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1. INTRODUCTION

In statistical theory and applications, copula models are useful tools for determining the
dependence structure between the random variables. For instance, when two random vari-
ables of X and Y with joint cumulative distribution function H and marginals of F and G

are considered respectively, there exists a copula C such that H(x, y) = C
(
F (x), G(y)

)
, for all

x, y in R. In the literature, there are many parametric copula families which have different de-
pendence structure. The main focus of this paper was on the Archimedean copula class, which
is characterized by generator function ϕ. Archimedean copula with generator function ϕ

is defined by

(1.1) C(u, v) = ϕ[−1]
{
ϕ(u) + ϕ(v)

}
, u, v ∈ [0, 1] ,

where ϕ is a generator function which is continuous and strictly decreasing convex function
defined from I to [0,∞) such that ϕ(1) = 0.

Genest et al. [15] showed that the function ϕ can be obtained by the univariate distri-
bution function of K(t) = P

(
C(u, v) ≤ t

)
. Remarkably, there is a relationship between the

function ϕ(t) and K(t) as

(1.2) K(t) = t− ϕ(t)
ϕ′(t)

.

The Kendall distribution function K(t) has some important properties. These properties are
summarized by Nelsen [20] as follows:

1. K(0) = 0;

2. K(1) = 1;

3. K(t) > t, t ∈ (0, 1);

4. K ′(t) > 0, t ∈ (0, 1).

The dependence structure of the Archimedean copula family is characterized by K(t). Kendall’s
tau (τ) is designed to describe how large (or small) values of one random variable appear
with large (or small) values of the other as defined by Genest et al. [13] by

(1.3) τ = 3− 4
∫ 1

0
K(t) dt .

Also, the tail dependence is related to the level of dependence in the upper-right (λU) or
lower-left (λL) quadrant tail of a bivariate distribution. Michiels et al. [19] defined λL and
upper λU dependence as

λL = 2
lim

t→0+

(
t−K(t)

)′
,(1.4)

λU = 2− 2
lim

t→1−

(
t−K(t)

)′
.(1.5)
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Some well-known Archimedean copula functions were proposed by Clayton [4], Frank [11], and
Gumbel [17]. The generator functions of ϕ(t) and Kendall distribution functions K(t) of these
copulas are summarized in Table 1. And also, Kendall’s Tau (τ), Lower λL and Upper λU

tail dependence coefficients for Gumbel, Clayton, and Frank copula are listed in Table 2.

Table 1: Archimedean Copulas with Generator functions ϕ(t).

Copula ϕ(t) K(t) Range of θ

Clayton
t−θ − 1

θ
t +

t (1− tθ)

θ
(−1,∞)− {0}

Frank − log

�
exp(tθ)− 1

exp(θ)− 1

�
t−

�
exp(tθ)− 1

�
log

�
exp(−t θ)−1
exp(−θ)−1

�
θ

(−∞,∞)− {0}

Gumbel
�
− log(t)

�θ
t− t log(t)

θ
[1,∞)

Independence − log(t) t− t log(t) —

Table 2: Kendall’s Tau (τ), Lower λL and Upper λU tail dependence for some Archimedean copulas.

Copula τ(θ) λL λU

Clayton
θ

θ + 2
2−

1
θ 0

Frank 1 + 4θ−1
�
D∗

1(θ)− 1
�

0 0

Gumbel
θ − 1

θ
0 2− 2

1
θ

∗ D1(x) = x−1

Z x

0

t
�
exp(t)− 1

�−1
dt

Modern risk management is mainly interested in assessing the amount of Kendall’s
tau and tail dependence. For this reason, many minimum-variance portfolio models are
based on correlation. However, correlation itself is not enough to describe a tail depen-
dence structure and often results in misleading interpretations (Embrechts et al. [7]). The
importance of this issue has led to some improvements in the estimation of the dependence
coefficients. Kollo et al. [18] examined tail behavior of skew t-copula considering the bivariate
case. They used the method of moments and the maximum likelihood for the estimation of
the tail dependence coefficients. Ferreira [10] proposed a nonparametric estimator of the tail
dependence coefficient and proved its strong consistency and asymptotic normality in the
case of known marginal distribution functions. Schmidt et al. [21] proposed a set of non-
parametric estimators for the upper and lower tail copula and established results of weak
convergence and strong consistency for the tail-copula estimators. Ferreira et al. [9] intro-
duced the s, k-extremal coefficients for studying the tail dependence between the s-th lower
and k-th upper order statistics of a normalized random vector. Caillault et al. [3] introduced
nonparametric estimators for upper and lower tail dependence whose confidence intervals
are obtained with the bootstrap method as they called these estimators “Naive estimators”.
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Goegebeur et al. [16] introduced a class of weighted functional estimators for the coefficient of
the tail dependence in bivariate extreme value statistics while they also derived the minimum
variance asymptotically unbiased estimator.

