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1. INTRODUCTION

Censored data occurs commonly in reliability and survival analysis. There are mainly
two censoring schemes which are type-I censoring where the life-testing experiment stops at
a predetermined time, say T and type-II censoring, where the life-testing experiment stops
when predetermined number of failures, saym, are observed. Epstein [19] proposed the hybrid
censoring scheme which is the mixture of type-I and type-II censoring schemes. The hybrid
censoring scheme has become quite popular in the reliability and life-testing experiments so
far. For example, see the papers of of Chen and Bhattacharya [13], Childs et al. [15], Kundu
and Joarder [26], Balakrishnan and Kundu [10]. It is worth mentioning that the book of
Balakrishnan and Cramer [8] discussed the topics of progressive censoring and progressive
hybrid censoring in detail as separate chapters. In these schemes, it is allowed to remove
the units only at the terminal points of the experiments. However, Kundu and Joarder [26]
introduced another scheme which is called the type-I progressively hybrid censoring scheme
(type-I PHCS) such that it allows removals of units during the test time. For more information
on progressive censoring, we refer to to Balakrishnan and Aggarwala [7], Balakrishnan [6] and
Balakrishnan and Cramer [8]. Type-I PHCS can be viewed as a mixture of type-I progressive
censoring and hybrid censoring as follows: Assume that there are n identical units in a
lifetime experiment with the progressive censoring scheme (R1, R2, ..., Rm), 1 ≤ m ≤ n and
the lifetime experiment ends at a predetermined time T ∈ (0,∞) and n,m,Ri’s are all fixed
non-negative integers. At the time of first failure, say X1:m:n, R1 units randomly removed
from the remaining n− 1 units. Similarly, when the second failure occurs at the time X2:m:n,
R2 units are removed from the remaining n−R1 − 2 units. This process continues up to the
end of experiment which occurs at the time min(Xm:m:n, T ). Therefore, if the m-th failure
occurs before time T , the experiment ends at the time Xm:m:n and all the remaining units
Rm = n−

∑m−1
i=1 Ri −m are removed. However, if the experiment ends at time T with only

J failures, 0 ≤ J < m, then all the remaining units R∗
J = n−

∑J
i=1Ri − J are removed and

the test ends at time T . Therefore, under type-I PHCS we have the following two cases:

• Case I: {X1:m:n, X2:m:n, ..., Xm:m:n} if Xm:m:n ≤ T .

• Case II: {X1:m:n, X2:m:n, ..., XJ :m:n} if XJ :m:n < T < XJ+1:m:n.

Due to the fact that the lifetime distributions of many experimental units can be mod-
eled by a two-parameter Weibull distribution which is one of the most commonly used model
in reliability and lifetime data analysis, we consider the Weibull distribution in this paper.
The probability distribution function (PDF) and cumulative distribution function (CDF) of
two parameter Weibull distribution are given as follows:

f(x;α, β) = αβxα−1 exp{−βxα} ,(1.1)

F (x;α, β) = 1− exp{−βxα} ,(1.2)

where α > 0 is the shape parameter and β > 0 is the scale parameter.

Ng et al. [34] used the estimation method, along with Fisher information matrix, in
the context of optimal progressive censoring schemes for the Weibull distribution. Banerjee
and Kundu [12] considered the statistical inference on Weibull parameters when the data are
type-II hybrid censored, maximum likelihood estimation (MLE), approximate MLE and Bayes



Estimation in Weibull distribution under hybrid censored data 565

estimation techniques were studied by the authors. Balakrishnan and Kateri [9] proposed
an alternative approach based on a graphical method, which also shows the existence and
uniqueness of the MLEs. Lin et al. [30] studied the MLEs and the approximate MLEs
(AMLEs) of the parameters of Weibull distribution under adaptive type-II progressive hybrid
censoring. Huang and Wu [20] discussed the maximum likelihood estimation and Bayesian
estimation of Weibull parameters under progressively type-II censoring scheme. Lin et al. [28]
investigated the maximum likelihood estimation and Bayesian estimation for a two-parameter
Weibull distribution based on adaptive type-I progressively hybrid censored data which was
introduced by Lin and Huang [29]. Jia et al. [21] studied the exact inference on Weibull
parameters under multiple type-I censoring. Mokhtari et al. [32] discussed the approximate
and Bayesian inferential procedures for the progressively type-II hybrid censored data from
the Weibull distribution. However, this type of censoring is identical to what we called
as type-I progressive hybrid censored data. This paper will be different from [32] in three
directions. Firstly, we introduce a new approach for inference about the Weibull distribution
based on expectation-maximization (EM) and stochastic expectation-maximization (SEM)
methods. We will show that both EM and SEM will result to have better estimates in
the sense of having smaller biases and mean square errors. Secondly, we will derive the
shrinkage estimators based on the ML estimates resulting to have higher deficiencies. Finally,
in the Bayesian approach, different loss functions such as squared error loss (SEL), linear-
exponential (LINEX), and general entropy loss (GEL) will be applied with both informative
and non-informative priors.

