
REVSTAT – Statistical Journal
Volume 21, Number 1, January 2023, 39–62

https://doi.org/10.57805/revstat.v21i1.394

Estimation of Distribution Function
Using Percentile Ranked Set Sampling

Authors: Yusuf Can Sevil �

– The Graduate School of Natural and Applied Sciences, Dokuz Eylul University,
Izmir, Turkey
yusuf.sevil@ogr.deu.edu.tr

Tugba Ozkal Yildiz
– Department of Statistics, Dokuz Eylul University,

Izmir, Turkey
tugba.ozkal@deu.edu.tr

Received: December 2020 Revised: July 2021 Accepted: July 2021

Abstract:

• The estimation of distribution function has received considerable attention in the literature. Be-
cause, many practical problems involve estimation of distribution function from experimental data.
Estimating the distribution function makes it possible to do pointwise estimation and to make
statistical inference about the distribution of interested population. In this study, we suggested an
empirical distribution function (EDF) for percentile ranked set sampling (PRSS). Bias of the EDF
estimator is investigated theoretically and numerically. Relative efficiencies of the proposed EDF
estimator based on PRSS with respect to EDF estimator based on simple random sampling (SRS)
and ranked set sampling (RSS) are obtained. We also considered impact of imperfect rankings on
the EDF based on PRSS. According to the results, the proposed EDF estimator is unbiased for
the extreme ”minimum and maximum” points and center of the distribution. Also, it is clearly
appeared that the EDF estimator based on PRSS is more efficient than the EDF based on SRS.
Another important result is that the suggested EDF estimator has larger efficiencies than the EDF
based on RSS for some special cases of PRSS. In the application, the EDF based on PRSS is used
to estimate the proportion of women in obesity class III (BMI> 40).
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1. INTRODUCTION

Ranked set sampling (RSS) was introduced by McIntyre [13] as an advantageous al-
ternative to simple random sampling (SRS). McIntyre [13] studied mean estimator based on
RSS and showed that this estimator is more efficient than mean estimator using SRS. Then,
mathematical theory of RSS was first suggested by Takahasi and Wakimoto [25]. By Dell and
Clutter [6], it was proved that mean estimator based on RSS is unbiased and more efficient
than mean estimator based on SRS even if ranking is not perfect. In the literature, there
are some other estimators based on RSS such as estimation of correlation coefficient [22],
estimation of variance [23] and estimation of population proportion [15, 29, 30]. Also, for
more extended literature about RSS, see Kaur et al. [11] and Al-Omari and Bouza [3].

The estimation of cumulative distribution function (CDF) with various settings of the
RSS has been studied by many authors. Stokes and Sager [24] suggested an unbiased es-
timator based on RSS for population distribution function. Samawi and Al-Sagheer [19]
considered EDF estimator based on extreme ranked set sampling and median ranked set
sampling. EDF using double ranked set sampling was investigated by Abu-Dayyeh et al. [1].
Al-Omari [2] studied EDF based on quartile ranked set sampling. Sevil and Yildiz [20] devel-
oped estimation of distribution function using RSS based on level-2 sampling design. Also,
Kolmogorov Smirnov (KS) test statistic based on RSS was compared with KS test statistic
based on SRS by Sevil and Yildiz [20]. EDF estimators using RSS based on three different
sampling designs were given by Yildiz and Sevil [26, 27]. Some goodness of fit tests based
on these EDF estimators were investigated in their study. Sevil and Yildiz [21] discussed
design-based estimators based on level-0, level-1 and level-2 for distribution function of finite
population. Some other distribution function estimators were considered for extreme median
ranked set sampling [12], selective order ranked set sampling [4], partially rank-ordered set [16]
and pair ranked set sampling [28].

By using percentiles instead of quartiles, more flexible selection procedure named as
percentile ranked set sampling (PRSS) was suggested by Muttlak [14]. In Muttlak’s study,
estimation of mean is investigated using PRSS. Since PRSS is general form of quartile ranked
set sampling (QRSS) and extreme ranked set sampling (ERSS), EDF estimators based on
QRSS and ERSS can be obtained by using EDF estimator based on PRSS. Moreover, EDF
estimator based on median ranked set sampling (MRSS) can be derived by using EDF esti-
mator of PRSS when the set size is even. So, the EDF estimator using PRSS becomes quite
useful estimator. Therefore, we considered the performance of EDF estimator using PRSS
under perfect and imperfect rankings.

This study is organized as follows. In section two, PRSS procedure is defined. The
EDF estimator based on PRSS is given in section three. Also, the properties of the EDF
estimator are discussed. In section four, we introduce Frey’s one-parameter ranking error
model [7] and study imperfect ranking case for proposed EDF estimator. Also, we obtained
some results under imperfect ranking in this section. Some inferences about CDF, F (x), are
given in section five. Moreover, body mass index data is used to illustrate the EDF using
PRSS. Finally, some conclusion remarks are stated in section six.
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2. PERCENTILE RANKED SET SAMPLING

Muttlak [14] proposed PRSS as practical sampling scheme according to RSS. In litera-
ture, modified versions of PRSS can be seen such as double PRSS [9] and multistage PRSS
[10].

In this method, p-th and q-th percentile of the sample are selected for full measurement,
0 < p < 1 and q = 1− p. Before we describe the procedure of PRSS, we give some notations.
Let k, l and n denote set size, number of cycles and total sample size, respectively. Also,
(X11j , X12j , ..., X1kj), (X21j , X22j , ..., X2kj), ..., (Xk1j , Xk2j , ..., Xkkj) are random sets of size k

from j-th cycle, j = 1, ..., l. Here, it is assumed that Xitj is selected from a population with
continuous density function f(x) and CDF F (x). The order statistics of the i-th set are
denoted by Xi(1)j , Xi(2)j , ..., Xi(k)j , i = 1, ..., k.