In this paper, plug-in estimations of Kendall’s tau, upper tail dependence and lower
tail dependence are introduced. To the author’s best knowledge, this is the first study ex-
amining the estimation of the dependence coefficients using the plug-in method. The use
of Bernstein–Bézier polynomials reduced the complexity of the non-parametric estimation of
the tail dependence coefficients. Besides, the proposed estimation method of the dependence
coefficient is flexible depending on its polynomial degree while the error of the estimation can
be reduced by increasing or decreasing the degree of the polynomial.

The remainder of the study is organized as follows. In Section 2, the estimation of
Kendall distribution function based on Bernstein polynomials is discussed. In Section 3,
Kendall’s tau and tail dependence coefficients are estimated by the plug-in principle. The
performance of the new estimation methods for the dependence coefficients is investigated in
Section 4. In Section 5, the new estimator of Kendall’s tau and tail dependence coefficients
are applied to three real data sets. Finally, the conclusion is presented in Section 6.

2. ESTIMATION OF THE KENDALL DISTRIBUTION FUNCTION

Before introducing the estimation of the dependence coefficients for Archimedean cop-
ulas, it is important to investigate the estimation of Kendall distribution function since the
dependence coefficients of Archimedean copula are closely related to the Kendall distribution
function as stated in the last section. First time in the literature, Genest et al. [15] inves-
tigated the empirical estimate of Kendall distribution function. For the estimation of the
random variable of T = H(x, y), univariate distribution function of K(t) = P

(
H(x, y) ≤ t

)
=

P
(
C(u, v) ≤ t

)
should be estimated within the interval of [0, 1]. This estimation process can

be accomplished by two steps:

1. Constructing the empirical bivariate distribution function of Hn(X, Y );

2. Obtaining the pseudo observations of T̂i by

T̂i =
n∑

j=1

I
(
Xi <Xj , Yi <Yj

)/
(n− 1) , i = 1, ..., n .

By using these pseudo observations, K(t) is estimated by the empirical distribution
function as

Kn(t) =
n∑

i=1

I
(
T̂i≤ t

)
/n .

Genest et al. [15] stated that the empirical estimation of Kendall distribution function
is
√

n-consistent estimator while Barbe et al. [1] proved consistency of this estimator.

Generally, the classical empirical distribution function has a good performance as an
estimator of the distribution function. However, estimating continuous distribution function
may not be appropriate (Susam et al. [22, 23], Erdogan et al. [8]) since it has discontinuities.
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Because of this, Susam et al. [22] proposed a smooth estimate of Kendall distribution function
Kn,m given by the following equation:

Kn,m(t) =
m∑

k=0

Kn

(
k

m

)
Pk,m(t) , t ∈ [0, 1] ,

where Pk,m(t) =
(

m
k

)
tk(1− t)m−k is the Binomial probability. Susam et al. [23] proposed the

Bézier curve based estimation of Kendall distribution function of Kα,m which has lower mean
integrated squared error (MISE) scores than Kn,m(t). They defined Kα,m as it is based on a
set of the control points of αi, i = 0, ...,m, as given by the following equation:

Kα,m(t) =
m∑

k=0

αk Pk,m(t) , t ∈ [0, 1] .

Also, they state that if the following constraints defined on the control points of αi (i =
1, ...,m) hold, then the Bézier curve based on the estimation of Kendall distribution function
of Kα,m satisfies all the properties of the Kendall distribution function.

Theorem 2.1 (Susam et al. [23]). The estimator Kα,m(t) satisfies properties of Kendall

distribution function under the following constraints hold:

1. α0 = 0 < α1 < α2 < ··· < αm = 1;

2. αi > i
m , i = 1, ...,m− 1.