The rest of the paper is organized as follows: In Section 2, MLE of the parameters are
introduced by using Newton–Raphson (NR) algorithm, EM algorithm and SEM algorithm,
also the Fisher information matrix is obtained. In Section 3, Bayes estimation for the pa-
rameters of Weibull distribution under the assumption of independent priors using different
loss functions such as SEL, LINEX and GEL loss functions. Moreover, Tierney and Kadane
[44] (T–K) approximations under these loss functions are also computed and Markov-Chain
Monte Carlo (MCMC) method is also presented to estimate the parameters. In Section 4,
a shrinkage pre-test estimation method is discussed. Extensive Monte Carlo simulations are
conducted and results are discussed in Section 5. A real data example is presented in Section 6
to illustrate the findings of the study. Finally, some conclusive remarks are given in Section 7.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let X = (X1:m:n, ..., Xr:m:n) represents the type-I progressively hybrid censored sample
of size r from a sample of size n drawn from a population with probability distribution given
in Equation (1.1). Throughout this paper, we will denote Xi:m:n by X(i), i = 1, 2, ..., r. Then
the likelihood function of (α, β) given the observed data x can be written as

L(α, β |x) ∝
r∏
i=1

f(x(i);α, β)
[
1− F (x(i);α, β)

]Ri
[
1− F (C;α, β)

]RT ,(2.1)

where r=m, C = x(m), RT = 0 in Case I, and r= d, C = T , RT = n− d−
∑d

i=1Ri in Case II.
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Based on the observed data, the log-likelihood function can be expressed as

l(α, β |x) = lnL(α, β |x)

= r ln(αβ) + (α−1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
xα(i) (1+Ri)

}
− β CαRT .(2.2)

Taking the derivatives of Equation (2.2) with respect to α and β and equating them to zero,
one can obtain the following likelihood equations for α and β respectively:

∂l(α, β |x)
∂α

=
r

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)}
− β Cα ln(C)RT = 0 ,(2.3)

∂l(α, β |x)
∂β

=
r

β
−

r∑
i=1

{
xα(i)(1+Ri)

}
− CαRT = 0 .(2.4)

Solving Equation (2.4) yields the MLE of β which is given by

β̂ =
r

CbαRT +
∑r

i=1

{
xbα(i)(1+Ri)

} .(2.5)

Now, substituting Equation (2.5) into (2.3), the MLE of α can be obtained by solving the
following nonlinear equation:

r

α̂
+
r
[∑r

i=1

{
(1+Ri) xbα(i) ln(x(i))

}
+RT Cbα ln(C)

]
RT Cbα +

∑r
i=1

{
xbα(i)(1+Ri)

} = 0 .

The second partial derivatives of the log-likelihood equation are obtained as follows:

∂2l(α, β |x)
∂α2

= − r

α2
− β

r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)2}− β Cα ln(C)2RT ,(2.6)

∂2l(α, β |x)
∂α ∂β

= −
r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)}
− Cα ln(C)RT ,(2.7)

∂2l(α, β |x)
∂β2

=
−r
β2

.(2.8)

Now, using Equations (2.6)–(2.8), the Fisher’s information matrix I(α, β) can be formed
by

I(α, β) = E

−
∂2l(α, β |x)

∂α2
−∂

2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂β2

.(2.9)

It is well-known that (see [27]) the distribution of MLEs
(
α̂, β̂

)
is a bivariate normal distri-

bution with
N
(
(α, β), I−1(α, β)

)
,

where I−1(α, β) is the covariance matrix. Moreover, one can approximate the covariance
matrix evaluated at

(
α̂, β̂

)
by the following observed information matrix:

I
(
α̂, β̂

)
=

−
∂2l(α, β |x)

∂α2
−∂

2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂β2


(bα,bβ)

.(2.10)
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2.1. Expectation-Maximization algorithm

The EM algorithm proposed by Dempster et al. [16] can be used to obtain the MLEs
of the parameters α and β. It is known that the EM algorithm converges more reliably
than NR. Since type-I PHCS can be considered as an incomplete data problem (see [33]),
it is possible to apply EM algorithm to obtain the MLEs of the parameters. Now, let us
denote the incomplete (censored) data by Z = (Z1, Z2, ..., Zr) where Zj =

(
Zj1, Zj2, ..., ZjRj

)
,

j = 1, 2, ..., r, such that Zj denotes the lifetimes of censored units at the time of x(j). Similarly,
let ZT denotes the lifetimes of censored units at the time of T . Now, combining both the
observed and censored data, one can obtain the complete data which is given by W = (X,Z).
The corresponding likelihood equation of the complete data can be obtained as follows:

LW (α, β |x) =
r∏
i=1

{
f
(
x(i);α, β

) Ri∏
j=1

f
(
zij ;α, β

)} RT∏
j=1

f
(
zTj ;α, β

)
.(2.11)

Therefore, the log-likelihood equation can be easily obtained by taking the natural logarithm
of Equation (2.11) as follows:

lW (α, β |x) = ln
(
LW (α, β |x)

)
=

r∑
i=1

ln
(
αβxα−1

(i) exp
{
−βxα(i)

})
+

r∑
i=1

Ri∑
j=1

ln
(
αβzα−1

ij exp
{
−βzαij

})
+

RT∑
j=1

ln
(
αβzα−1

Tj exp
{
−βzαTj

})

= n lnα+ n lnβ + (α− 1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) + (α− 1)
r∑
i=1

Ri∑
j=1

ln(zij)

− β

r∑
i=1

Ri∑
j=1

zαij + (α− 1)
RT∑

j=1,r 6=m
ln(zTj)− β

RT∑
j=1,r 6=m

zαTj .(2.12)

Note that the last two terms of Equation (2.12), should be considered only for the Case II.
Based on the complete sample, the MLEs of the parameters α and β can be obtained by
taking the derivatives of (2.12) with respect to α and β respectively and equating them to
zero as follows:

∂lW (α, β |x)
∂α

=
n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

ln(zij)

− β

r∑
i=1

Ri∑
j=1

zαij ln(zij) +
RT∑

j=1,r 6=m
ln(zTj)− β

RT∑
j=1,r 6=m

zαTj ln(zTj) = 0 ,(2.13)