Now, we define the procedure of PRSS. First, k2 units are selected without replacement
from the population. These units are divided into the k random sets, each of size k. In each
set, these units are ranked from the smallest to the largest. If the set size k is odd, PRSS is
denoted by PRSSO and it is obtained by using the following steps:

(i) From the first (k − 1)/2 sets, the r-th smallest units are measured, X(r);

(ii) The median ranked unit is measured from the ((k + 1)/2)-th set, X(m);

(iii) Then, the s-th smallest units are measured from the remaining (k − 1)/2 sets,
X(s);

where r and s are the nearest integer value of p(k + 1) and q(k + 1), respectively. Note that
r = 1 if p(k + 1) < 0.5 and s = k if the nearest integer value of q(k + 1) is larger than k.
If the set size k is even, PRSS is denoted by PRSSE and it is obtained by using the following
steps.

(i) From the first k/2 sets, the r-th smallest units are measured, X(r);

(ii) Then, the s-th smallest units are measured from the remaining k/2 sets, X(s).

To obtain n = lk sample observations, these procedures are repeated l times. PRSSO and
PRSSE are denoted by

PRSSO =
{

X1(r)j , X2(r)j , ..., X k−1
2

(r)j , Xm(m)j , X k+3
2

(s)j , ..., Xk−1(s)j , Xk(s)j

}
and

PRSSE =
{

X1(r)j , ..., X k
2
(r)j , X k+2

2
(s)j , ... , Xk(s)j

}
,

respectively, where m = (k + 1)/2 and j = 1, ..., l.

As defined in Stokes and Sager [24], lk independent copies (Y, R) are observed as follows:
R is first selected at random from 1, ..., k and Y is observed according to F(i)(x) (the CDF
of the i-th order statistics), then the marginal joint distribution of Y ’s is the same as that of
the SRS. This statement is given in the part (a) of the Theorem 1 by Stokes and Sager [24].
Part (b) of the Theorem 1 capitalizes on this characterization to link RSS with SRS.
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Let T
′
=(T1, T2, ..., Tk) be a multinomial random vector with lk trials and P =( 1

k , 1
k , ..., 1

k )
be a probability vector. It is supposed that the lk random variables were obtained by first
observing T and then selecting Ti units randomly from a population with probability density
function (PDF) f(i)(x), i = 1, ..., k. Also, the obtained lk units are denoted by Y1, Y2, ..., Ylk.

Theorem 2.1. With the same conditions of Theorem 1 in Stokes and Sager [24], we

give the following:

(1) When the set size is odd, {Y1, Y2, ..., Ylk | T = (0, ..., 0, tr = (k−1)l
2 , 0, ..., 0,

tm = l, 0, ..., 0, ts = (k−1)l
2 , 0, ..., 0)} has the same probability structure as

{Xg(r)j , Xm(m)j , Xh(s)j ; g = 1, 2, ..., k−1
2 ;m = k+1

2 ;h = k+3
2 , k+5

2 , ..., k; j = 1, 2, ..., l}
where ranks of the measured observations could be one of the (r, s) pairs,

{(1, k), (2, k − 1), ...,
(

k−1
2 , k+3

2

)
}.

(2) When set size is even, {Y1, Y2, ..., Ylk |T = (0, ..., 0, tr = lk
2 , 0, ..., 0, ts = lk

2 , 0, ..., 0)}
has the same probability structure as {Xg(r)j , Xh(s)j ; g = 1, 2, ..., k

2 ;h = k+2
2 , k+4

2 ,

..., k; j = 1, 2, ..., l} where ranks of the measured observations could be one of the

(r, s) pairs, {(1, k), (2, k − 1), ...,
(

k
2 , k+2

2

)
}.

These parts (1) and (2) are proved in Appendices.

3. EMPIRICAL DISTRIBUTION FUNCTION OF PERCENTILE RANKED
SET SAMPLING

In this section, we described the suggested EDF estimator based on PRSS. Also, prop-
erties of the EDF estimator are given. Bias and efficiency of the EDF based on PRSS are
investigated and compared with distribution function estimators using SRS and RSS. It is
assumed that X1, X2, ..., Xn be a simple random sample. EDF based on SRS is denoted by
F̂SRS(x),

F̂SRS(x) =
1
n

n∑
i=1

I(Xi ≤ x).

where I(.) is indicator function. The EDF based on SRS is unbiased estimator of F (x) for
given x, with variance V (F̂SRS(x)) = 1

nF (x)(1− F (x)).

Stokes and Sager [24] proposed F̂RSS(x) for estimating the distribution function F (x).
Let

{
X1(1)j , X2(2)j , ..., Xk(k)j

}
be the order statistics that are obtained by using RSS,

(3.1) F̂RSS(x) =
1
lk

l∑
j=1

k∑
i=1

I
(
Xi(i)j ≤ x

)
They showed that F̂RSS(x) is unbiased with variance

V
(
F̂RSS(x)

)
=

1
lk2

k∑
i=1

F(i)(x)
(
1− F(i)(x)

)
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where F(i)(x) is distribution function of the i-th order statistic, and

F̂RSS(x)− E
(
F̂RSS(x)

)
(
V

(
F̂RSS(x)

))1/2

converges in distribution to standard normal as l →∞, when x and k are held fixed.

Let F̂PRSSO
(x) and F̂PRSSE

(x) are the EDFs of a PRSS data when set size is odd and
even, respectively. If set size is odd,

F̂PRSSO
(x) =

1
lk

 l∑
j=1

k−1
2∑

i=1

I
(
Xi(r)j ≤ x

)
+

l∑
j=1

k−1
2∑

i=1

I
(
X k+1

2
+i(s)j ≤ x

)
+

l∑
j=1

I
(
Xm(m)j ≤ x

)
(3.2)

and if set size is even,

F̂PRSSE
(x) =

1
lk

 l∑
j=1

k
2∑

i=1

I
(
Xi(r)j ≤ x

)
+

l∑
j=1

k
2∑

i=1

I
(
X k

2
+i(s)j ≤ x

)(3.3)

where r ≈ p(k + 1), s ≈ q(k + 1) and m = k+1
2 is the median ranked unit. Under the perfect

ranking, we state the following propositions for some basic properties of these distribution
function estimators.

Proposition 3.1.