They used minimum quadratic distance estimator which is based on the empirical
Kendall distribution for estimating the control points of αi (i = 1, ...,m− 1). Also, Susam
et al. [24] proposed minimum distance estimator for Kα,m(t) based on Bernstein estimate
of Kendall distribution function Kn,m(t). They stated that the minimum distance method
based on Kendall distribution using Bernstein polynomials outperforms the method based on
empirical Kendall distribution.

3. ESTIMATION OF DEPENDENCE COEFFICIENTS BASED ON BÉZIER
CURVE ESTIMATION OF KENDALL DISTRIBUTION FUNCTION

It is possible to estimate Kendall’s tau, lower and upper tail dependence by replacing
K(t) with its non-parametric estimation provided in Equations (1.3), (1.4) and (1.5). For
a given bivariate random sample of size n, (X1, Y1), ..., (Xn, Yn) from X and Y , plug-in
estimation of Kendall’s tau, lower and upper tail dependence for Archimedean copula could
be derived from the following equations:

τ̂ = 3− 4
∫ 1

0
Kα,m(t) dt ,(3.1)

λ̂L = 2
lim

t→0+

(
t−Kα,m(t)

)′
,(3.2)

λ̂U = 2− 2
lim

t→1−

(
t−Kα,m(t)

)′
,(3.3)
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where Kα,m(t) is the estimation of Kendall distribution function based on the Bézier curve
introduced in Section 2. Then, the next lemmas are provided for the estimation of Kendall’s
tau, lower and upper tail dependence for Archimedean copulas.

Lemma 3.1. Let Kα,m(·) be the estimator of Kendall distribution function based on

the Bézier curve while α̂k (k = 1, ...,m− 1) estimates the control points. The estimator of

Kendall’s tau for Archimedean copula is obtained by

τ̂ = 3− 4
m∑

k=0

α̂k

(m

k

)
β
(
k +1,m− k +1

)
,

where β(·, ·) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1 dt for v1 and v2

positive integers.

Lemma 3.2. Let Kα,m(·) be the estimator of Kendall distribution function based on

the Bézier curve while α̂k (k = 1, ...,m− 1) estimates the control points. The estimation of

the lower tail and the upper tail dependence for the Archimedean copula is obtained by

λ̂L = 21−m bα1 ,

λ̂U = 2− 21−m(1−bαm−1) .

Proof: First order derivative of Bézier curve is derived by

K ′
α,m(t) = m

m−1∑
k=0

(αk+1 − αk) Pk,m−1 .

From the end-point rule of the Bézier curve, lim
t→0+

K ′
α,m(t) and lim

t→1−
K ′

α,m(t) are equal to

m(α1−α0) and m(αm−αm−1) respectively (see Duncan [6]). Because of α0 = 0 and αm = 1,
then the desired results are obtained.

It is observed that λ̂L and λ̂U are affected by only the control points of α1 and αm−1,
respectively. The range of the dependence coefficients depending on the polynomial degree m

is summarized in Table 3. The results show that the range of dependence coefficients gets
wider as the degree of the polynomial increases.

Table 3: Interval of Kendall’s Tau (τ), Lower λL and Upper λU tail dependence
for varying polynomial degrees of m.

Degree (m) τ λU λL

5 [−0.33, 1] [0, 1] [0.0625, 1]
10 [−0.64, 1] [0, 1] [0.0019, 1]
15 [−0.75, 1] [0, 1] [6.1×10−5, 1]
20 [−0.81, 1] [0, 1] [1.9×10−6, 1]
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For estimating the control points of αi (i = 0, ...,m− 1), statistical programming lan-
guage R is used. The package“nloptr” is quite handy for optimizing non-linear function. The
Augmented Lagrangian algorithm (auglag) included in the package “nloptr” should be used.
Since Kα,m(·) has a complex function for higher polynomial degree so that may cause trouble
in optimization. In order to overcome such a problem, the number of maximum evaluation
number (maxeval) is recommended to be selected as at least 50.000 in the optimization.