∂lW (α, β |x)
∂β

=
n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

zαij −
RT∑

j=1,r 6=m
zαTj = 0 .(2.14)

Now, the conditional expectation of the log-likelihood equation of the complete data given
the observations should be computed in the E-step of the algorithm. However, the following
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conditional expectations are necessary to be computed:

E

(
∂lW (α, β |x)

∂α

∣∣∣x(i), T

)
=

n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

E
[
ln(Zij)

(
1− βZαij

) ∣∣∣Zij > x(i)

]

+
RT∑

j=1,r 6=m
E
[
ln(ZTj)

(
1− βZαTj

) ∣∣∣ZTj > T
]
,(2.15)

E

(
∂lW (β, β |x)

∂β

∣∣∣x(i), T

)
=

n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

E
[
Zαij

∣∣∣Zij > x(i)

]

−
RT∑

j=1,r 6=m
E
[
ZαTj

∣∣∣ZTj > T
]
.(2.16)

In order to compute the expectations given above, making use of the theorem proved in [33],
the conditional probability function of the censored data given the observed data can be
obtained as follows:

f
(
zi | C∗, α, β

)
=

f(zi, α, β)
1− F (C∗, α, β)

, Zi > C∗ ,(2.17)

such that C∗ = x(i) for i = 1, 2, ..., r and C∗ = T for i = T . Thus, the following expectations
can be obtained:

E1(C∗, α, β) = E
[
Zα
∣∣∣Z > C∗

]
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tαf(t) dt

=
e−βC

∗α

1− F (C∗, α, β)
(1 + βC∗α)

β
,(2.18)

E2(C∗, α, β) = E
(
ln(Z) (1− βZα)

∣∣∣Z > C∗
)

=
1

1− F (C∗, α, β)

∫ ∞

C∗
ln(t) (1− βtα) f(t) dt .(2.19)

Since it is hard to obtain a closed form solution to Equation (2.19), the integral is approx-
imated via Monte Carlo integration method in the simulation. After updating the missing
data with the expectations above in the E-step, the log-likelihood function is maximized in
the M-step at the current state, say α̂k and β̂k being the estimators of α and β and the
following updating equations are computed:

α̂k+1 = n

{
−

r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xbαk

(i) ln
(
x(i)

)
−

r∑
i=1

RiE2

(
x(i), α̂k, β̂k+1

)
− RTE2

(
T, α̂k, β̂k+1

)}−1

,(2.20)

β̂k+1 = n

{
r∑
i=1

xbαk

(i) +
r∑
i=1

RiE1

(
x(i), α̂k, β̂k

)
+RTE1

(
T, α̂k, β̂k

)}−1

.(2.21)

The EM estimates of (α, β) can be computed by an iterative procedure using Equation (2.21)
and the iterations can be terminated when |α̂k+1 − αk|+ |β̂k+1 − βk| < ε where ε > 0 is
a small real number.
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2.2. Stochastic Expectation-Maximization algorithm

The computations in the E-step of EM algorithm is complex. Therefore, Wei and Tan-
ner [46] proposed a Monte Carlo version of EM algorithm. However, the M-step of this algo-
rithm may take so much time. Diebolt and Celeux [18] introduced a stochastic-EM (SEM)
algorithm by considering simulated values from the conditional distribution. Asl et al. [4]
used this algorithm successfully. In the SEM algorithm, firstly, one needs to generate
Ri number of samples of zij where i= 1, 2, ..., r and j = 1, 2, ..., Ri using the following condi-
tional CDF:

F
(
zij ;α, β | zij > x(i)

)
=

F (zij ;α, β)− F
(
x(i);α, β

)
1− F

(
x(i);α, β

) , zij > x(i) .(2.22)

Now, using Equations (2.13) and (2.14), the estimators of (α, β) at the k + 1 step of the
algorithm can be obtained as follows:

α̂k+1 = n

− r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xbαk

(i) ln
(
x(i)

)
−

r∑
i=1

Ri∑
j=1

ln(zij)
(
1− β̂k+1z

bαk
ij

)

−
RT∑

j=1,r 6=m
ln(zTj)

(
1− β̂k+1z

bαk
Tj

)−1

,(2.23)

β̂k+1 = n

 r∑
i=1

xbαk

(i) +
r∑
i=1

Ri∑
j=1

zbαk
ij +

RT∑
j=1,r 6=m

zbαk
Tj

−1

.(2.24)

Similarly, the iterations can be terminated when |α̂k+1 −αk|+ |β̂k+1 − βk| < ε where ε > 0 is
a small real number.

2.3. Fisher information matrix

In this subsection, by making use of the idea of missing information principle proposed
by Louis [31], we can obtain the observed Fisher information matrix. Louis [31] suggested
the following relation:

IX(ψ) = IW (ψ)− IW |X(ψ) ,(2.25)

where ψ = (α, β)′, IX(ψ), IW (ψ) and IW |X(ψ) are the observed, complete and missing infor-
mation matrices respectively. Now, the complete information matrix of a complete data set
following the Weibull distribution can be obtained as

IW (ψ) = −E
(
∂2 lnL
∂ψ2

)
= E

[
n
α2 + β

∑n
i=1 x

α
i

∑n
i=1 x

α
i lnxi∑n

i=1 x
α
i lnxi n

β2

]
=

[
b11 b12

b21 b22

]
,(2.26)
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where

b11 =
n

α2
+ nαβ2

∫ ∞

0

x2α−1 ln(x)
exp(βxα)

dx ,

b12 = b21 = nαβ

∫ ∞

0

x2α−1 ln(x)
exp(βxα)

dx ,

b22 =
n

β2
,

and lnL(ψ) = n lnα+n lnβ+ (α−1)
∑n

i=1xi + β
∑n

i=1x
α
i is the corresponding log-likelihood

equation. Moreover, the missing information matrix IW |X(ψ) is given by

(2.27) IW |X(ψ) =
r∑
i=1

Ri I
(i)
W |X(ψ) +RT I∗W |X(ψ) ,

where I(i)
W |X(ψ) and I∗W |X(ψ) are the information matrices of a single observation from a

truncated Weibull distribution from left at x(i) and T respectively, such that

I(i)
W |X(ψ) = −E

(
∂2 lnL
∂ψ2

ln
{
f
(
zij ;ψ | zij > x(i)

)})
.