(a) Using PRSSO

i. E
(
F̂PRSSO

(x)
)

=
(

1
2 −

1
2k

)(
F(r)(x) + F(s)(x)

)
+ 1

kF(m)(x),

ii. V
(
F̂PRSSO

(x)
)

= 1
lk2

[ (
k−1
2

)(
F(r)(x)

(
1− F(r)(x)

)
+ F(s)(x)

(
1− F(s)(x)

))
+

F(m)(x)
(
1− F(m)(x)

) ]
;

(b) Using PRSSE

i. E
(
F̂PRSSE

(x)
)

= 1
2

(
F(r)(x) + F(s)(x)

)
,

ii. V
(
F̂PRSSE

(x)
)

= 1
2lk

[
F(r)(x)

(
1− F(r)(x)

)
+ F(s)(x)

(
1− F(s)(x)

)]
;

where F(r)(x), F(s)(x) and F(m)(x) are distribution function of X(r), X(s) and X(m), respec-

tively.

Part (a) and part (b) are proved in Appendices. As seen in Proposition 3.1, F̂PRSSO
(x)

and F̂PRSSE
(x) are biased estimators for F (x). However, the bias is almost zero as F (x)

gets closer to 1, 0.5 and 0 under perfect ranking. Also, the biases of these estimators do
not depend on the number of cycles. The biases of these EDFs can be calculated by using
following equations.

(3.4) Bias[F̂PRSSO
(x)] = F (x)− E(F̂PRSSO

(x)),

(3.5) Bias[F̂PRSSE
(x)] = F (x)− E(F̂PRSSE

(x)).
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(a) When p = 0.1, the bias of EDFs. (b) When p = 0.4, the bias of EDFs.

Figure 1: Bias for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.

These biases of F̂PRSSO
(x) and F̂PRSSE

(x) are given by Figure 1 when p = 0.1 and p = 0.4.
These EDF estimators are unbiased as F (x) gets closer to 1, 0.5 and 0. The bias increases as k

increases except for F (x) = 0.5. In the Figure 1(b), the blue and black curves are overlapping.

Mean squared error is used as a measure of performance of the proposed estimators.
Then, relative efficiencies (RE) of F̂PRSSO

(x) and F̂PRSSE
(x) with respect to F̂SRS(x) are

described as

RE[F̂PRSSO
(x), F̂SRS(x)] =

V (F̂SRS(x))
MSE(F̂PRSSO

(x))
,

and

RE[F̂PRSSE
(x), F̂SRS(x)] =

V (F̂SRS(x))
MSE(F̂PRSSE

(x))
.

REs are illustrated by the Figure 2. When p = 0.1, it is seen that the REs peak on the middle
of the distribution function. Even, the EDFs based on PRSS are more efficient than the EDF
based on RSS whenever F (x) is close to 0.5 comparing with Stokes and Sager [24]. The REs
increase while the set size increases. When p = 0.4, Figure 2 shows that the REs are higher
on the tails of the distribution function. Whenever F (x) is close to 0.1 (or 0.9) comparing
with Stokes and Sager [24], the EDFs based on PRSS are more efficient than the EDF based
on RSS. Also, the REs are almost equal to or larger than 1 for any F (x) when k = 3, 4, 5, 6
and p = 0.4.

(a) When p = 0.1, the REs of EDFs. (b) When p = 0.4, the REs of EDFs.

Figure 2: REs for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.
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Table 1 indicates REs of EDFs using PRSS when F (x) = 0.1 and F (x) = 0.5 relative
to RSS. The REs are obtained by using the following equations.

RE[F̂PRSSO
(x), F̂RSS(x)] =

V (F̂RSS(x))
MSE(F̂PRSSO

(x))
,

and

RE[F̂PRSSE
(x), F̂RSS(x)] =

V (F̂RSS(x))
MSE(F̂PRSSE

(x))
.

It can be shown that the EDFs based on PRSS (with p = 0.4) have higher performances than
the EDF based on RSS when F (x) = 0.1. Also, the EDFs using PRSS (with p = 0.1) are
more efficient than the EDF using RSS when F (x) = 0.5.

Table 1: The REs of the EDF estimators based on PRSS with respect to RSS.

F (x) = 0.1 F (x) = 0.5

k p = 0.1 p = 0.4 p = 0.1 p = 0.4

3 1.000 1.000 1.760 0.625
4 0.522 2.333 1.473 0.636
5 0.557 1.635 1.227 0.720
6 0.263 7.303 1.045 0.500

The following proposition is needed to study some asymtotic inference about the ex-
pected value of the estimators, F̂PRSSO

(x) and F̂PRSSE
(x). The Proposition 3.2 is proved in

Appendices.

Proposition 3.2. For fixed k and l →∞, the following results are obtained:

(a)
F̂PRSSO

(x)−E(F̂PRSSO
(x))q

V (F̂PRSSO
(x))

converges in distribution to N(0, 1);

(b)
F̂PRSSE

(x)−E(F̂PRSSE
(x))q

V (F̂PRSSE
(x))

converges in distribution to N(0, 1).

4. IMPERFECT RANKING

The efficiency of PRSS is affected by ranking steps. In general, the ranking is performed
by subjective judgement or according to concomitant (auxiliary) variable that is correlated
to the variable of interest. In the ranking steps, it is assumed that the ranking is completely
accurate. However, this is not a realistic assumption. Therefore, one of the interesting topic
is ranking error models in the literature. Dell and Clutter [6] proposed adaptive perceptual
error model. Bohn and Wolfe [5] suggested ranking error model that constructs the judgement
class distributions as a mixture distribution of the actual order statistics. Then, Frey [7, 8]
extended the model [5] and introduced new class of models for imperfect ranking. Ozturk
[17] estimated the parameters of ranking error models of Bohn and Wolfe [5] and Frey [7, 8].
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He proved that one-parameter ranking error model [7, 8] is more efficient than ranking error
model [5].