4. MONTE CARLO SIMULATION

To determine the performance of the estimation of τ , λU, and λL, the Monte Carlo
simulation is conducted. 1.000 Monte Carlo samples with n = 150 size are generated from
each type of Archimedean copulas. For instance, parameters of θ = 1.11, 1.25, 1.44 is used
for Gumbel copula while parameters of θ = 0.22, 0.50, 0.85 is used for Clayton copula and
θ = 0.91, 1.86, 2.92 is used for Frank copula. Each copula has different shapes and character-
istics. Clayton copula exhibits strong left tail dependence. In contrast to Clayton, Gumbel
has strong right tail dependence while Frank copula exhibits symmetric and weak tail depen-
dence in both tails. Detailed information about these Archimedean copulas is provided in
Nelsen [20]. In all estimation methods, the Bézier curve degrees are selected for m = 1, ..., 20.
The mean of the estimation of the dependence coefficients for τ , λU, and λL Archimedean
copulas for the varying degrees of m = 5, 10, 15 and 20 are summarized in Tables 4, 5, and 6.

The following results are obtained from Tables 4, 5, and 6:

• For the estimation of Kendall’s tau, the mean of the τ estimates is closer to the true
value for the polynomial degree of m = 5 when the true copula belongs to Gumbel,
Clayton, or Frank.

• When the true copula is Gumbel with τ = 0.1, 0.2, 0.3, mean of the λU estimates
is closer to true value for the polynomial degree of m = 10 while the mean of the
estimation of λL is closer to true value for the polynomial degree of m = 20.

• When the true copula is Clayton with τ = 0.1, 0.2, 0.3, mean of the λU estimates
is closer to true value for the polynomial degree of m = 20 while the mean of the
estimation of λL is closer to true value for the polynomial degree of m = 5.

• When the true copula is Frank with τ = 0.1, 0.2, 0.3, while the mean of the λU

estimates are closer to true value for the polynomial degree of m = 20 while the
mean of the λL estimates is closer to true value for the polynomial degree of m = 20.

The results obtained from Figures 1, 2, and 3 are:

• As the dependence level increases for Gumbel, Clayton, and Frank copula, the vari-
ance of the estimations of the τ , λU, and λL increases as well.

• When the true copula belongs to the Clayton family with θ = 0.22, 0.50 and 0.85,
the variance of λU estimation decreases as the degree of polynomial increases.
On the contrary, the variance of λL increases as the degree of polynomial increases.
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• When the true copula is Frank with θ = 0.91, 1.86, 2.92, the variance of λU decreases
as the degree of polynomial increases. On the other hand, the variance of λL does
not change as the degree of polynomial increases.

• In all the estimations of dependence coefficients, the estimation of τ , λL and λU get
closure to the real values as the polynomial degree increases.

Table 4: Mean of the estimation of τ of Archimedean copulas.

Copula θ τ bτ5 bτ10 bτ15 bτ20

1.11 0.099 0.0956 0.0886 0.0876 0.0845
Gumbel 1.25 0.200 0.1923 0.1883 0.1876 0.1858

1.43 0.300 0.2909 0.2885 0.2880 0.2862

0.22 0.099 0.0937 0.0896 0.0889 0.0871
Clayton 0.50 0.200 0.1922 0.1903 0.1898 0.1882

0.85 0.300 0.2901 0.2884 0.2879 0.2869

0.91 0.099 0.0992 0.0897 0.0885 0.0861
Frank 1.86 0.200 0.1972 0.1894 0.1879 0.1872

2.92 0.300 0.2966 0.2897 0.2886 0.2875

Table 5: Mean of the estimation of λU of Archimedean copulas.

Copula θ λU
bλ5

U
bλ10

U
bλ15

U
bλ20

U

1.11 0.132 0.0963 0.1384 0.1265 0.1326
Gumbel 1.25 0.258 0.1862 0.2299 0.2080 0.2311

1.43 0.376 0.2912 0.3207 0.2947 0.3418

0.22 0.000 0.0243 0.0450 0.0346 0.0198
Clayton 0.50 0.000 0.0448 0.0454 0.0401 0.0251

0.85 0.000 0.0563 0.0518 0.0447 0.0296

0.91 0.000 0.0164 0.0516 0.0395 0.0213
Frank 1.86 0.000 0.0338 0.0564 0.0481 0.0344

2.92 0.000 0.0476 0.0721 0.0620 0.0444

Table 6: Mean of the estimation of λL of Archimedean copulas.

