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1. INTRODUCTION

While there are many univariate models available for analysis of survival data, the same
cannot be said for cases involving bivariate or, even more challenging, multivariate cases. In
the univariate case there has been a flurry of recent activity focused on the Birnbaum–
Saunders (BS) distribution (see, Birnbaum and Saunders [14]). A particularly attractive
feature of the BS model is its representation as a monotone transformation of a standard
normal variable.

Analogous distributions, which can be called distributions of the BS type, can be con-
structed by assuming that the normal random variable which is transformed to obtain a BS
distributed variable, is replaced by a random variable with a different distribution. Recent
papers dealing with the BS distribution and its close relatives include those of Balakrishnan
and Kundu [13], Athayde [8], Bourguignon et al. [15], Arrué et al. [7], Carrasco et al. [16],
Dasilva et al. [17] and Mart́ınez-Flórez et al. [30]. See also the book by Leiva [27].

In particular we may consider replacing the normal component that is transformed to
yield a BS variable by some skewed normal random variable. The traditional skew-normal
(SN) distribution was introduced by Azzalini [9]. The skew-generalized-normal (SGN) dis-
tribution, introduced by Arellano-Valle et al. [2] (see also Arnold et al. [4]), includes an
additional parameter. The SGN model can be viewed as a shape parameter mixture of SN
distributions, where the shape parameter is endowed with a standard normal distribution.
The model contains the SN model as particular case. The parameter space for the SGN
distribution is {(λ, θ) : −∞ < λ <∞, θ ≥ 0}. As discussed in Arellano-Valle et al. [2], this
model has identifiability problems which can be circumvented by restricting the parameter
space, resulting in a distribution known as the skew-curved-normal (SCN) distribution (see,
Gómez et al. [23]) . It is this SCN distribution that we propose to use instead of a standard
normal distribution in order to arrive at a flexible extension of the BS model, which we will
call a skew-curved-normal-BS (SCNBS) model.

While there has been much discussion of univariate variations on the BS theme, there
is much less available for analyzing higher dimensional survival data. The present paper will
make a contribution towards filling this gap. Our interest, then, is in the development of
flexible bivariate and multivariate BS distributions. The bivariate case will be discussed in
detail. Our goal is to seek models which have BS marginals and, in addition, will exhibit
well behaved conditional structure. As will be seen, approaches involving conditional speci-
fication of joint distributions will prove to be fruitful. A convenient reference for discussion
of conditionally specified models is Arnold et al. [6].

The paper will be organized as follows. Section 2 reviews the construction of the uni-
variate BS distribution and its variants, and introduces the new bivariate SCNBS (BSCNBS)
model and its main properties. Section 3 presents the inference for the BSCNBS model
based on a classical approach and includes discussion of residuals for this model from both a
marginal and a bivariate point of view. Section 4 includes a simulation study to assess the
performance of the estimators obtained with the EM algorithm in finite samples and includes
a real data application to illustrate the performance of the BSCNBS model. Multivariate
extensions are not difficult to envision and are described briefly in Section 5. In Section 6
we present the main conclusions of the paper, together with discussion of related topics.
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2. THE MODEL

In this Section, we introduce the BSCNBS model, where the conditional distributions
are SCNBS and the marginal distribution are BS. Some properties of the model are discussed,
as is a procedure to draw values from the model.

2.1. A background of related univariate distributions

A random variable T is said to have a BS(α, β) distribution if it can be represented in
the form

(2.1) T = β

αZ

2
+

√(
αZ

2

)2

+ 1

2

,

where Z ∼N(0, 1), i.e., the standard normal distribution. The density function of such a
random variable is given by

(2.2) fT (t) = φ

(
1
α

[√
t

β
−
√

β

t

])
t−3/2(t + β)

2α
√

β
, t > 0,

where φ denotes the density function for the standard normal distribution. As mentioned in
the introduction, we may replace Z by some skewed normal random variable.

The density function of a random variable with SGN distribution is given by

(2.3) fU (u) = 2φ(u)Φ
(

λu√
1 + θu2

)
, u ∈ R,

where Φ denotes the cumulative distribution function for the standard normal model. Note
that if θ = 0, this simplifies to the form of the traditional SN model. The parameter space for
the SGN distribution is {(λ, θ) : −∞ < λ <∞, θ ≥ 0}, which is reduced to the SCN model
for θ = λ2.
In addition, the SCNBS model is obtained considering Z with SCN distribution in the trans-
formation in equation (2.1). The associated density function for the SCNBS distribution
is

fT (t) = 2φ(a)Φ
(

λa√
1 + λ2a2

)
A, t > 0,

where a = α−1
[
(t/β)1/2 − (β/t)1/2

]
and A = t−3/2(t + β)/(2α

√
β). We use the notation

SGN(λ, θ) to refer to a random variable with this density function. Those distributions
are very relevant to the construction of the our proposal.

2.2. A Bivariate SCNBS distribution

Before describing the proposed bivariate distribution, which has Birnbaum Saunders
marginals and SCNBS conditional distributions, we review two bivariate BS distributions that
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have been discussed in the literature. As will be seen, both the existing bivariate BS models
and the one proposed in this paper are constructed by means of marginal transformations
applied to bivariate densities with normal marginals and normal or skew-normal conditionals.

The first bivariate BS (BVBS) model was proposed by Kundu et al. [26]. They began
by assuming that (Z1, Z2) has a classical bivariate normal distribution with standard normal
marginals and correlation ρ. They then defined, as in (2.1)

(2.4) Ti = βi

αiZi

2
+

√(
αiZi

2

)2

+ 1

2

, i = 1, 2.

It is evident that the bivariate random variable (Z1, Z2) so defined has BS marginal distri-
butions and BS conditional distributions.