In this section, we investigated the effect of imperfect ranking on PRSS using Frey’s
one-parameter judgement ranking [7]. It is assumed that k! possible judgment orderings of
the true order statistics X(i1:h), ..., X(ik:h) selected from a larger set of size h, h ≥ k. Random
selection of set of size k yields

(
h
k

)
possible selection of k order statistics out of h order

statistics in the larger set and all these selections are equally likely. Let AAA(i1, ..., ik) be a
doubly stochastic matrix. Frey [7] specified a way to compute the matrix AAA(i1, ..., ik),

AAA(i1, ..., ik) =
1
k!

∑
π∈Sk

q(iπ(1), ..., iπ(k)) × Per(π(1), ..., π(k)),

where q(iπ(1), ..., iπ(k)) denotes the probability that corresponds to the ordering of X(i1:h) <

··· < X(ik:h), Per(π(1), ..., π(k)) is the permutation matrix whose (i, π(i))-th entry is one
for i = 1, ..., k and all other entries are zero, and Sk is the set of all permutations. The
probabilities q(iπ(1), ..., iπ(k)) are obtained by selecting an appropriate weight function w(π)
with π ∈ Sk. These weights must be normalized, so these are actually probabilities. A class
of weight function was suggested by Frey [7],

w(π) = exp

δ
k∑

j=1

jλ

(
iπ(j)

h + 1

)
where δ is called as power and δ ∈ [0,∞). When δ = 0, a completely random ranking model
is constructed. When δ approaches infinity, the probability q(iπ(1), ..., iπ(k)) concentrates on
the single permutation having the largest value of

k∑
j=1

jλ

(
iπ(j)

h + 1

)
and corresponds to a perfect ranking model. Also, a wide range of imperfect ranking models
can be obtained using the other values of δ. Frey [7] proposed three different λ function
which are λ1(u) = u, λ2(u) = −u−1 and λ3(u) = (1− u)−1 to obtain symmetric, skewed-left
and skewed-right imperfect ranking probabilities. Note that these probabilities do not depend
on shape of underlying distributions. ΩΩΩ(i1, ..., ik) is a k × h matrix to exhaust the selection
of all possible judgment orderings. In this matrix, the (i

′
, ii′ )-th entry is one for i

′
= 1, ..., k

and all other entries are zero. Then, the matrix product

NNN(i1, ..., ik) = AAA(i1, ..., ik)ΩΩΩ(i1, ..., ik)

is a k×h matrix that constructs relation between AAA(i1, ..., ik) and the set of independent order
statistics X(i1:h), ..., X(ik:h) in the larger set of size h. The distribution of X[i], conditional on
the values of i1, ..., ik is given by

F[i](x|i1, ..., ik) =
h∑

ι=1

NNN(i1, ..., ik)iιF(ι)(x)

where NNN(i1, ..., ik)iι is the (i, ι)-th entry of NNN(i1, ..., ik). When the contribution of all
(
h
k

)
equally likely choices of the values of i1, ..., ik the CDF of X[i] can then be written

F[i](x) =
h∑

ι=1

pk,h(i, ι)F(ι)(x)
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where PPP k,h = (pk,h(i, ι)) is the k × h matrix average

PPP k,h =
(

h

k

)−1 ∑
1≤i1<i2<···<ik≤h

NNN(i1, ..., ik)iι

In our study, we assumed that PPP k,h is a square matrix, so we use PPP and p(i, ι) instead of PPP k,h

and pk,h(i, ι), respectively. For more details about Frey’s one-parameter judgement ranking
model, see Frey [7]. The matrix PPP can be estimated by using an R-function that is proposed
by Ozturk [17] for any correlation coefficient (ρ), the set size (k) and the larger set size (h).
For theoretical backgrounds of the R-function, see Ozturk [17]. In the following example, we
illustrate the matrix PPP .

Example 4.1. It is assumed that set size k = 4 and the units in the set are ranked
perfectly. Then, the matrix PPP is as follows:

PPP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


If the units in the set are ranked randomly, then the matrix PPP is as follows:

PPP =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4



Let us define that Xi[1]j , Xi[2]j , ..., Xi[k]j be judgement order statistics in the i-th set,
i = 1, ..., k and j = 1, ..., l. Then, the EDF based on RSS [24] as follows.

(4.1) F̂ ∗
RSS(x) =

1
lk

l∑
j=1

k∑
i=1

I
(
Xi[i]j ≤ x

)
On the other hand, the measured units in the steps of the PRSS are denoted by X[r], X[s]

and X[m]. Thus, the measured units in PRSSO and PRSSE are represented by

PRSSO =
{

X1[r]j , X2[r]j , ..., X k−1
2

[r]j , Xm[m]j , X k+3
2

[s]j , ..., Xk−1[s]j , Xk[s]j

}
and

PRSSE =
{

X1[r]j , ..., X k
2
[r]j , X k+2

2
[s]j , ..., Xk[s]j

}
,

respectively, where m = (k + 1)/2 and j = 1, ..., l. The CDF estimators based on PRSSO

and PRSSE are given by

F̂ ∗
PRSSO

(x) =
1
lk

 l∑
j=1

k−1
2∑

i=1

I
(
Xi[r]j ≤ x

)
+

l∑
j=1

k−1
2∑

i=1

I
(
X k+1

2
+i[s]j ≤ x

)
+

l∑
j=1

I
(
Xm[m]j ≤ x

)
(4.2)
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and if set size is even,

F̂ ∗
PRSSE

(x) =
1
lk

 l∑
j=1

k
2∑

i=1

I
(
Xi[r]j ≤ x

)
+

l∑
j=1

k
2∑

i=1

I
(
X k

2
+i[s]j ≤ x

)(4.3)

where r ≈ p(k + 1), s ≈ q(k + 1) and m = k+1
2 is the median ranked unit. The following

proposition gives the properties of F̂ ∗
PRSSO

(x) and F̂ ∗
PRSSE

(x).

Proposition 4.1.