Now to calculate the missing information matrix I(i)
W |X(ψ), the conditional distribution given

in Equation (2.17) is used to obtain the following

Lf = ln
(
f
(
zij | zij > x(i)

))
= ln(α) + ln(β) + (α−1) ln(zij)− βzαij + βxα(i) .

The second partial derivatives of Lf are obtained as follows:

∂2Lf
∂α2

= − 1
α2

− βzαij ln(zij)2 + βxα(i) ln(x(i))
2 ,

∂2Lf
∂α ∂β

= −zαij ln(zij) + xα(i) ln(x(i)) ,

∂2Lf
∂β2

= − 1
β2

.

Now, in order to obtain the information matrices, the negative expected values of the quan-
tities above are computed respectively as follows:

E

(
−
∂2Lf
∂α2

)
=

1
α2

+ βE4

(
x(i), α, β

)
− βxα(i) ln(x(i))

2 ,

E

(
−
∂2Lf
∂α ∂β

)
= E3

(
x(i), α, β

)
− xα(i) ln(x(i)) ,

E

(
−
∂2Lf
∂β2

)
=

1
β2

,

where

E3(C∗, α, β) = E
(
Zα ln(Z) |Z > C∗

)
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tα ln(t) f(t) dt ,

E4(C∗, α, β) = E
(
Zα ln(Z)2 |Z > C∗

)
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tα ln(t)2f(t) dt .
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Using similar arguments, the information matrix I∗W |X(ψ) can also be computed easily.

Then, using (2.25)–(2.26), the asymptotic variance-covariance matrix of ψ̂ can be computed
by inverting the observed information matrix IX

(
ψ̂
)
. Note that ψ̂ is computed using the

NR estimates.

3. BAYESIAN ESTIMATION

In this section, following Kundu [25], we consider the Bayesian estimation for the pa-
rameters of the Weibull distribution under the assumption that the random variables α and
β have independent gamma priors such that α ∼ Gamma(a, b) and β ∼ Gamma(c, d). There-
fore, the joint prior density of α and β can be written as

π(α, β) ∝ αa−1βc−1exp
{
−(bα+ dβ)

}
, a, b, c, d > 0 .

Now, the posterior distribution of α and β can be obtained as follows:

π(α, β |x) =
L(α, β |x) π(α, β)∫ ∞

0

∫ ∞

0
L(α, β |x) π(α, β) dα dβ

=

(∏r
i=1 x

α−1
(i)

)
βc+r−1 αa+r−1

Γ(c+ r) Ψ(a, c,x)
exp

{
d− bα+

r∑
i=1

(1+Ri)xα(i) + CαRT

}
,(3.1)

where

Ψ(a, c,x) =
∫ ∞

0

αa+r−1 exp{−bα}
(∏r

i=1 x
α−1
(i)

)
[
d+

∑r
i=1(1+Ri)xα(i) + CαRT

]a+c+r dα .

In this paper, three different loss functions are considered. One of them is the most
commonly used squared error loss function (SEL) which is defined as follows:

LS
(
t̂(ψ), t(ψ)

)
=
(
t̂(ψ)− t(ψ)

)2
,

where t̂(ψ) is an estimator of t(ψ). SEL is a symmetric loss function which gives equal weights
to both underestimation and overestimation. However, in certain situation overestimation
and underestimation may have serious consequences ([37]). In such cases using SEL may not
be appropriate. One remedy is to use linear-exponential (LINEX) loss function. LINEX is
an asymmetric loss function introduced by Varian [45] as follows:

LL
(
t̂(ψ), t(ψ)

)
= eν(bt(ψ)−t(ψ)) − ν

(
t̂(ψ)− t(ψ)

)
− 1 , ν 6= 0 .

The LINEX loss function is a convex function whose shape is determined by the value of ν.
The negative (positive) value of ν gives more weight to overestimation (underestimation)
and its magnitude reflects the degree of asymmetry. It is seen that, for ν = 1, the function
is quite asymmetric with overestimation being costlier than underestimation. If ν < 0, it
rises almost exponentially when the estimation error t̂(ψ)− t(ψ) < 0 and almost linearly if
t̂(ψ)− t(ψ) > 0. For small values of |ν|, the LINEX loss function is almost symmetric and
not far from squared error loss function.
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Under the SEL function, the Bayes estimators of α and β which are the expected values
of the corresponding posterior distributions are computed respectively as follows:

α̂S = E
(
π(α |x)

)
=

Ψ(a+1, c−1,x)
Ψ(a, c,x)

(3.2)

and

β̂S = E
(
π(β |x)

)
= (a+ c+ r)

Ψ(a, c+1,x)
Ψ(a, c,x)

.(3.3)

Since the Bayes estimators given above includes the complicated integral function Ψ(a, c+1,x)
we also consider using the Bayes estimate of t(ψ) under the LINEX loss function is given by

t̂L(ψ) = −1
ν

ln
[
Et
(
e−νt(ψ) |x

)]
= −1

ν
ln
[∫ ∞

0

∫ ∞

0
e−νt(ψ)π(α, β |x) dα dβ

]
.