In order to enhance the flexibility of the model (2.4), Lemonte et al. [28] proposed
a more general model using a parallel construction which utilizes a distribution with SN
conditionals introduced by Arnold et al. [3]. This bivariate density is of the form

(2.5) f(z1, z2) = 2φ(z1)φ(z2)Φ(λz1z2), (z1, z2) ∈ R2.

Lemonte et al. [28] then apply the marginal transformation (2.4) to a bivariate random
variable (Z1, Z2) with joint density of the form (2.5). Since the Arnold et al. [3] density (2.5)
is readily verified to have standard normal marginals and SN conditionals, it follows that the
Lemonte et al. [28] distribution will have BS marginals and skew-normal-Birnbaum–Saunders
(SNBS) conditionals. The bivariate SNBS (BSNBS) density studied by Lemonte et al. [28] is

fT1,T2(t1, t2) = 2φ(a1)φ(a2)Φ(λa1a2)A1A2, (t1, t2) ∈ R2
+,

where aj = aj(αj , βj) = α−1
j

[√
tj/βj −

√
βj/tj

]
and

Aj = Aj(αj , βj) = t
−3/2
j (tj + βj)/(2αj

√
βj), j = 1, 2.

In addition to the density (2.5), Arnold et al. [4] proposed a more general two parameter
model of the form

(2.6) f(z1, z2) = 2φ(z1)φ(z2)Φ

(
λz1z2√

1 + θz2
1z

2
2

)
, (z1, z2) ∈ R2

+,

where λ ∈ (−∞,∞) and θ ∈ [0,∞). In this paper, we will consider the case θ = λ2. This
distribution then has standard normal marginals and has generalized skew-normal conditional
distributions. Specifically we have, if (Z1, Z2) has density (2.6) with θ = λ2 then

(2.7) Z1|Z2 = z2 ∼ SCN(λz2)
and
(2.8) Z2|Z1 = z1 ∼ SCN(λz1).

It is to this joint distribution that we apply the marginal transformations (2.4) to obtain
a flexible bivariate distribution with BS marginals that will be the focus of the remainder of
this paper. The resulting joint density is of the form

(2.9) fT1,T2(t1, t2) = 2φ(a1)φ(a2)Φ

(
λa1a2√

1 + λ2a2
1a

2
2

)
A1A2, (t1, t2) ∈ R2

+.

If a random variable (T1, T2) has its density of the form (2.9) then we write (T1, T2) ∼
BSCNBS(α1, α2, β1, β2, λ).
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For the BSCNBS(α1, α2, β1, β2, λ) distribution, we have the following properties:

(1) Ti ∼BS(αi, βi), i = 1, 2.

(2) T1 |T2 = t2 ∼SCNBS(α1, β1, λa2) and T2 |T1 = t1 ∼SCNBS(α2, β2, λa1).

(3) (c1T1, c2T2) ∼BSCNBS(α1, α2, c1β1, c2β2, λ), ci > 0, i = 1, 2.

(4) (c1T1, c2T
−1
2 ) ∼BSCNBS(α1, α2, c1β1, c2β

−1
2 ,−λ), ci > 0, i = 1, 2.

(5) (c1T
−1
1 , c2T2) ∼BSCNBS(α1, α2, c1β

−1
1 , c2β2,−λ), ci > 0, i = 1, 2.

(6) (c1T
−1
1 , c2T

−1
2 ) ∼BSCNBS(α1, α2, c1β

−1
1 , c2β

−1
2 , λ), ci > 0, i = 1, 2.

(7) And, going back, if Zi = α−1
i

[√
Ti/βi −

√
βi/Ti

]
, i = 1, 2, then Z1 |Z2 = z2 ∼

SCN(λz2) and Z2 |Z1 = z1 ∼SCN(λz1). Using Proposition 10 in Arellano-Valle et

al. [2], the first conditional distribution is equivalent to Z1 |Z2 = z2, U = u ∼SN(u)
and U ∼N(λz2, λ

2z2
2). Similarly, Z2 |Z1 = z1, U = u ∼SN(u) and U ∼N(λz1, λ

2z2
1).

Parts (1) and (2) are obtained directly from the definition of the distribution and the results
given in (3) to (6). are obtained using appropriate transformations in the density given in (2.9).
The representation given in (7) of the conditional distributions are useful for simulation pur-
poses, as illustrated in the following Sub-Section. Figure 1 shows the contour levels and Figure 2
shows the density for BSCNBS model for some combinations of the parameters. Note that
the contours exhibit different and a greater variety of shapes than the BSNBS model.
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Figure 1: Contours levels for BSCNBS(α1 = 0.5, α2 = 0.5, β1 = 2, β2 = 2, λ)
distribution considering: (a) λ = 7; (b) λ = 2.5; (c) λ = −3.5 and;
(d) λ = −1.
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Figure 2: Density for BSCNBS(α1, α2, β1 = 2, β2 = 2, λ) distribution considering:
(a) α1 = α2 = 0.5 and λ = 1; (b) α1 = α2 = 0.5 and λ = −1; (c) α1 = 0.2,
α2 = 0.7 and λ = 0.5; (d) α1 = 0.2, α2 = 0.4 and λ = −2.

The non-singularity of the Fisher information matrix (FIM) for λ = 0 is verified in the
Appendix. This point is very important because λ = 0 represents the case where the model
is reduced to two independent BS variates. Therefore, the non-singularity of the FIM allows
to apply usual hypothesis test such as maximum likelihood ratio, score and Wald tests to
decide between BSCNBS and independent BS variates.

2.3. Drawn values from BSCNBS distribution

The fact that this model has conditional and marginal distributions in closed form
allows one to draw values from the distribution BSCNBS in a relatively simple way using the
following Algorithm 1.
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Algorithm 1 Simulate a value from the BSCNBS(α1, α2, β1, β2, λ) distribution.
1: Draw Z1 ∼N(0, 1).
2: Draw Z2 |Z1 = z1 ∼ SCN(λz1).

