to the hour of the day at instant ¢;

e InstantWeek; corresponds to the hour in the month;

e DayType, corresponds to the day of the week;

e Time; corresponds to the day of the year divided by 366.

The selected value for my, according to the best performance on the validation set for
the standard random forest is m, = 2. For this parameter we computed the different variants
varying the block size parameters multiple of 6 hours up to 90 hours. We first optimise the
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performances on the validation set, looking for the best block size value minimising the RMSE
and then plug it in for the test set. The performance are resumed in Figure 6. For the sake
of comparison, the baseline Y; = Y;_o4 has a RMSE of 19.43 on the test set. We observe
an improvement for the three variants with an improvement up to 11% for the mean RMSE
compared to the standard random forest. We also show the evolution of the performance
according to the block size parameter in Figure 7. We can find the same kind of figures for
each my, from 1 to 8 in Appendix 1 from Figures 15 to 22. We observe for the three variants
a similar pattern in the evolution of the performance, namely a decrease for which the three
variants performs better than the standard random forest and then an increase. We note
that, even if the performance get worse when the block size is large, we also have a large
window for which the performance is far better for these three variants with an optimal block
size parameter of around 24 hours also corresponding to the forecasting horizon and the main
seasonality of the data.

30
22 28
21 ‘ 26
Variant
LL LLI == | |.D
g g == Circular
D: 20 D: 24 == Moving
‘ == Non-overlapping
22
19
20
18
L.I.LD Circular Moving Non-overlapping 20 40 60 80
Variant Block size

Figure 6: Performance of the different variants Figure 7: Performance of the variants for

for myyy = 2, evaluated on the month My = 2 when the block size
of December of the UnivLab Patrick changes, evaluated on the month
dataset. of December of the UnivLab

Patrick dataset.

One may wonder if the block bootstrap mechanism really helps to take into account
time dependence or if it is another underlying mechanism. In order to illustrate this point,
we shuffled the instances in the training set. If it was another mechanism at play, we would
have the same results as before. The results after shuffling the training set can be found
in Appendix 2. We can clearly see that once the training set does not have the dependence
structure, using the block bootstrap variants has basically the same behaviour as the standard
random forests, regardless of the block length, and thus further confirms that the block
bootstrap random forests take into account the dependence structure.
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Figure 10: Variable importance non-overlapping Figure 11: Block non-overlapping variant

variant under the standard permuta-
tion on the UnivLab Patrick dataset.

importance with block size of 24h
on the UnivLab Patrick dataset.

Computing the variable importance for blocks of size 24 hours we obtain Figures 8 to 11.
We observe that the difference between the standard variable importance and the block

variable importance is essentially noticeable for the non-overlapping block bootstrap variant.
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The most evident difference is for the variable Hour for which the importance is set to zero
using the block variable importance. Since the blocks are of length 24 hours and always
beginning at the same time, permuting the blocks will not change the out-of-bag error since
each permutation is replaced by an identical copy and thus the output from this procedure
for the variable Hour.

3.2. Second load forecasting application: On the block length choice

We discuss here the choice of the block length parameter, found in every block bootstrap
variant. In the previous experiment, we notice that the optimal choice for the block length
was 24 hours, corresponding to the daily step and seasonality in the dataset. However, the
last experiment is done by optimising the block length on the validation set error. It would be
interesting to choose this parameter more wisely in order to avoid unnecessary computations
and we think that it should be proportional to the (minimal) seasonality in the dataset. The
block bootstrap aims to build blocks that preserve the dependency in them but that the
blocks are independent to a certain extent. In the case of seasonal trends, the intuition would
consequently be to choose blocks correlated to basic seasonal components. We illustrate this
with another dataset, on the French national load with goal to forecast at a 24 hours horizon
as well, having a longer span of time and thus having more stable results.

1650
2000
1600
B)J Variant (L})J Variant
E Circ E Circ
E - Independent 5 1550 - Independent
1900 H E Moving E Moving
1500
1800
7 14 . 21 7 14 . 21
Block size Block size

Figure 12: Performances evaluated on April Figure 13: Performances evaluated on October

2016 on the French load forecast- 2016 on the French load forecasting
ing problem of the different vari- problem of the different variants for
ants for three block length values. three block length values.

We consider the French electricity load of the year 2015 as the training set with a sam-
pling rate of one observation per day at noon. The test set for this experiment are the months
April and October of the year 2016, corresponding to the transition between summer and
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winter season, a particularly difficult period to forecast. We observed in various experiments
that the random forests for time series variants work the best when it is “difficult” to forecast.
This typically corresponds to the shoulder seasons in the load forecasting field. We use here
the model described in (3.1) as well without the variables Hour and InstantWeek. Since the
observations are daily occurrences, the minimal seasonality would be the week. Hence, we
consider three values for the block length parameter: 7, 14 and 21 days. The selected value
for my, is 3 corresponding to the worst case scenario, in the sense that for another value of
Myry the block bootstrap variants are doing better than shown in this example. Note that for
this example we removed the non-overlapping block bootstrap variant. We have found that
this variant needs more observations to get consistent results, providing less diversity in the
trees due to its construction.

The results are found, respectively for April and October 2016, in Figures 12 and 13.
We observe that, for both months, we have a consistent improvement of the performance
in comparison to the standard random forest for each choice of block length. We even note
significant improvement in the performance when taking twice or thrice the seasonality for
April. However, taking larger values than these would lead to a diversity problem in the
trees as mentioned before and thus have less consistent performance. This concludes that the
heuristic for the block length parameter choice would be to take the smallest seasonality up
to a multiplying factor of two or three.