Another asymmetric loss function that gained more attention is the general entropy loss
(GEL) function given by

LGEL

(
t̂(ψ), t(ψ)

)
=

(
t̂(ψ)
t(ψ)

)κ
− κ ln

(
t̂(ψ)
t(ψ)

)
− 1 , κ 6= 0 ,

where κ is the shape parameter showing the departure from symmetry. When κ > 0, the
overestimation is considered to be more serious than underestimation and for κ < 0 vice
versa. The Bayes estimator under GEL function is given by

t̂GEL(ψ) =
[
Et
(
t(ψ)−κ |x

)]−1/κ
=
[∫ ∞

0

∫ ∞

0
t(ψ)−κπ(α, β |x) dα dβ

]−1/κ

.

3.1. Tierney–Kadane approximation

In this subsection, the approximation method of Tierney and Kadane [44] is used
to obtain the approximate Bayes estimators under SEL, LINEX and GEL loss functions.
Now, we consider the following functions:

∆(α, β) =
1
n

ln
[
L(α, β |x) π(α, β)

]
,(3.4)

∆∗(α, β) =
1
n

ln
[
L(α, β |x) π(α, β) t(ψ)

]
.(3.5)

Now assume that (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗) respectively maximize the functions ∆(α, β) and
∆∗(α, β). Then the approximation method of Tierney and Kadane [44] is given by

t̃SEL(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

where |Σ| and |Σ∗| are the negative of inverses the second derivative matrices of ∆(α, β)
and ∆∗

1(α, β) respectively obtained at (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗). The function ∆(α, β) can be
easily obtained by using the Equation (3.4) as follows:

∆(α, β) =
1
n

[
ln(M) + (α−1)

r∑
i=1

ln
(
x(i)

)
− β

(
d+ bα+

r∑
i=1

(1+Ri)xα(i) + CαRT

)

+ (a+ c+ r − 1) ln(β) + (a+ r − 1) ln(α)

]
,(3.6)
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where M = dcba

Γ(c) Γ(a) . Now, differentiating Equation (3.6) with respect to α and β solving for
these parameters, one gets the following equations:

α̃∆ = (a+ r − 1)

[
β

(
b+

r∑
i=1

(1+Ri)xα(i) + CαRT

)
−

r∑
i=1

ln
(
x(i)

)]−1

,

β̃∆ = (a+ c+ r − 1)

[
r∑
i=1

(1+Ri)xα(i) + CαRT + d+ bα

]−1

.

Since it is easy to obtain the second derivatives and the related Hessian matrices, we skip
this part. Thus under the SEL function, the approximate Bayes estimators are computed by

α̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

β̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

where ∆∗
1α(α, β) = ∆(α, β) + 1

n ln(α) for t(α, β) = α and ∆∗
1β(α, β) = ∆(α, β) + 1

n ln(β) for
t(α, β) = β.

One can also compute the Bayes estimators under the LINEX loss and get

t̃LINEX(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
{

∆∗
2

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

)}]
.

Letting t(α, β) = e−να, one gets ∆∗
2α(α, β) = ∆(α, β)− 1

n να and letting t(α, β) = e−νβ,
∆∗

2β(α, β) = ∆(α, β)− 1
n νβ. Thus, approximate Bayes estimators under LINEX function

are computed as

α̃LINEX = −1
ν

ln

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

2α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
,

β̃LINEX = −1
ν

ln

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

2β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
.

Finally, letting t(α, β) = α−κ, one gets ∆∗
3α(α, β) = ∆(α, β)− κ

n ln(α) and letting
t(α, β) = β−κ, ∆∗

3β(α, β) = ∆(α, β)− κ
n ln(β). Thus, approximate Bayes estimators under

GEL function are obtained by

α̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

3α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

,

β̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

3β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

.

3.2. MCMC method

Metropolis–Hastings (MH) algorithm, a method for generating random samples from
the posterior distribution using a proposal density, is considered in this subsection. A sym-
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metric proposal density of type q(θ′ |θ) = q(θ|θ′) may be considered generally, where θ is the
parameter vector of the distribution considered. Following Dey et al. [17], we consider a
bivariate normal distribution as the proposal density such that q(θ′ |θ) = N(θ|Vθ) where Vθ

is the covariance matrix and θ = (α, β). Although, the bivariate normal distribution may
generate negative observations, the domain of both shape and scale parameters of Weibull
distribution is positive. Therefore, the following steps of MH algorithm is used to generate
MCMC sample from the posterior density given by (3.1):

(1) Set the initial parameter values as θ = θ0.

(2) For j = 1, 2, ..., N , repeat the following steps:

(i) Set θ = θj−1;
(ii) Generate new parameters λ from bivariate normal N2

(
ln(θ),Vθ

)
;

(iii) Compute θnew = exp(λ);

(iv) Calculate γ = min
(
1, π(θnew |x) θnew

π(θ |x) θ

)
;

(v) Set θj = θnew with probability λ, otherwise θj = θ.

After generating the MCMC sample, some of the initial samples, say N0, can be discarded as
burn-in process and the estimations can be computed via the remaining ones (M = N −N0)
under SEL, LINEX and GEL loss functions as follows:

t̂SEL(ψ) =
1
M

M∑
i=1

t(ψi) ,

t̂LINEX(ψ) = −1
ν

ln

(
1
M

M∑
i=1

exp
(
−ν t(ψi)

))
,

t̂GEL(ψ) =

(
1
M

M∑
i=1

(
t(ψi)−κ

))−1/κ

.