2.1: Draw U ∼ N(λz1, λ
2z2

1).
2.2: Draw Z2 |U = u ∼ SN(u).

2.2.1: Draw V1, V2 ∼ N(0, 1) (independent).
2.2.2: Let Z2 =

(
u√

1+u2

)
|V1|+

(
1√

1+u2

)
V2.

3: Make the usual BS-type transformation

Tj = βj

αjZj

2
+

√(
αjZj

2

)2

+ 1

2

, j = 1, 2.

Remark 2.1. This algorithm requires only obvious minor modification to produce a
drawn value from the Lemonte et al. [28] distribution.

3. ESTIMATION

In this Section we consider the parameter estimation problem based on a classical
approach. An EM algorithm is developed for this problem. Initial values for such procedures
and two kind of residuals also are presented.

3.1. Estimation based on the EM algorithm

For the BSCNBS model, the log-likelihood function for ψ = (α1, α2, β1, β2, λ) in a ran-
dom sample t = t1, t2, ..., tn (where ti = (ti1, ti2)) is, up to a constant, given by

`(ψ) = −n

2

2∑
j=1

[
1
α2

j

(
s̄j

βj
+ r̄jβj − 2

)
+ 2 log(αj) + log(βj)

]
+

2∑
j=1

n∑
i=1

log(βj + tij)

+
n∑

i=1

log Φ

 λai1ai2√
1 + (λai1ai2)

2

,(3.1)

where

sj =
1
n

n∑
i=1

tji and rj =

(
1
n

n∑
i=1

t−1
ji

)−1

, j = 1, 2.

and aij = α−1
j

[
(tij/βj)

1/2 − (βj/tij)
1/2
]
. The maximum likelihood (ML) estimation requires

the maximization of eq. (3.1) in relation to ψ. However, such a procedure can be difficult to
implement because it involves maximization over a parameter space of dimension 5. For this
reason, we discuss the development of an EM-type algorithm (Dempster et al. [18]) for this
problem. This algorithm has been applied satisfactorily in BS models and their extension by
Balakrishnan et al. ([10],[11],[12]), Pradhan and Kundu [34], Reyes et al. ([36], [37]), Romeiro
et al. [38], among others.
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A hierarchical representation of the BSCNBS model is given by

T1i |T2i = t2i, Ui = ui ∼ SCNBS(α1, β1, ui)

Ui |T2i = t2i ∼ N(λa2i, λ
2a2

2i)

T2i ∼ BS(α2, β2), i = 1, ..., n.(3.2)

Let t and u = (u1, ..., un) the observed values and the unobserved latent values, respectively.
The complete data set then is tc = (tT ,uT )T . Using (3.2), the log-likelihood of the complete
data set is given by

`c(ψ | tc) ∝
2∑

j=1

n∑
i=1

[
− 1

α2
j

(
tji
βj

+
βj

tji
− 2
)

+ log(tji + βj)− log(αj)−
1
2

log(βj)

]

− n log λ + n log α2 −
1
2

n∑
i=1

[
log
(

t1i

β1
+

β1

t1i
− 2
)

+ log Φ(uia1i)

− 1
2λ2a2

2i

(u2
i + λ2a2

2i − 2λuia2i)
]
.

Let ûk
i = E(Uk

i | ti,ψ = ψ̂), k = 1, 2. Note that

f(ui | t1i, t2i,ψ) ∝ f(t1i | t2i, ui,ψ)f(ui |ψ),

∝ φ

(
ui − λa2i

λa2i

)
Φ(uia1i), ui ∈ R.

Defining Cki =
∫∞
−∞ uk

i φ
(
(λa2i)−1(ui − λa2i)

)
Φ(uia1i)dui, we have ûr

i = Cri/C0i, r = 1, 2. Note
that the existence of Cri is guaranteed since

∫ ∞
−∞

ur
i φ

(
ui − λa2i

λa2i

)
Φ(uia1i)dui ≤ λa2i

∫ ∞
−∞

ur
i

1
λa2i

φ

(
ui − λa2i

λa2i

)
dui <∞.

In this manner, the estimation process for this model, using the EM algorithm, may be
described as follows in Algorithm 2.

The process is repeated iteratively until convergence is attained. For instance, we considered
ε = 10−4.

Remark 3.1.

i) The application of the ECM algorithm requires only uni-dimensional procedures,
instead of the original problem which required a maximization of dimension 5.

ii) The integrations involved in the E-step can be easily computed in the R software
(R Core Team, [35]) with the integrate function.

iii) The CM steps of the algorithm explicitly update λ, α1 and α2 and require the
solution of a non-linear equation for β1 and β2. Such equations can be solved
using the uniroot function in the R software.
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Algorithm 2 Provide the ML estimates based on the EM algorithm for the BSCNBS distri-
bution.