(a) Using PRSSO

i. E
(
F̂ ∗

PRSSO
(x)

)
=

(
1
2 −

1
2k

)(
F[r](x) + F[s](x)

)
+ 1

kF[m](x),

ii. V
(
F̂ ∗

PRSSO
(x)

)
= 1

lk2

[ (
k−1
2

)(
F[r](x)

(
1− F[r](x)

)
+ F[s](x)

(
1− F[s](x)

))
+

F[m](x)
(
1− F[m](x)

) ]
;

(b) Using PRSSE

i. E
(
F̂ ∗

PRSSE
(x)

)
= 1

2

(
F[r](x) + F[s](x)

)
,

ii. V
(
F̂ ∗

PRSSE
(x)

)
= 1

2lk

[
F[r](x)

(
1− F[r](x)

)
+ F[s](x)

(
1− F[s](x)

)]
;

where

F[t](x) =
k∑

ι=1

p(t, ι)F(ι)(x), t = {r, s,m}.

The proof the Proposition 4.1 is the same as the proof of the Proposition 3.1. We gave
an example in order to illustrate obtaining the distribution of judgement order statistics F[t].
Also, we investigated the properties of F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x) under random ranking

case in this example. First, we give the following lemma that is noted by Dell and Clutter
[6]. Detailed proof of this lemma was given by Presnell and Bohn [18].

Lemma 4.1. 1
k

k∑
i=1

F[i](x) = F (x), ∀x.

Using this lemma, the results are provided in the following example.

Example 4.2. Let {X1[r]j , X2[r]j , ..., X k−1
2

[r]j , Xm[m]j , X k+3
2

[s]j , ..., Xk−1[s]j , Xk[s]j} are

obtained using PRSSO under random ranking case. Then, p(t, ι) = 1
k in the matrix PPP for

each t = {r, s,m} and ι = 1, ..., k. Thus, F[t](x) is obtained according to Lemma 4.1:

F[t](x) =
k∑

ι=1

1
k
F(ι)(x) = F (x)

Straightforwardly, it can be seen that

E
(
F̂ ∗

PRSSO
(x)

)
= F (x),

V
(
F̂ ∗

PRSSO
(x)

)
=

1
n

F (x)(1− F (x)).

Besides, we have to note that the obtained results are not surprising. It means that F̂ ∗
PRSSO

(x)
reduce to F̂ (x) under random ranking case. Obviously, these results are the same for
F̂ ∗

PRSSE
(x) as well.
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Now, we investigated the performances of F̂PRSSO
(x) and F̂PRSSE

(x) under the imper-
fect ranking. To construct imperfect ranking schemes, we take the correlation coefficients as
ρρρ = {0.90, 0.75, 0.50}. The matrix PPP υ, υ = 1, 2, 3 corresponding to each correlation coefficient
are estimated using Ozturk’s R-function. When k = 3, the estimated matrices are

PPP 1 =

0.841 0.151 0.008
0.151 0.698 0.151
0.008 0.151 0.841

,

PPP 2 =

0.762 0.210 0.028
0.210 0.580 0.210
0.028 0.210 0.762

,

and PPP 3 =

0.555 0.303 0.142
0.303 0.395 0.303
0.142 0.303 0.555

,

for ρ = 0.90, ρ = 0.75 and ρ = 0.50, respectively. These matrices are estimated for k = 4,
k = 5 and k = 6 as well. Bias for F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x) are obtained by using Equations

(4.4) and (4.5). Figure 3 gives bias for the CDF estimators based on PRSS with p = 0.1 and
p = 0.4, respectively. For any ρ, these EDF estimators are unbiased as F (x) gets closer to 1,
0.5 and 0. Also, the bias increases as k increases except for F (x) = 0.5. It can be seen that
the biases decrease as ρ decreases. This is a result of the Example 4.2:

(4.4) Bias[F̂ ∗
PRSSO

(x)] = F (x)− E(F̂ ∗
PRSSO

(x)),

(4.5) Bias[F̂ ∗
PRSSE

(x)] = F (x)− E(F̂ ∗
PRSSE

(x)).

Besides, relative efficiencies (RE) of F̂PRSSO
(x) and F̂PRSSE

(x) with respect to F̂SRS(x)
are described as

RE[F̂ ∗
PRSSO

(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗
PRSSO

(x))
,

RE[F̂ ∗
PRSSE

(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗
PRSSE

(x))
.

REs are given by Figure 4 for p = 0.1 and p = 0.4, respectively. For any ρ, it is seen that the
REs peak on the middle of the distribution function when p = 0.1. Also, the REs increase
while the set size increases. On the other hand, the REs are higher on the tails of the
distribution function when p = 0.4. Also, the REs are almost equal to or larger than 1 for
any F (x) and ρ when k = 3, 4, 5, 6 and p = 0.4.

Table 2 gives REs of EDFs using PRSS when F (x) = 0.1 and F (x) = 0.5 relative to
RSS. The REs are obtained by using the following equations.

RE[F̂ ∗
PRSSO

(x), F̂ ∗
RSS(x)] =

V (F̂ ∗
RSS(x))

MSE(F̂ ∗
PRSSO

(x))
,

and

RE[F̂ ∗
PRSSE

(x), F̂ ∗
RSS(x)] =

V (F̂ ∗
RSS(x))

MSE(F̂ ∗
PRSSE

(x))
.
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(a) When p = 0.1, the bias of EDFs for ρ = 0.90. (b) When p = 0.4, the bias of EDFs for ρ = 0.90.

(c) When p = 0.1, the bias of EDFs for ρ = 0.75. (d) When p = 0.4, the bias of EDFs for ρ = 0.75.

(e) When p = 0.1, the bias of EDFs for ρ = 0.50. (f) When p = 0.4, the bias of EDFs for ρ = 0.50.

Figure 3: Bias for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.
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(a) When p = 0.1, the REs of EDFs for ρ = 0.90. (b) When p = 0.4, the REs of EDFs for ρ = 0.90.

(c) When p = 0.1, the REs of EDFs for ρ = 0.75. (d) When p = 0.4, the REs of EDFs for ρ = 0.75.

(e) When p = 0.1, the REs of EDFs for ρ = 0.50. (f) When p = 0.4, the REs of EDFs for ρ = 0.50.

Figure 4: REs for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.

Table 2 shows that even if ρ = 0.5, the gain in efficiency from EDFs using PRSS with
p = 0.4 (and with p = 0.1) are substantial when F (x) = 0.1 (and when F (x) = 0.5).
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Table 2: The REs of the EDF estimators based on PRSS with respect to RSS.