The main advantage of MCMC method over Tierney–Kadane method is that the MCMC sam-
ples can also be used to compute highest posterior density (HPD) intervals. Chen and Shao
[14] proposed a method to compute the HPD intervals using MCMC samples. This method
has been used in the literature extensively. Now, consider the posterior density π(θ|x).
Assume that the p-th quantile of the distribution is given by θ(p)= inf

{
θ : Π(θ|x)≥ p; 0<p<1

}
where Π(θ|x) denotes the posterior distribution function of θ. Now, for a given θ∗, a simula-
tion consistent estimator of Π(θ∗|x) can be computed as

Π(θ∗|x) =
1
M

M∑
i=1

I(θ ≤ θ∗) ,

where I(θ ≤ θ∗) is an indicator function. Then, the estimate of Π(θ∗|x) is given as

Π̂(θ∗|x) =


0 if θ∗<θ(N0) ,∑i

j=N0
γj if θ(i)<θ∗<θ(i+1) ,

1 if θ(M) ,

where γj = 1/M and θ(j) is the j-th ordered value of θj . θ(p) can be approximated by the
following:

θ(p) =

{
θ(N0) if p = 0 ,

θ(j) if
∑i−1

j=N0
γj < p <

∑i
j=N0

γj .



Estimation in Weibull distribution under hybrid censored data 575

Now, one can construct the 100 (1 − p)% confidence intervals where 0 < p < 1 as(
θ̂j/s, θ̂(j+[(1−p)s])/s), j = 1, 2, ..., s− [(1− p)s] such that [v] denotes the greatest integer less

than or equal to v. At the end, the HPD credible interval of θ is the one having the shortest
length.

4. SHRINKAGE ESTIMATION

In the problem of statistical inference there may be some non-sample prior information
that practitioner may have from previous experiences or knowledge Saleh [39]. For example,
medical experts may know the average time of that a vaccine may take to relief a pain
according their medical knowledge. This non-sample Prior information on the parameters in a
statistical model generally leads to an improved inference procedure in problems of statistical
inference. Restricted models arise from the incorporation of the known prior information in
the model in the form of a constraint. The estimators obtained from restricted (unrestricted)
model is known as the restricted (unrestricted) estimators. The results of an analysis of the
restricted and unrestricted models can be weighted against loss of efficiency and validity of
the constraints in deciding a choice between these two extreme inference methods, when a
full confidence may not be in the prior information (see [2]).

Bancroft [11] was the first to consider a pre-test procedure when there is doubt that the
prior information is not certain (uncertain prior information). After the pioneering study [11],
pre-test estimators has gained much attention. Thompson [43] defined an efficient shrinkage
estimator. Following [43], shrinkage estimation of the Weibull parameters has been discussed
by a number of authors, including [41], [35], [36] and [42]. We also refer to the following book
and papers among others: [22], [40], [39], [23].

Now suppose that there is an uncertain prior information in the form of θ= θ0 where θ is
the parameter of a distribution of interest. Our aim is to estimate θ using a pre-test estimation
strategy and this prior information. Therefore, we consider the following hypothesis to check
the validity of this information:

H0 : θ = θ0 ,

H1 : θ 6= θ0 .

It is known that under H0, the asymptotic distribution of
√
D
(
θ̂−θ0

)
is normal with N(0, σ2

bθ
)

and the related test statistics can be defined as follows:

WD =

(√
D
(
θ̂ − θ0

)
σ
bθ

)2

.

One can reject the null hypothesis when WD > χ2
1(λ) based on the distribution of WD where

λ can be treated as the degree of trust in the prior information about the parameter such
that θ = θ0, see [39] and [1]. Thus, the shrinkage pre-test estimator (SPT) can be defined as:

θ̂SPT = λθ0 + (1−λ) θ̂ I
(
WD <χ

2
1(λ)

)
,

where I(A) is the indicator of the set A.
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5. MONTE CARLO SIMULATION EXPERIMENTS

In this section, we conduct a simulation study to illustrate the performance of the dif-
ferent estimation techniques discussed in this paper by considering (n,m) = (30, 15), different
values of predetermined time T = 1.0, 2.0, and the real values of the parameters are chosen as
α = 0.5 and β = 1.5 in all cases. The following three schemes are considered in the simulation:

• Scheme 1: R = (0m−1, n−m);

• Scheme 2: R = (n−m, 0m−1);

• Scheme 3: R = (25, 0m−6, n−m− 10).

It is noted that Scheme 1 is the type-II censoring such that n−m units are removed from
the experiment at the time of the m-th failure; in Scheme 2, n−m units are removed at
the time of the first failure. However, in Scheme 3, a progressive type-II censoring scheme
allowing different numbers of censoring within the experiment is considered. The progressive
type-II censored data from Weibull distribution is generated using algorithm proposed by
Balakrishnan and Aggarwala [7]. The maximum likelihood estimators of α and β are obtained
using NR, EM and SEM algorithms. In computing the Bayes estimates, two different priors
are used such as the non-informative priors as a = b = c = d = 0 and the informative priors
where we assume that we have past samples from Weibull(α, β) distribution, say K samples
and their corresponding MLEs as

(
α̂j , β̂j

)
, j = 1, 2, ...,K. Now, equating the sample means

and variances of these values to the means and variances of gamma priors respectively and
solving the equations for K = 1000, and n = 30 being the sample size of past samples, we
obtain the following informative prior values, a = 43.77, b = 83.45, c = 24.24, d = 15.47.