Set initial values ψ(0) = (α(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2 , λ(0))

k ← 0
dif ← 1
while dif > ε do

i← 1
while i ≤ n do

(E-step) Compute the expected values for Ui and U2
i

û
(k+1)
i = C

(k)
1i

C
(k)
0i

and û2
i = C

(k)
2i

C
(k)
0i

.

i← i + 1
end while
(CM-step I) Update λ

λ̂(k+1) =

n∑
i=1

u
(k+1)
i

n∑
i=1

a
(k)
2i

.

j ← 1
while j ≤ 2 do

(CM-step II) Update αj

α̂
2(k+1)
j = Sj

bβ
(k)
j

+
bβ
(k)
j

Rj
− 2

(CM-step III) Update βj as the solution of the equation

β̂
2(k+1)
j − β̂

(k+1)
j

[
Kj(β̂

(k+1)
j ) + 2Rj

]
+ Rj

[
Kj(β̂

(k+1)
j ) + Sj

]
= 0

where Kj(x) =
{

1
n

∑n
i=1(x + tji)

}−1.
j ← j + 1

end while
ψ(k+1) = (α(k+1)

1 , α
(k+1)
2 , β

(k+1)
1 , β

(k+1)
2 , λ(k+1)).

dif= ||ψ(k+1) −ψ(k)||, where ||x|| denotes the Euclidean norm of the vector x.
k ← k + 1

end while

3.2. Initial values of the algorithm

Since Tj ∼BS(αj , βj), we can use modified moment estimators of the BS distribution to
estimate αj and βj , j = 1, 2 (see Ng et al. [33]). Thus, the initial values for those parameters
are

(3.3) α̂
(0)
j =

√√√√2

(√
sj

rj
− 1

)
and β̂

(0)
j =

√
sjrj , j = 1, 2.

With those values, we can construct a profile version of (3.1) for λ and choose the value of λ

that maximizes that function.
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3.3. Residuals for the BSCNBS model

In order to check the goodness of fit of the BSCNBS model, we evaluate the marginal
quantile residuals (MQR; Dunn and Smyth, [19]) and the bivariate quantile residuals (BQR;
Kalliovirta, [24]). Such theoretical residuals are given by

r
MQR
ij = aij and r

BQR
i = Φ−1(νi(1− log νi)),

respectively, for i = 1, ..., n, j = 1, 2, where

νi = Φ(ai1)
∫ ai2

−∞
2φ(u)Φ

 λa1iu√
1 + λ2a2

1iu
2

du, i = 1, ..., n,

where aij = α−1
j

[
(tij/βj)1/2 − (βj/tij)1/2

]
, i = 1, ..., n, j = 1, 2. The observed MQR and BQR

(say r̂
MQR
i1 , r̂

MQR
i2 and r̂

BQR
i ) are the theoretical MQR and BQR, respectively, evaluated

as functions of the estimated parameters.
If the BS model is correctly specified for the j-th variable, then r̂

MQR
1j , ..., r̂

MQR
nj has a

N(0, 1) distribution.
In a similar way, if the BSCNBS model is correctly specified for the two variables (jointly),

then r
BQR
1 , ..., r

BQR
n has a N(0, 1) distribution. Such hypothesis can be tested considering,

for instance, the Kolomogorov–Smirnov (KS; Kolmogorov, [25]) test.

4. NUMERICAL RESULTS

In this Section we present details computational aspects used for this work. We also
present a simulation study to assess the performance of the ML estimators obtained by
the ECM algorithm discussed previously and a real data illustration in order to show the
performance of the BSCNBS model. For the sake of comparison, we also consider the BSNBS
model of Lemonte et al. [28] and the BVBS model of Kundu et al. [26].

4.1. Computational aspects

All the programs used in this work were run in R Core Team [35] in a computer with
processor Intel(R) Core(TM) i7-7700HQ CPU 2.8GHz with 16 GB of RAM memory. The
used packages for the development were the VGAM package [40] which includes some functions
related to the BS model, the mvtnorm package [22] which includes some functions related to
the multivariate normal model, the goftest package [20] including some functions related to
goodness-of-fit tests and the DAAG package [29] which include the data used in the application
presented in subsection 4.3. Codes for the application are included as supplementary material.
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4.2. Simulation study

In this Section we report on a small simulation study with the objective of verifying
that the EM-based estimation procedure is capable of recovering, approximately, the param-
eter values used to simulate data sets from the model (2.9). To simulate the data sets, we
use the procedure described in Section 2.1. Then we use as the initial values, those dis-
cussed in Section 3.1 together with the EM algorithm outlined in Section 3. In particular
we consider the parameter values α1 = α2 = β1 = β2 = 1 in all cases while λ ranges over the
set {−5,−2,−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 2, 5}. In addition, we consider three
sample sizes: n = 100, n = 250 and n = 500. In each case we make 1, 000 replications and
calculate the mean absolute bias (AB), the mean of the standard errors (SE1), the standard
deviation of the estimated parameters (SE2), and the coverage proportion (CP) of the nom-
inal 95% intervals for the parameters. The results are presented in Tables 1 and 2. In these
Tables we see that the biases of the estimates of α1, α2, β1 and β2 are negligible in all cases
considered. However, the bias of the estimates of λ can be considerable in cases in which
the true value of λ is far from 0. Although, as expected, the biases decrease as sample size
increases.

Table 1: Simulation study for the BSCNBS model.

n = 100 n = 250 n = 500
Case Parameter

AB SE1 SE2 CP AB SE1 SE2 CP AB SE1 SE2 CP

α1 −0.007 0.070 0.073 0.940 −0.004 0.045 0.044 0.952 −0.001 0.032 0.031 0.956
α2 −0.005 0.071 0.072 0.936 −0.004 0.045 0.047 0.935 −0.001 0.032 0.033 0.941

λ = −5.00 β1 0.001 0.067 0.072 0.908 −0.001 0.042 0.043 0.943 0.000 0.030 0.031 0.939
β2 0.005 0.069 0.072 0.921 0.002 0.042 0.044 0.924 0.001 0.029 0.030 0.931
λ −1.758 5.891 5.391 0.863 −1.075 3.030 3.371 0.935 −0.637 1.847 2.510 0.943

α1 −0.006 0.070 0.069 0.939 −0.004 0.045 0.044 0.959 −0.001 0.032 0.032 0.939
α2 −0.006 0.070 0.070 0.939 −0.003 0.045 0.044 0.947 −0.002 0.032 0.032 0.949