F (x) = 0.1 F (x) = 0.5

ρ k p = 0.1 p = 0.4 p = 0.1 p = 0.4

3 1.000 1.312 1.000 0.740

0.9
4 0.629 1.379 1.782 0.695
5 0.647 1.233 1.504 0.749
6 0.323 1.128 4.784 0.527

3 1.000 1.185 1.000 0.798

0.75
4 0.749 1.251 1.461 0.760
5 0.738 1.204 1.379 0.785
6 0.434 1.231 2.993 0.578

3 1.000 1.036 1.000 0.936

0.5
4 0.952 1.046 1.091 0.923
5 0.962 1.036 1.070 0.939
6 0.651 1.231 1.775 0.696

The Proposition 4.2 is needed to study some asymptotic inference about the expected
value of the estimators, F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x).

Proposition 4.2. For fixed k and l →∞, the following results are obtained:

(a)
F̂ ∗

PRSSO
(x)−E

�
F̂ ∗

PRSSO
(x)
�

r
V
�
F̂ ∗

PRSSO
(x)
� converges in distribution to N(0, 1);

(b)
F̂ ∗

PRSSE
(x)−E

�
F̂ ∗

PRSSE
(x)
�

r
V
�
F̂ ∗

PRSSE
(x)
� converges in distribution to N(0, 1).

The proof of the Proposition 4.2 is similar to proof of Proposition 3.2.

5. INFERENCES ABOUT F (x)

In this section, we now consider a pointwise estimate of F (x). It supposed that we
interest with the proportion, F (x) of population below a specified value X. We know that
100(1− α)% confidence interval for F (x) using SRS is as follows:

F̂SRS(x)± Zα
2

√
V̂ (F̂SRS(x))

where Zα
2

is the upper quantile of the standard normal distribution and

V̂ (F̂SRS(x)) =
1

n− 1
F̂SRS(x)

(
1− F̂SRS(x)

)
.

Also, Stokes and Sager [24] gave a 100(1− α)% for F (x) using RSS:

F̂RSS(x)± Zα
2

√
V̂ (F̂RSS(x))
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where

V̂ (F̂RSS(x)) =
1

(l − 1)k

k∑
i=1

F̂(i)(x)
(
1− F̂(i)(x)

)
.

According to Proposition 3.2, an approximate 100(1− α)% confidence intervals can be con-
structed when l is larger. For F̂PRSSO

(x), confidence interval of F (x) can be obtained as

(5.1) p

Zα
2
≤ F̂PRSSO

(x)− E(F̂PRSSO
(x))√

V̂ (F̂PRSSO
(x))

≤ Z1−α
2

 = 1− α,

where

V̂ (F̂PRSSO
(x)) =

1
(l − 1)k2

[(
k − 1

2

)
F̂(r)(x)(1− F̂(r)(x))

+
(

k − 1
2

)
F̂(s)(x)(1− F̂(s)(x)) + F̂(m)(x)(1− F̂(m)(x))

]
.

By solving the Equation (5.1) for E(F̂PRSSO
(x)), the limits are obtained.

Lower Bound(LB) = F̂PRSSO
(x)− Z1−α

2

√
V̂ (F̂PRSSO

(x)),

and
Upper Bound(UB) = F̂PRSSO

(x) + Zα
2

√
V̂ (F̂PRSSO

(x)).

Thus, 100(1−α)% confidence interval of F (x) can be found by solving the following equations,
numerically or any suitable method such as Newton Raphson.

2LB =
1
k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ),
(5.2)

and

2UL =
1
k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ).
(5.3)

For confidence interval of F (x) based on F̂PRSSE
(x),

p

Zα
2
≤ F̂PRSSE

(x)− E(F̂PRSSE
(x))√

V̂ (F̂PRSSE
(x))

≤ Z1−α
2

 = 1− α,(5.4)

where

V̂ (F̂PRSSE
(x)) =

1
2(l − 1)k

[
F̂(r)(x)(1− F̂(r)(x)) + F̂(s)(x)(1− F̂(s)(x))

]
.

Thus, the limits are obtained as

LB = F̂PRSSE
(x)− Z1−α

2

√
V̂ (F̂PRSSE

(x)),

and
UB = F̂PRSSE

(x) + Zα
2

√
V̂ (F̂PRSSE

(x)).
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100(1− α)% confidence interval of F (x) can be found by solving the following equations:

(5.5) 2LB = F(r)(x) + F(s)(x) = Ψ(F ),

and

(5.6) 2UL = F(r)(x) + F(s)(x) = Ψ(F ).

Note that Ψ(F ) is increasing function in F (x) so the solutions of the Equations (5.2), (5.3),
(5.5) and (5.6) should be unique. Similarly, confidence intervals are obtained using F̂ ∗

PRSSO
(x)

and F̂ ∗
PRSSE

(x).

5.1. A real data application

In the literature, the distribution function estimators are applied to real data such as
bilirubin level [19], lung cancer [28] and airquality [27]. The number of case studies can be
increased. In the case studies, it can be seen that some quantiles are important hence the
probabilities corresponding to them are substantial as well. Thus, if we can estimate the
distribution function, these probabilities can also be estimated.

In this section, we consider body mass index data (BMI) to give an illustrative example.
BMI is a measure for indicating nutritional status in adults. BMI is frequently used to screen
for weight categories that may lead to health problems. A table that includes the weight cat-
egories was reported by World Health Organization (WHO), http://www.euro.who.int/en/
health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

and this categories are given by Table 3.

Table 3: The weight categories.

BMI Nutritional status

Below 18.5 Underweight
18.5−24.9 Normal weight
25.0−29.9 Pre-obesity
30.0−34.9 Obesity class I
35.0−39.9 Obesity class II
Above 40 Obesity class III

According to WHO, the health problems caused by obesity are as follows: premature
death, cardiovascular diseases, high blood pressure, osteoarthritis, some cancers and diabetes.