Bayes estimates are computed under SEL, LINEX, GEL loss functions. Notice that
for the LINEX loss function, we considered two values of ν as ν = −0.5, 0.5 giving more
weight to underestimation and overestimation respectively. Similarly, two choices of κ such as
κ = −0.5, 0.5 are taken into account under GEL function. Moreover, 6000 MCMC samples are
generated and MCMC estimations are computed under the listed loss function and respective
parameter values. The first 1000 MCMC samples are considered as a burn-in sample so that
the average values and MSEs are computed via the remaining 5000 samples for each replicate
in the simulation.

For the shrinkage estimators, the test statistic WD is calculated and then shrinkage pre-
test (SPT) estimators are obtained. The distribution of the test statistic WD is computed
under the null hypothesis, that is, H0 : θ = θ0. Moreover, we take λ = 0.5 giving equal weight
to both restricted and unrestricted estimators and the type one test error is set to 0.05 in
testing the hypothesis, prior values of the parameters are taken as α0 = 0.7, β0 = 1.7 for
practical purposes. The MLE shrinkage pre-test estimators are obtained using NR algorithm
and also the Bayes estimator with T–K method under different loss functions.

Totally, 5000 repetitions are carried out and average values (Avg), mean squared errors
(MSE), confidence/ credible interval lengths (IL) and coverage probabilities (CP) are obtained
for the purpose of comparison. MSEs of the estimators are computed as follows:

MSE
(
θ̂
)

=
1

5000

5000∑
i=1

(
θ̂i − θ

)2
,
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where θ̂i is NR, EM, SEM, SPT estimators and Bayes estimators under SEL loss function
in the i-th replication. However, the MSEs of Bayes estimators under LINEX and GEL loss
functions are computed respectively by

MSELINEX

(
θ̂
)

=
1

5000

5000∑
i=1

(
eν(

bθi−θ) − ν
(
θ̂i − θ

)
− 1
)

,

MSEGEL

(
θ̂
)

=
1

5000

5000∑
i=1

((
θ̂i
θ

)κ
− κ ln

(
θ̂i
θ

)
− 1

)
.

All of the computations are performed using the R Statistical Program [38]. All the results
are presented in Tables 1–5.

Based on Table 1, we can conclude that EM and SEM estimates are quiet preferable
to the NR method for all schemes and T s. Both MSEs and Avgs for EM and SEM estimates
are the close to each other and they are smaller than those of NR method. We also observe
that as m increase, the values of MSEs and Avgs decrease, generally.

The results of Bayes estimates based on TK and MCMC methods are reported in Tables
2–3. From these tables, it is evident that all the Bayes estimates based on informative priors
have very small MSEs compared to the MLEs. We also see that the Bayes estimates based
on informative priors are better than those that are based on non-informative priors in all
schemes and (T, n,m)s. However, EM and SEM estimates are better than non-informative
Bayes estimates based on SEL in terms of MSE and Avg. So we can conclude that Bayes
estimates even with non informative priors are preferable to the NR, for all schemes and T s.
When we compare MSEs of T–K and MCMC methods, we observed that they are generally
close to each other. However, T–K is better in some of the cases and vice versa in some others.
However, the MCMC has the advantage of construction of the credible intervals. Thus, we
can say that MCMC is preferable since it gives more information.

The performances of SPT estimators are given in Table 4. According to Table 4, we can
say that SPT estimators based on informative T–K method have better performance than
SPT based on NR methods in the sense of both MSE and Avg, generally. Moreover, SPT
with T–K method based on GEL function seems to have the least MSE values among others.
SPT estimator based on NR method has smaller MSE values than NR estimator when we
consider the parameter β, and both methods have closer MSE values for the parameter α.

Finally, the confidence intervals and coverage probabilities are summarized in Table 5.
It is observed that when we use non-informative priors the estimated CPs are smaller than
the nominal CPs. Moreover, the expected ILs of non-informative methods are less than that
of NR method. However, the estimated CPs of NR are slightly more than the non-informative
method. Further, we observe that the CIs based on informative priors are better than the
ones based on the non-informative priors and the once based on NR, in terms of having
smaller ILs but higher CPs.
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Table 1: Average values (Avg) and the corresponding MSEs
of the estimators NR, EM and SEM.

NR EM SEM
T R

α β α β α β

1
Avg 0.5559 1.8433 0.5276 1.6415 0.5352 1.6669
MSE 0.0224 0.6931 0.0112 0.2207 0.0139 0.2788

1 2
Avg 0.5279 1.6480 0.5239 1.5958 0.5294 1.6065
MSE 0.0158 0.3385 0.0135 0.1772 0.0141 0.1946

3
Avg 0.5435 1.7540 0.5315 1.6490 0.5330 1.6485
MSE 0.0175 0.5108 0.0127 0.2552 0.0131 0.2647

1
Avg 0.5559 1.8433 0.5276 1.6416 0.5353 1.6670
MSE 0.0224 0.6930 0.0112 0.2206 0.0139 0.2788

2 2
Avg 0.5280 1.6412 0.5233 1.5947 0.5287 1.6020
MSE 0.0137 0.3045 0.0124 0.1723 0.0129 0.1869

3
Avg 0.5476 1.7676 0.5339 1.6578 0.5353 1.6567
MSE 0.0172 0.5001 0.0126 0.2494 0.0130 0.2593

Table 2: Average values (Avg) and the corresponding MSEs
of the Bayes estimators with T–K approximation.