λ = −2.00 β1 −0.001 0.079 0.079 0.943 0.002 0.050 0.051 0.945 0.000 0.035 0.035 0.944
β2 0.004 0.079 0.082 0.925 0.003 0.050 0.052 0.936 0.001 0.035 0.036 0.938
λ −0.725 2.052 2.679 0.904 −0.263 0.875 1.071 0.931 −0.128 0.543 0.572 0.956

α1 −0.009 0.070 0.070 0.930 −0.005 0.045 0.044 0.942 −0.003 0.032 0.032 0.947
α2 −0.010 0.070 0.070 0.941 −0.001 0.045 0.045 0.943 −0.001 0.032 0.032 0.940

λ = −1.00 β1 0.008 0.084 0.087 0.933 0.003 0.053 0.053 0.952 0.000 0.038 0.037 0.947
β2 0.004 0.084 0.087 0.937 0.000 0.053 0.055 0.937 0.001 0.038 0.037 0.954
λ −0.324 0.842 1.237 0.906 −0.074 0.377 0.409 0.927 −0.036 0.251 0.260 0.941

α1 −0.011 0.070 0.069 0.935 −0.004 0.045 0.046 0.949 −0.001 0.032 0.029 0.957
α2 −0.009 0.070 0.074 0.918 −0.003 0.045 0.044 0.944 −0.002 0.032 0.032 0.939

λ = −0.75 β1 0.008 0.086 0.089 0.934 0.001 0.054 0.053 0.958 −0.002 0.038 0.039 0.941
β2 −0.003 0.085 0.088 0.937 0.001 0.054 0.057 0.938 0.001 0.038 0.038 0.954
λ −0.175 0.559 0.773 0.913 −0.046 0.283 0.304 0.941 −0.025 0.191 0.198 0.942

α1 −0.008 0.070 0.074 0.930 −0.003 0.045 0.046 0.948 −0.003 0.032 0.031 0.952
α2 −0.002 0.071 0.070 0.947 −0.003 0.045 0.045 0.949 −0.002 0.032 0.031 0.952

λ = −0.50 β1 0.006 0.087 0.087 0.947 0.001 0.055 0.056 0.946 0.002 0.039 0.040 0.944
β2 0.004 0.087 0.086 0.947 −0.002 0.055 0.054 0.945 −0.001 0.039 0.039 0.952
λ −0.150 0.410 0.565 0.931 −0.039 0.203 0.220 0.947 −0.020 0.137 0.143 0.945

α1 −0.010 0.070 0.070 0.942 −0.003 0.045 0.044 0.935 −0.001 0.032 0.031 0.953
α2 −0.007 0.070 0.070 0.951 −0.002 0.045 0.045 0.945 −0.002 0.032 0.032 0.950

λ = −0.25 β1 0.002 0.087 0.089 0.947 0.003 0.056 0.055 0.955 0.001 0.039 0.041 0.939
β2 0.007 0.088 0.087 0.946 −0.001 0.055 0.056 0.942 0.003 0.039 0.039 0.944
λ −0.054 0.229 0.261 0.945 −0.023 0.130 0.135 0.955 −0.006 0.087 0.089 0.950

α1 −0.009 0.070 0.069 0.949 −0.004 0.045 0.044 0.951 0.000 0.032 0.031 0.960
α2 −0.010 0.070 0.070 0.938 −0.001 0.045 0.044 0.947 −0.002 0.032 0.031 0.952

λ = 0.00 β1 0.001 0.087 0.089 0.943 0.000 0.056 0.054 0.951 −0.001 0.039 0.041 0.933
β2 0.004 0.088 0.088 0.939 0.005 0.056 0.056 0.941 0.001 0.039 0.039 0.938
λ 0.006 0.156 0.176 0.996 0.001 0.086 0.086 0.990 0.002 0.059 0.057 0.978
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Note that the values of SE1 y SE2 are very similar for α1, α2, β1 and β2 in all cases
considered, which suggests that the standard errors of the estimates are themselves well
estimated. However, for estimates of λ in most cases we have SE2 > SE1, suggesting that the
standard errors of the λ estimates are underestimated, especially, once again, when the true
value of λ is far from 0. We note that the coverage percentages of the interval estimates are
close to the nominal values for all parameters in all cases, except for the intervals for λ when
the true value of λ satisfies |λ| ≥ 1 in the case in which n = 100.

Table 2: Simulation study for the BSCNBS model (continuation).

n = 100 n = 250 n = 500
Case Parameter

AB SE1 SE2 CP AB SE1 SE2 CP AB SE1 SE2 CP

α1 −0.012 0.070 0.073 0.926 −0.003 0.045 0.045 0.944 −0.003 0.032 0.030 0.957
α2 −0.010 0.070 0.068 0.949 −0.003 0.045 0.046 0.934 −0.003 0.032 0.031 0.947

λ = 0.25 β1 0.007 0.087 0.087 0.947 0.002 0.056 0.054 0.955 −0.001 0.039 0.040 0.944
β2 0.003 0.087 0.091 0.940 0.002 0.056 0.055 0.958 0.000 0.039 0.039 0.955
λ 0.078 0.247 0.356 0.944 0.013 0.126 0.126 0.952 0.011 0.088 0.091 0.950

α1 −0.006 0.070 0.072 0.928 −0.005 0.045 0.044 0.954 −0.001 0.032 0.032 0.954
α2 −0.007 0.070 0.070 0.933 −0.002 0.045 0.045 0.939 −0.001 0.032 0.032 0.949

λ = 0.50 β1 0.009 0.087 0.085 0.961 0.003 0.055 0.054 0.953 0.001 0.039 0.041 0.940
β2 0.006 0.087 0.090 0.942 0.003 0.055 0.056 0.949 0.001 0.039 0.039 0.947
λ 0.103 0.374 0.469 0.943 0.030 0.199 0.209 0.949 0.016 0.137 0.140 0.947