Copula θ λL
bλ5

L
bλ10

L
bλ15

L
bλ20

L

1.11 0 0.1605 0.0876 0.0637 0.0580
Gumbel 1.25 0 0.1932 0.1132 0.0855 0.0790

1.43 0 0.2330 0.1490 0.1185 0.1082

0.22 0.04 0.1964 0.1380 0.1161 0.1140
Clayton 0.50 0.25 0.2985 0.2558 0.2302 0.2405

0.85 0.44 0.4240 0.3943 0.3744 0.4010

0.91 0 0.1694 0.0901 0.0651 0.0578
Frank 1.86 0 0.2107 0.1168 0.0852 0.0737

2.92 0 0.2565 0.1484 0.1101 0.0949
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(a) τ estimation for θ = 1.11
(τ = 0.1).

(b) τ estimation for θ = 1.25
(τ = 0.2).

(c) τ estimation for θ = 1.43
(τ = 0.3).
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(d) λU estimation for θ = 1.11
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(g) λL estimation for θ = 1.11
(λL = 0).
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Figure 1: Box-plots of the estimation of the dependence coefficients of Gumbel copula
with parameters of θ = 1.11, 1.25, 1.43.
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(a) τ estimation for θ = 0.22
(τ = 0.1).

(b) τ estimation for θ = 0.50
(τ = 0.2).

(c) τ estimation for θ = 0.85
(τ = 0.3).
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(d) λU estimation for θ = 0.22
(λU = 0).

(e) λU estimation for θ = 0.50
(λU = 0).

(f) λU estimation for θ = 0.85
(λU = 0).
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(g) λL estimation for θ = 0.22
(λL = 0.04).

(h) λL estimation for θ = 0.50
(λL = 0.25).

(i) λL estimation for θ = 0.85
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Figure 2: Box-plots of the estimation of the dependence coefficients Clayton copula
with parameters of θ = 0.22, 0.50, 0.85.
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(a) τ estimation for θ = 0.91
(τ = 0.1).

(b) τ estimation for θ = 1.86
(τ = 0.2).

(c) τ estimation for θ = 2.92
(τ = 0.3).
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(d) λU estimation for θ = 0.91
(λU = 0).

(e) λU estimation for θ = 1.86
(λU = 0).

(f) λU estimation for θ = 2.92
(λU = 0).
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(g) λL estimation for θ = 0.91
(λL = 0).

(h) λL estimation for θ = 1.86
(λL = 0).

(i) λL estimation for θ = 2.92
(λL = 0).

Figure 3: Box-plots of the estimation of the dependence coefficients Frank copula
with parameters of θ = 0.91, 1.86, 2.92.
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5. APPLICATIONS

To demonstrate the performance of new dependence coefficients estimation in previous
sections, the Gumbel, Clayton and Frank copula is fit to the following three real data sets:

• The first data set is comprised of 1500 general liability claims randomly chosen
from late settlement lags (Frees et al. [12]) and was provided by Insurance Services
Office, Inc. Each claim consists of an indemnity payment (the loss) and an allocated
loss adjustment expense (ALAE). The data is available in the R package “copula”.
For simplicity, 34 censored data have not been used.

• According to the manual of R’s package “lcopula”, the nutrient data frame con-
sists of quintuples consisting of four-day measurements for the intake of calcium,
iron, protein, vitamin A and C for the women aged from 25 to 50 in the United
States as part of the “Continuing Survey of Food Intakes of Individuals” program.
The processed data has 737 measurements from a cohort study of the United States
Department of Agriculture (USDA) and is available online at the University of Penn-
sylvania repository. The main concern is to estimate the dependence coefficients of
Women’s daily nutrient intake of calcium and vitamin C.