Orginal data includes 500 adult people (255 of 500 are women) and four variables
such as gender, height (m), weight (kg) and index (0: extremely weak, 1: weak, 2:
normal, 3: overweight, 4: obesity and 5: extreme obesity). This data can be available
in https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex.
However, we assume a population that includes 255 women and their measurements such

http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex
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as height (m) and weight (kg) in our study. Note that we limited the population size as 255
to give sample observations. Thus, we aimed to illustrate the application, clearly. Also, it is
supposed that the proportion of women in the Obesity class III is close to 0.5, 1−F (40) ≈ 0.5.
Therefore, using PRSS with p = 0.1 is appropriate in this case. From this population, n = 100
observations are selected using PRSS with p = 0.1. To obtain PRSS, we take the set size and
the number of cycles as k = 5 and l = 20, respectively.

In the process PRSS, 25 observations are first selected at random among 255 women in
j-th cycle, j = 1, ..., 20. Then, the 25 observations are assigned into 5 sets at random. Ranking
the BMI of the 25 observations may be performed by subjective ranking or according to a
concomitant variable such as height of the observations. Also, it is assumed that ranking is
almost perfect. The ranked sets are given as follows.

Table 4: Selected units in PRSS for j-th cycle, j = 1, ..., 20.

Set Ranked Units Measured Units

S1 X1[1]jX1[1]jX1[1]j ≤ X1[2]j ≤ X1[3]j ≤ X1[4]j ≤ X1[5]j X1[1]j

S2 X2[1]jX2[1]jX2[1]j ≤ X2[2]j ≤ X2[3]j ≤ X2[4]j ≤ X2[5]j X2[1]j

S3 X3[1]j ≤ X3[2]j ≤X3[3]jX3[3]jX3[3]j ≤ X3[4]j ≤ X3[5]j X3[3]j

S4 X4[1]j ≤ X4[2]j ≤ X4[3]j ≤ X4[4]j ≤X4[5]jX4[5]jX4[5]j X4[5]j

S5 X5[1]j ≤ X5[2]j ≤ X5[3]j ≤ X5[4]j ≤X5[5]jX5[5]jX5[5]j X5[5]j

In the sets, bold faced units represent the measured BMIs of 5 observations among
25 observations. For the first cycle, the measured BMIs are X1[1]1 = 18.52, X2[1]1 = 12.75,
X3[3]1 = 32.45, X4[5]1 = 52.89 and X4[5]1 = 66.66. These BMIs are given in the first row of
Table 5. 1− F̂PRSSO

(40) = 0.41 is obtained according to the sample. Also, 95% confidence
interval of 1− F (40) ≈ 0.5 is (0.35, 0.46).

6. CONCLUSION

In this study, PRSS procedure is considered to estimate the distribution function. Prop-
erties of the EDF using PRSS are investigated. We examined how well the estimator performs
in comparison with its SRS and RSS counterparts. Finally, we can summarize the following
remarks:

1. Whether the ranking is perfect or not, the EDFs based on PRSS are unbiased as
F (x) gets closer to 1, 0.5 and 0.

2. Compared with F̂SRS(x), the EDFs based on PRSS are more efficient under perfect
and imperfect ranking.

3. If there is a known prior information that the value of F (x) gets closer to 0.1, PRSS
with p = 0.4 can be preferred instead of RSS whether the ranking is perfect or not.

4. Also, PRSS with p = 0.1 can be preferred instead of RSS when F (x) is close to 0.5.
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5. As in our application for BMI data, PRSS with p = 0.1 is recommended when
estimating for the center of the distribution.

6. Also, it is suggested to use PRSS with p = 0.4 when estimating the extremes of the
distribution.

7. In many studies on EDF estimators based on RSS and its modifications, theoretical
results are presented for perfect ranking case while empirical results are presented
for imperfect ranking case. Empirical results are obtained by running Monte Carlo
simulations in the studies. Unlike the other studies, the present paper shows that
the proposed EDF estimator can be examined theoretically by using Frey [7]’s
ranking error model even in the case of imperfect ranking.

As a future work, the moment-based (MB) and maximum likelihood (ML) estimators
of the CDF can be considered. A comparable study of the MB, ML and the EDF estimators
based on PRSS can be meaningful. The authors continue to work towards this goal.
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A. APPENDIX

Proof of Theorem 2.1

To prove this theorem, we follow the Proof of Lemma 2.1 in Samawi and Al-Sagheer
[19] and the Proof of Theorem 1 in Stokes and Sager[24].

(1) Units in PRSSO are sampled from specific groups. It is assumed that tr =
(k−1)l

2 observations comes from f(r)(x), ts = (k−1)l
2 from f(s)(x) and tm = l from

f(m)(x), where f(m)(x) is density function of m-th order statistic. Note that
t1 = ··· = tr−1 = 0, tr+1 = ··· = tm−1 = 0, tm+1 = ··· = ts−1 = 0 and ts+1 = ··· =
tk = 0. This is accomplished by first randomly select R from 1, ..., k with re-
placement and if r = 1, r = k or r = m then observe Y according to Fr(x), oth-
erwise reject r. In SRS the order in which the groups are sampled is random,
by rearranging and relabeling, a realization (y1, ..., ykl) of (Y1, ..., Ykl) becomes
(Zr1, ..., Zr

(k−1)l
2

, Zm1, ..., Zml, Zs1, ..., Zs
(k−1)l

2

) the groups {Zij , Zmj′ ; i = r, s;

j = 1, ..., (k−1)l
2 ; j

′
= 1, ..., l}. It is necessary to specify a consistent order for the

units of the PRSSO and SRS to compare their distributions logically. Otherwise,
because of the arbitrariness of listing order, a coordinate wise of PDF’s or CDF’s
between PRSSO and SRS might imply unequal distributions, although the only
difference would be a permutation of coordinates. Given

T =
(

0, ..., 0, tr =
(k − 1)l

2
, 0, ..., 0, tm = l, 0..., 0, ts =

(k − 1)l
2

, 0, ..., 0
)

and P (T = ti)= 1
k , i=1, ..., k then, there are (kl)!

tr!···tm!···ts! =
(kl)!��

(k−1)l
2

�
!
�2

l!
rearrange-

ments of Y yielding the same Z. So the conditional CDF of Y given T = t is
1

P (T = t)
P

{
Zr1 ≤ ar1, ..., Zr

(k−1)l
2

≤ a
r

(k−1)l
2

, Zm1 ≤ am1, ..., Zml ≤ aml,

Zs1 ≤ as1, ..., Zs
(k−1)l

2

≤ a
s

(k−1)l
2

;T

}
=

=
1

(kl)!
(tr!···tm!···ts!)