α1 −0.008 0.070 0.070 0.940 −0.002 0.045 0.044 0.946 −0.002 0.032 0.031 0.961
α2 −0.010 0.070 0.071 0.937 0.000 0.045 0.046 0.945 −0.002 0.032 0.031 0.938

λ = 0.75 β1 0.003 0.085 0.089 0.941 0.004 0.054 0.055 0.940 0.003 0.038 0.039 0.946
β2 0.004 0.085 0.088 0.949 0.001 0.054 0.056 0.941 0.001 0.038 0.039 0.947
λ 0.171 0.568 0.775 0.916 0.041 0.284 0.306 0.939 0.026 0.192 0.196 0.947

α1 −0.008 0.070 0.071 0.932 −0.005 0.045 0.044 0.946 −0.001 0.032 0.033 0.928
α2 −0.004 0.071 0.074 0.935 −0.003 0.045 0.046 0.937 −0.002 0.032 0.032 0.942

λ = 1.00 β1 0.002 0.084 0.088 0.931 0.001 0.053 0.056 0.936 0.002 0.038 0.038 0.952
β2 0.005 0.084 0.085 0.950 0.002 0.053 0.054 0.956 0.002 0.038 0.038 0.940
λ 0.346 0.847 1.526 0.908 0.080 0.379 0.462 0.933 0.032 0.250 0.265 0.945

α1 −0.009 0.070 0.070 0.949 −0.005 0.045 0.045 0.948 −0.001 0.032 0.032 0.941
α2 −0.006 0.070 0.071 0.937 −0.002 0.045 0.045 0.943 −0.002 0.032 0.032 0.940

λ = 2.00 β1 0.004 0.078 0.082 0.933 0.003 0.050 0.054 0.930 0.000 0.035 0.034 0.951
β2 0.003 0.079 0.084 0.923 0.000 0.050 0.051 0.939 0.000 0.035 0.037 0.940
λ 0.875 2.158 3.217 0.886 0.229 0.841 1.038 0.939 0.085 0.531 0.602 0.947

α1 −0.006 0.071 0.072 0.935 −0.005 0.045 0.046 0.940 −0.001 0.032 0.032 0.944
α2 −0.006 0.071 0.073 0.928 −0.002 0.045 0.045 0.952 −0.002 0.032 0.032 0.940

λ = 5.00 β1 0.005 0.067 0.073 0.909 −0.001 0.042 0.044 0.940 0.000 0.029 0.030 0.937
β2 0.005 0.068 0.074 0.915 0.000 0.042 0.045 0.920 0.000 0.029 0.032 0.929
λ 1.668 5.676 5.215 0.873 1.184 3.227 3.772 0.919 0.675 1.839 2.071 0.949

4.3. Real data set: Ais data set

The ais data set (see DAAG package, Maindonald and Braun, [29]) includes information
about 13 characteristics measured in 202 Australian athletes. We considered two of those
variables: the red blood cell count (rcc) and the lean body mass (in kg, lbm). We model such
variables jointly with the BSCNBS distribution. From the data we obtain s1 = 4.7186, s2 =
64.8737, r1 = 4.6753 and r2 = 62.2709, providing the following initial values for the estimation
algorithm: α̂

(0)
1 = 0.0961, α̂

(0)
2 = 0.2034, β̂

(0)
1 = 4.6969, β̂

(0)
2 = 63.5590 and λ(0) = 4.53. Table 3

shows the estimates for the three considered models. We also use two tests to verify the
improved performance of the BSCNBS model compared to the BSNBS and BVBS models.
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Table 3: ML estimates for BSCNBS and BSNBS models in betaplasma data set
(standard errors in parenthesis).

parameter BSCNBS BSNBS BVBS

α1 0.0962 (0.0048) 0.0961 (0.0048) 0.0962 (0.0048)
α2 0.2034 (0.0101) 0.2035 (0.0101) 0.2034 (0.0101)
β1 4.6969 (0.0279) 4.6946 (0.0277) 4.6967 (0.0317)
β2 63.5588 (0.6720) 63.2352 (0.7882) 63.5568 (0.9049)
λ 4.5003 (1.8784) 1.2132 (0.1843) —
ρ — — 0.5573 (0.0485)

log-likelihood −881.3825 −885.485 −890.9184
AIC 1772.77 1780.97 1791.84
BIC 1789.31 1797.51 1808.38

The Kolmogorov–Smirnov (KS) statistics are used to verify marginally the BS fit of the rcc

and lbm variates. In addition, it is very important to also consider the bivariate fit of the
data to the model. For this, we use an empirical goodness-of-fit test for multivariate distri-
butions proposed in McAssey [31]. We denote AT as the statistic for such test. Note that
both the Akaike information criterion (AIC) (Akaike [1]) and Bayesian information crite-
rion (BIC) (Schwarz [39]) are lower for the BSCNBS model. Additionally, Table 4 shows
that both, marginal and bivariate tests provides greater p-values for the BSCNBS model.
Thus both, marginal and bivariate tests, suggest better performance for the BSCNBS model.

Table 4: Goodness-of-fit to betaplasma data set (p-values in parenthesis).