• A population of women who were at least 21 years old, of Pima Indian heritage, and
living near Phoenix, Arizona, was tested for diabetes according to World Health
Organization criteria by using R’s package of “MASS”. The data were collected by the
US National Institute of Diabetes and Digestive and Kidney Diseases. The training
set “Pima.tr” contains a randomly selected set of 200 subjects. An application is
illustrated for determining dependence coefficients of Triceps skinfold thickness and
body mass index in Pima Indian women.
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Figure 4: Scatter plots of real data sets.
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Figure 4 shows the scatter plots of the three data sets. When Figure 4 is examined,
the dependence structure between involved random variables is obvious. In order to assess
the goodness-of-fit results, the Cramér von Mises (CvM ) statistic is used:

(5.1) CvM = n

∫ 1

0

(
K̂n(t)−K

bθ
(t)

)2
dK

bθ
(t) ,

where K̂n is the empirical Kendall distribution function as a non-parametric estimator of
K(t). The dependence parameter θ is estimated by means of the Pseudo-likelihood method.
The statistic is evaluated by the relevant p-value obtained by running 10.000 Monte Carlo
samples as the method is described in Berg [2] and Genest et al. [14]. All goodness-of-fit
results and parametric estimation of dependence coefficients are presented in Table 7 while
Table 8 provides the estimation results of τ , λL and λU based on Bézier curve for three data
sets.

Table 7: Goodness-of-fit results based on K(t) for three reel data sets.

Data Copula Parameter bτ bλL
bλU CvM p-value

Gumbel 1.4607 0.3154 0 0.3927 0.0414 0.8291
Loss-Alea Frank 3.0942 0.3154 0 0 0.2293 0.0292

Clayton 0.9214 0.3154 0.4713 0 1.4181 0.0000

Gumbel 1.2665 0.2104 0 0.2714 0.5627 0.0000
Calcium-Vit. C Frank 1.9651 0.2104 0 0 0.3546 0.0011

Clayton 0.5330 0.2104 0.2724 0 0.0505 0.6073

Gumbel 2.0933 0.5222 0 0.6074 0.1393 0.0221
Thick.-Bmi Frank 6.1568 0.5222 0 0 0.0711 0.2252

Clayton 2.1866 0.5222 0.7283 0 0.2343 0.0014

Table 8: The estimation of τ , λU and λL for three reel data sets.

Data Est. Meth. m = 5 m = 10 m = 15 m = 20

bτm 0.3030 0.2984 0.2981 0.2979

Loss-Alea bλm
U 0.3631 0.4161 0.3852 0.3982bλm
L 0.2267 0.1248 0.0897 0.0626

bτm 0.2061 0.2051 0.2049 0.2075

Calcium-Vit. C bλm
U 0.0523 0.0593 0.0116 0.0865bλm
L 0.2863 0.2472 0.2568 0.2687

bτm 0.4769 0.4694 0.4668 0.4651

Thick.-Bmi bλm
U 0.2517 0.0783 0.0062 0.0001bλm
L 0.3826 0.2049 0.1143 0.0724

The results in Table 7 represent that Gumbel copula is a good choice for variables
Loss-Alea with a p-value of 0.8291. It is concluded from Table 8 that as the degree of polyno-
mial increases, estimation of λU and λL approach to the parametric estimate of dependence
coefficients of Gumbel copula for Insurance data. For Calcium and Vitamin-C data, Clayton
copula fits the data well with p-value of 0.6073. For the estimation of λL, λ̂20

L is closure to the
parametric estimate of λL = 0.2714. Also, it is obtained that the estimation of λU approaches
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to the parametric estimate of λU = 0 as polynomial degree increases. For the triceps skinfold
thickness and body mass index in Pima Indian women, Frank copula provides the best fit with
p-value of 0.2252 from a statistical point of view. Tables 7 and 8 indicate that the estimation
of λU and λL approaches to the parametric estimate of λU = 0 and λL = 0. In addition,
Figure 5 shows the estimations of dependence coefficients for three real data sets depending
on the polynomial degree m = 1, ..., 20. It can be concluded that, as the polynomial degree
increases the estimation of dependence coefficients gets closure to the real values.
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Figure 5: Estimations of dependence coefficients of data sets for degree m = 1, 2, ..., 20.
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6. CONCLUSION

In this study, a method of estimating the dependence coefficients of bivariate
Archimedean family of copula is proposed. The Kendall’s tau, lower tail dependence and
upper tail dependence are estimated by using the Bézier curve. The new estimator of the
dependence coefficients are flexible by the polynomial degree of m. A Monte Carlo simulation
study is performed to measure the performance of the proposed estimation method for τ , λU,
and λL. The performance according to the different levels of dependence size is investigated
as well. The simulation results show that the new estimator of τ , λU, and λL presented a
good performance. Besides, the new estimators of τ , λU, and λL indicated a satisfactory
performance for the three data sets examined.
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