(
1
k

)tr ···
(

1
k

)tm ···
(

1
k

)ts

×
∑

(k−1)l
2∏

i=1

(
F(r)(ari)×

1
k

)(
F(s)(asi)×

1
k

)
×

l∏
i′=1

(
F(m)(ami

′ )× 1
k

)
where the sum is over all rearrangements of Y consistent with T = t. So

∑
(k−1)l

2∏
i=1

(
F(r)(ari)× F(s)(asi)

) l∏
i
′
=1

(
F(m)(ami′ )

)
(kl)!��

(k−1)l
2

�
!
�2

l!

=

(k−1)l
2∏

i=1

(
F(r)(ari)× F(s)(asi)

) l∏
i′=1

(
F(m)(ami′ )

)
.
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(2) It is assumed that tr = lk
2 observations come from f(r)(x) and ts = lk

2 from f(s)(x),
where f(r)(x) and f(s)(x) are density functions of r-th and s-th order statistics,
respectively. This proof follows from the part (1).

Proof of Proposition 3.1

(a) For F̂PRSSO
(x),

i.

E
(
F̂PRSSO

(x)
)

=
1
lk

 l∑
j=1

k−1
2∑

i=1

E
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑

i=1

E
(
I
(
X k+1

2
+i(s)j ≤ x

))

+
l∑

j=1

E
(
I
(
Xm(m)j ≤ x

))
I
(
Xi(r)j ≤ x

)
, I

(
X k+1

2
+i(s)j ≤ x

)
and I

(
Xm(m)j ≤ x

)
have Bernoulli distribu-

tions with parameters F(r)(x), F(s)(x) and F(m)(x), respectively. Therefore,

E
(
I
(
Xi(r)j ≤ x

))
= F(r)(x),

E
(
I
(
X k+1

2
+i(s)j ≤ x

))
= F(s)(x) and

E
(
I
(
Xm(m)j ≤ x

))
= F(m)(x).

Thus,

E
(
F̂PRSSO

(x)
)

=
(

1
2
− 1

2k

)(
F(r)(x) + F(s)(x)

)
+

1
k
F(m)(x).

ii.

V
(
F̂PRSSO

(x)
)

=
1
lk

 l∑
j=1

k−1
2∑

i=1

V
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑

i=1

V
(
I
(
X k+1

2
+i(s)j ≤ x

))

+
l∑

j=1

V
(
I
(
Xm(m)j ≤ x

))
Since I

(
Xi(r)j ≤ x

)
, I

(
X k+1

2
+i(s)j ≤ x

)
and I

(
Xm(m)j ≤ x

)
have Bernoulli

distribution, variance of these indicator functions are given bellow:

V
(
I
(
Xi(r)j ≤ x

))
= F(r)(x)

(
1− F(r)(x)

)
,
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V (I(X k+1
2

+i(s)j ≤ x)) = F(s)(x)(1− F(s)(x)),

V
(
I
(
Xm(m)j ≤ x

))
= F(m)(x)

(
1− F(m)(x)

)
.

Thus, variance of the estimator can be obtained:

V
(
F̂PRSSO

(x)
)

=
1

lk2

[(
k − 1

2

)
F(r)(x)

(
1− F(r)(x)

)
+

(
k − 1

2

)
F(s)(x)

(
1− F(s)(x)

)
+ F(m)(x)

(
1− F(m)(x)

)]
.

(b) E
(
F̂PRSSE

(x)
)

and V
(
F̂PRSSE

(x)
)

can be proved by using the same steps in
Proof (a).

Proof of Proposition 3.2

Following Samawi and Al-Sagheer[19] and Kim et al. [12],

(a) Let Zj = 1
k

 k−1
2∑

i=1

(
I(Xi(r)j≤x)+I

(
X k+1

2
+i(s)j≤x

))
+I(Xm(m)j≤x)

, j =1, ..., l.

Since Zj are independent and identically with finite mean and variance, then
based on Central Limit Theorem Z̄ − E(Zj)(

var(Zj)
l

)1/2

 D−→ N(0, 1)

(b) Similarly, this part can be proved by assuming

Zj =
1
k

k
2∑

i=1

(
I(Xi(r)j ≤ x) + I

(
X k

2
+i(s)j ≤ x

))
.



60 Y.C. Sevil and T.O. Yildiz

Percentile ranked set sample

Table 5: Sample observations that are obtained using PRSS.

PRSS

l 1st 1st 5th 5th 3rd

1 18.52 12.75 52.89 66.66 32.45
2 23.59 28.20 43.17 53.01 37.57
3 12.75 20.90 66.66 40.75 39.21
4 21.37 20.96 43.11 68.96 30.48
5 16.38 28.07 57.96 57.70 32.42
6 29.17 30.64 52.89 66.66 28.67
7 20.90 22.65 67.06 52.89 35.58
8 25.98 17.43 43.56 57.70 32.42
9 22.63 33.96 44.63 71.93 32.15
10 24.12 22.45 57.96 54.86 30.42
11 20.02 28.07 48.15 59.49 33.77
12 17.43 27.35 68.41 59.69 35.58
13 18.34 16.04 51.17 55.66 32.42
14 24.12 25.46 44.90 53.01 44.79
15 28.07 20.52 32.69 59.94 39.44
16 12.75 35.29 67.94 78.85 49.34
17 33.88 17.09 59.84 71.93 43.56
18 21.37 20.52 39.06 78.85 52.80
19 22.10 32.15 43.17 52.26 39.68
20 23.23 26.40 36.95 63.38 23.59
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