Test
BSCNBS BSNBS BVBS

rcc lbm rcc lbm rcc lbm

KS (marginal) 0.078 (0.172) 0.060 (0.456) 0.079 (0.152) 0.066 (0.334) 0.078 (0.170) 0.060 (0.455)
AT (bivariate) 5.723 (0.150) 6.574 (0.021) 6.158 (0.063)

Figure 3 also shows the scatterplot for this data set superimposed on contours of the three
fitted models and Figure 4 shows the histogram and estimated density function based on the
marginal BS for rcc and lbm variables. A visual inspection indicates a somewhat better fit
of the BSCNSBS relative to the BSNBS model and that the BS distribution is appropriate
marginally for this data set. Figure 5 presents the MQR for both variables, the BQR and
the respective p-values for the KS test to check the normality hypothesis. Note that, under
the usual significance levels, the hypothesis for both, marginal and bivariate residuals, is not
rejected, reinforcing the idea that the BSCNBS is appropriate for this data set.
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Figure 3: Scatterplot of rcc versus lbm for ais data set:
(a) BSCNBS; (b) BSNBS and; (c) BVBS models.
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Figure 4: Histogram and density function for: (a) rcc; and (b) lbm, and their estimated
density function based on the marginal BS distributions.
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Figure 5: QQ-plot for the MQR for: (a) the variable rcc; (b) the lbm variable and; (c) the BQR,
based on the fitted BSCNBS model in the ais data set. Also is presented the p-value for
the KS test to check if the residuals have standard normal distribution.
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5. MULTIVARIATE EXTENSIONS

To obtain a k-dimensional extension of the model discussed in this paper, it is only
necessary to identify a specific k-dimensional skewed distribution with normal marginals and
skew-normal conditionals to which appropriate marginal transformations are to be applied.
For example, one might consider the following joint density.

(5.1) f1(x1, x2, ..., xk;λ) = 2

[
k∏

i=1

φ(xi)

]
Φ

 λ
∏k

i=1 xi√
1 + λ2

∏k
i=1 x2

i

,

which, when marginally transformed, yields a natural extension of the bivariate model dis-
cussed in the present paper. Instead of (5.1) we might consider

(5.2) f2(x1, x2, ..., xk;λ) = 2

[
k∏

i=1

φ(xi)

]
Φ

(
λ

k∏
i=1

xi

)
,

which yields the k-dimensional version of the Lemonte et al. [28] model.

Both of these models suffer from the fact that only a single dependence parameter, λ,
is present. Based on our experience with multivariate normal models and their close relatives,
we might prefer to have perhaps k(k − 1)/2 dependence parameters, if not more, to ensure
sufficient flexibility of the model. An extreme example is one which involves use of a
k-dimensional joint density which has skew generalized normal conditionals with 2k−1 or 3k−1

parameters, which is to be transformed to have BS marginals. In practice, some intermediate
configuration of dependence parameters might be expected to be appropriate in a particular
data setting.

6. CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH

The model (2.9) that has been investigated in this paper is, of course, only one of the
many bivariate models with BS marginals. In complete generality, one could consider two BS
quantile functions and apply them to any copula (i.e., any distribution with standard uniform
marginals). Perusal of Nelsen [32] will reveal that essentially there are a limited number of
copulas with analytic forms that are readily available for such constructions. Moreover many
of the well known copula families have only a single dependence parameter, as is the case
with the families of distributions discussed in the present paper. It does thus seem reasonable
to consider some of these copula based bivariate BS models as competitors to the models of
this paper.

Another approach that might be considered for data sets with BS characteristics, is to
take advantage of the fact that the family of univariate BS distributions is an exponential
family. Following Arnold and Strauss [6] we might wish to consider the exponential family of
bivariate densities with BS conditionals (rather than marginals) as competitors of the models
in this paper. Such models have been investigated in Arnold et al. [5].
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Yet a third general class of models might be considered. For it, assume that X ∼BS(α, β)
and that, for each x > 0, Y |X = x ∼BS(A(x; θ), B(x; θ)), for certain positive functions A(x; θ)
and B(x; θ). Filus and Filus [21] have investigated models of this genre, in cases in which the
roles of the BS distributions are played by normal or exponential distributions.

Multivariate extensions of all the concepts alluded to in this Discussion are readily
envisioned.