3.3. Supplementary experiments

Further experiments are carried out with two forecasting competition data sets: quar-
terly and monthly series from M3 [28] (2184 series, 756 quarterly data and 1428 monthly
data) and M4 [29] (4151 series, 402 quarterly data and 3749 monthly data) competitions
to assess the performance of the proposed variants. Our main objective here is to com-
pare the performance of the standard random forest and the block-bootstrap variants exten-
sively on general time series data, instead of accessing how competitive the random forest
algorithm itself is for these two data sets. Note that both stationary and non-stationary
data are included in the data set whereas random forest cannot extrapolate and thus per-
forms poorly on non-stationary data comparing to other baseline time series methods in
the literature such as ARIMA models. The metrics we use for evaluation here are the nor-
malized RMSE (NRMSE = —£MSE__ " where ¢ is the standard deviation of the training

o(serietrqgin)’
part of the series), and the normalized difference in MAPE (NAMAPE = A}%{iﬁ) where
A(MAPE) = MAPE,; ; 4. — MAPE ,qrian:. Higher values indicate better results with variants.

As described in (1.1), let us denote by Y; the series to be predicted at step ¢. Unlike the
load forecasting application, only the frequency and time features are used. For monthly data,
the frequency feature ranges from 1 to 12, which corresponds to the month. For quarterly,
this feature is thus 1 to 4, and 1 stands for the first quarter. By regressing on time, we
aim at estimating the trend and the seasonality components of each series. Including lags
as explanatory variable would be a natural choice in time series forecasting tasks, here we
choose not to do that to stay as far as possible from the exchangeability of the data.

We keep all other hyper parameters of the random forest identical to the standard
i.i.d. version to compare the obtained results with those from the block bootstrap variants.
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The only hyper parameter remains to be tuned is thus the block size. To be able to choose
the block size automatically, we propose to set a general auto-correlation threshold for all
series, to determine for each of them, the largest lag as the block length.

Better performance is achieved as shown in Figure 14 with the moving block variant
on the monthly series (the same for the M4 data set). A Wilcoxon signed rank test confirms
the gain with respect to the standard i.i.d. forest. We also observe in Table 1 that in general,
higher auto-correlation thresholds lead to better results.
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Figure 14: Difference in NRMSE of the standard random forest (i.i.d.)
and the moving block variant (moving), for monthly and quar-
terly data, with different auto-correlation threshold values
from 0.5 to 0.9, from the M3 data set.

Table 1: The percentage of cases where the block bootstrap variant
outperforms the i.i.d. in terms of NdAMAPE.

acf_coef M3 M4
0.5 0.581 0.488
0.6 0.567 0.496
0.7 0.589 0.505
0.8 0.586 0.515
0.9 0.572 0.515

We choose to present our major results with a restricted number of graphs and statistics
to conserve space. All the codes and other supporting materials can be found in the same
GitHub repository as our implemented variants under the sub-directory benchmark_Mcomp.
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4. CONCLUSION AND PERSPECTIVES

We introduced a new variant of random forests taking into account the temporal depen-
dency of the observations and showed that we can improve significantly the performance on
forecasting tasks when choosing the right block length. A variant of the variable importance
based on the block bootstrap mechanism is also introduced. The non-overlapping variant
seems to be mistaken regarding the importance of the variables, forgetting some variables
fundamental to the forecasting problem as the hour variable in our first application, and thus
we do not advise to use this variant for this purpose. However, both moving and circular vari-
ants seem to perform much better than the standard random forests when the block length
is well-chosen, and we showed that a good heuristic for the block length choice is correlated
to a multiple of the smallest seasonality.

This work is mainly methodological, a first perspective would be to prove theoretical
results on the random forests variants under time-dependent observations hypotheses. Con-
sistency of random forests is proven under stationary and f—mixing hypotheses in [14] when
trees are not fully grown and the observations are subsampled. The previously cited works
regarding the block bootstrap as [22, 23, 24, 25] also show consistency of some estimators,
generally under less restrictive hypotheses. It would be interesting to prove similar results on
the variants by adapting and combining the previous proof techniques.

We have performed a detailed study on one specific field of application and an automatic
extensive study was conducted on the time series of the M3 and M4 competitions. We
illustrated the potential value of the random forests variants. We also showed that it could
be useful to develop an adaptive and automatic way to choose the block length parameter.
Finally, it could be interesting to explore more deeply under which conditions (input variables,
etc.) the variants work, going well beyond the scope of this paper.
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APPENDIX 1

Performance of the variants for each given my, from 1 to 8, when the block size changes,
evaluated on the month of December of the UnivLab Patrick dataset can be found from
Figures 15 to 22.
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Figure 19: Performance of the variants
for myy=25 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.

Figure 20: Performance of the variants
for my,=06 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.

26
26
24
24
Variant Variant
L L
U-) = | |.D U) - | |.D
2 22 == Circular E == Circular
D: == Moving Q: 22 == Moving
== Non-overlapping == Non-overlapping
20 20
18 18
20 40 60 80
Block size Block S|ze

Figure 21: Performance of the variants Figure 22: Performance of the variants

for myy="7 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.

for my,=28 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.



300 B. Goehry, H. Yan, Y. Goude, P. Massart and J.-M. Poggi

APPENDIX 2

Performance of the variants, when the observations in the training set are shuffled
beforehand, for my., equal to 1 and 2, when the block size changes, evaluated on the month
of December of the UnivLab Patrick dataset can be found from Figures 23 to 24. We have
similar results for my, from 3 to 8.
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Figure 23: Performance of the variants
when training set is shuffled

Figure 24: Performance of the variants
when training set is shuffled

for myy=1 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.

for myy=2 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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