A. APPENDIX

The Fisher information matrix for the BSCNBS model is given by

I(ψ) =


Iα1α1 Iα1α2 Iα1β1 Iα1β2 Iα1λ

Iα2α1 Iα2α2 Iα2β1 Iα2β2 Iα2λ

Iβ1α1 Iβ1α2 Iβ1β1 Iβ1β2 Iβ1λ

Iβ2α1 Iβ2α2 Iβ2β1 Iβ2β2 Iβ2λ

Iλα1 Iλα2 Iλβ1 Iλβ2 Iλλ

,

with

Iα1α1 =
2
α2

1

+
λ3

α2
1

E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

α2
1

E
(

ω2a2
1a

2
2

(1 + λ2a2
1a

2
2)3

)
+

3λ3

α2
1

E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)5/2

)
− 2λ

α2
1

E
(

ωa1a2

(1 + λ2a2
1a

2
2)3/2

)
Iα1α2 =

λ3

α1α2
E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

α1α2
E
(

ω2a2
1a

2
2

(1 + λ2a2
1a

2
2)3

)
− λ

α1α2
E
(

ωa1a2

(1 + λ2a2
1a

2
2)5/2

)
+

2λ3

α1α2
E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)5/2

)
Iα1β1 =

2λ3

α2
1β1

E
(

ωa2
1a

3
2d1

(1 + λ2a2
1a

2
2)7/2

)
+

6λ3

α2
1β1

E
(

ωa2
1a

3
2d1

(1 + λ2a2
1a

2
2)5/2

)
− λ

2α2
1β1

E
(

ωa2d1

(1 + λ2a2
1a

2
2)3/2

)
Iα1β2 =

λ3

2α1α2β2
E
(

ωa3
1a

2
2d2

(1 + λ2a2
1a

2
2)3

)
− λ

2α1α2β2
E
(

ω

(1 + λ2a2
1a

2
2)5/2

)
+

λ3

α1α2β1
E
(

ωa2
1a

2
2d2

(1 + λ2a2
1a

2
2)5/2

)
Iα1λ =

λ2

α1
E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)7/2

)
− λ

α1
E
(

ω2a2
1a

2
2

(1 + λ2a2
1a

2
2)3

)
+

1
α1

E
(

ωa1a2

(1 + λ2a2
1a

2
2)3/2

)
Iα2α2 =

2
α2

2

+
λ3

α2
E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

α2
E
(

ω2a2
1a

2
2

(1 + λ2a2
1a

2
2)3

)
+

3λ3

α2
2

E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)5/2

)
− 2λ

α2
2

E
(

ωa1a2

(1 + λ2a2
1a

2
2)3/2

)
Iα2β1 =

λ3

2α1α2β1
E
(

ωa2
1a

3
2d1

(1 + λ2a2
1a

2
2)7/2

)
− λ

2α1α2β1
E
(

ωa2d1

(1 + λ2a2
1a

2
2)5/2

)
+

λ3

α1α2β1
E
(

ωa2
1a

2
2d1

(1 + λ2a2
1a

2
2)5/2

)



A new bivariate Birnbaum–Saunders type distribution... 17

Iα2β2 =
λ3

2α2
2β2

E
(

ωa3
1a

2
2d2

(1 + λ2a2
1a

2
2)7/2

)
+

3λ3

2α2
2β2

E
(

ωa3
1a

2
2d2

(1 + λ2a2
1a

2
2)5/2

)
− λ

2α2
2β2

E
(

ωa1d2

(1 + λ2a2
1a

2
2)3/2

)
Iα2λ =

λ2

α2
E
(

ωa3
1a

3
2

(1 + λ2a2
1a

2
2)7/2

)
− λ

α2
E
(

ω2a2
1a

2
2

(1 + λ2a2
1a

2
2)3

)
+

1
α2

E
(

ωa1a2

(1 + λ2a2
1a

2
2)3/2

)
Iβ1β1 =

1
α2

1β
2
1

+ E[(T1 + β1)−2] +
λ3

4α2
1β

2
1

E
(

ωa1a
3
2d

2
1

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

4α2
1β

2
1

E
(

ω2a2
2d

2
1

(1 + λ2a2
1a

2
2)3

)
+

3λ3

4α2
1β

2
1

E
(

ωa1a
3
2d

2
1

(1 + λ2a2
1a

2
2)5/2

)
− λ

4α2
1β

2
1

E
(

ωa2d1

(1 + λ2a2
1a

2
2)3/2

)
− λ

2α2
1β

5/2
E

(
ωa2T

1/2
1

(1 + λ2a2
1a

2
2)3/2

)

Iβ1β2 =
λ3

4α1α2β1β2
E
(

ωa2
1a

2
2d1d2

(1 + λ2a2
1a

2
2)7/2

)
− λ

4α1α2β1β2
E
(

ωd1d2

(1 + λ2a2
1a

2
2)5/2

)
+

λ3

2α1α2β1β2
E
(

ωa2
1a

2
2d1d2

(1 + λ2a2
1a

2
2)5/2

)
Iβ1λ =

λ2

2α1β1
E
(

ωa2
1a

3
2d1

(1 + λ2a2
1a

2
2)7/2

)
+

1
2α1β1

E
(

ωa2d1

(1 + λ2a2
1a

2
2)3/2

)
Iβ2β2 =

1
α2

2β
2
2

+ E[(T2 + β2)−2] +
λ3

4α2β2
2

E
(

ωa3
1a2d

2
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

4α2β2
2

E
(

ω2a2
1d

2
2

(1 + λ2a2
1a

2
2)3

)
+

3λ3

4α2β2
2

E
(

ωa3
1a2d

2
2

(1 + λ2a2
1a

2
2)5/2

)
− λ

4α2
2β

2
2

E
(

ωa1d2

(1 + λ2a2
1a

2
2)3/2

)
− λ

2α2
2β

5/2
2

E

(
ωa1T

1/2
2

(1 + λ2a2
1a

2
2)3/2

)

Iβ2λ =
λ2

2α2β2
E
(

ωa3
1a

2
2d2

(1 + λ2a2
1a

2
2)7/2

)
+

1
2α2β2

E
(

ωa1d2

(1 + λ2a2
1a

2
2)3/2

)
Iλλ = E

(
ω2a2

1a
2
2

(1 + λ2a2
1a

2
2)3

)
+ 3λE

(
ωa3

1a
3
2

(1 + λ2a2
1a

2
2)3

)
,

where dj = (Tj/βj)
1/2 + (βj/Tj)

1/2, j = 1, 2, ω = φ(b)/Φ(b) and b = λa1a2/
√

1 + λa2
1a

2
2.

Note that for ψ0 = (α1, α2, β1, β2, λ = 0), this matrix is reduced to
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Then, the determinant of I(ψ0) is
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Therefore, the Fisher information matrix is not singular at λ = 0.
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ABBREVIATIONS

The following abbreviations are used in this manuscript:

BS Birnbaum–Saunders
SN Skew-normal
SGN Skew-generalized-normal
SCN Skew-curved-normal
SCNBS Skew-curved-normal-Birnbaum–Saunders
BSCNBS Bivariate skew-curved-normal-Birnbaum–Saunders
BVBS Bivariate Birnbaum–Saunders
SNBS Skew-normal-Birnbaum–Saunders
BSNBS Bivariate skew-normal-Birnbaum–Saunders
FIM Fisher information matrix
ML Maximum likelihood
MQR Marginal quantile residuals
BQR Bivariate quantile residuals
AB Absolute bias
SE1 Mean of the standard errors
SE2 Standard deviation of the estimated parameters
CP Coverage proportion
KS Kolmogorov–Smirnov
AIC Akaike information criterion
BIC Bayesian information criterion
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