SEL
LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5T R

α β α β α β α β α β

Informative Priors

1
Avg 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

1 2
Avg 0.5199 1.5632 0.5209 1.5807 0.5189 1.5460 0.5180 1.5522 0.5141 1.5302
MSE 0.0018 0.0252 0.0002 0.0034 0.0002 0.0029 0.0008 0.0012 0.0007 0.0012

3
Avg 0.5206 1.5702 0.5215 1.5869 0.5196 1.5537 0.5188 1.5598 0.5151 1.5389
MSE 0.0019 0.0273 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

1
Avg.3 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

2 2
Avg 0.5193 1.5605 0.5203 1.5772 0.5183 1.5442 0.5175 1.5501 0.5137 1.5291
MSE 0.0018 0.0268 0.0002 0.0036 0.0002 0.0031 0.0008 0.0013 0.0008 0.0013

3
Avg 0.5210 1.5719 0.5220 1.5885 0.5200 1.5554 0.5192 1.5615 0.5156 1.5408
MSE 0.0019 0.0271 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

Non-Informative Priors

1
Avg 0.5519 1.8793 0.5441 1.9056 0.5353 1.6135 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7592 0.0022 0.0746 0.0022 0.0329 0.0083 0.0243 0.0086 0.0250

1 2
Avg 0.5298 1.6345 0.5322 1.7031 0.5248 1.5557 0.5234 1.5990 0.5100 1.5181
MSE 0.0159 0.3310 0.0020 0.0425 0.0019 0.0355 0.0065 0.0140 0.0067 0.0144

3
Avg 0.5411 1.7500 0.5408 1.8062 0.5341 1.6223 0.5384 1.7550 0.5262 1.6597
MSE 0.0170 0.5159 0.0020 0.0582 0.0020 0.0402 0.0065 0.0166 0.0067 0.0172

1
Avg 0.5519 1.8793 0.5441 1.9057 0.5353 1.6136 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7591 0.0022 0.0746 0.0021 0.0329 0.0083 0.0243 0.0086 0.0250

2 2
Avg 0.5290 1.6203 0.5315 1.6773 0.5254 1.5573 0.5237 1.5920 0.5125 1.5253
MSE 0.0137 0.2934 0.0017 0.0366 0.0017 0.0322 0.0056 0.0118 0.0057 0.0122

3
Avg 0.5453 1.7632 0.5451 1.8196 0.5384 1.6361 0.5427 1.7685 0.5307 1.6741
MSE 0.0167 0.5052 0.0020 0.0568 0.0020 0.0389 0.0062 0.0152 0.0064 0.0159
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Table 3: Average values (Avg) and the corresponding MSEs
of the Bayes estimators with MCMC method.

SEL
LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5T R

α β α β α β α β α β

Informative Priors

1
Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5448
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

1 2
Avg 0.5199 1.5631 0.5209 1.5806 0.5188 1.5462 0.5179 1.5522 0.5140 1.5304
MSE 0.0018 0.0253 0.0002 0.0037 0.0002 0.0029 0.0009 0.0014 0.0008 0.0012

3
Avg 0.5206 1.5703 0.5216 1.5871 0.5197 1.5540 0.5188 1.5599 0.5151 1.5391
MSE 0.0019 0.0277 0.0002 0.0041 0.0002 0.0032 0.0009 0.0016 0.0008 0.0013

1
Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5449
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

2 2
Avg 0.5193 1.5604 0.5203 1.5770 0.5183 1.5442 0.5174 1.5500 0.5137 1.5292
MSE 0.0018 0.0271 0.0002 0.0039 0.0002 0.0031 0.0009 0.0015 0.0008 0.0013

3
Avg 0.5210 1.5720 0.5220 1.5887 0.5201 1.5558 0.5192 1.5617 0.5156 1.5410
MSE 0.0019 0.0275 0.0002 0.0040 0.0002 0.0031 0.0009 0.0016 0.0009 0.0013

Non-Informative Priors

1
Avg 0.5411 1.7748 0.5455 1.9792 0.5368 1.6503 0.5335 1.7117 0.5180 1.5932
MSE 0.0176 0.4644 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0121

1 2
Avg 0.5286 1.6289 0.5323 1.7081 0.5249 1.5607 0.5219 1.5890 0.5086 1.5091
MSE 0.0158 0.3208 0.0021 0.0665 0.0020 0.0370 0.0069 0.0159 0.0066 0.0127

3
Avg 0.5380 1.7158 0.5414 1.8220 0.5346 1.6347 0.5320 1.6738 0.5199 1.5910
MSE 0.0161 0.4175 0.0022 0.1139 0.0020 0.0445 0.0067 0.0201 0.0063 0.0127

1
Avg 0.5411 1.7748 0.5455 1.9793 0.5368 1.6504 0.5335 1.7117 0.5180 1.5933
MSE 0.0176 0.4643 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0120

2 2
Avg 0.5280 1.6166 0.5311 1.6804 0.5249 1.5604 0.5224 1.5839 0.5112 1.5181
MSE 0.0136 0.2856 0.0018 0.0582 0.0017 0.0338 0.0059 0.0137 0.0057 0.0110

3
Avg 0.5422 1.7293 0.5455 1.8353 0.5389 1.6483 0.5363 1.6876 0.5245 1.6057
MSE 0.0159 0.4065 0.0021 0.1128 0.0020 0.0432 0.0065 0.0192 0.0061 0.0117

Table 4: Average values (Avg) and the corresponding MSEs
of the SPT estimators.

NR SEL LINEX GEL
T R

α β α β α β α β

1
Avg 0.5911 1.8251 0.5879 1.6367 0.5870 1.6278 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

1 2
Avg 0.5576 1.6367 0.5771 1.6301 0.5759 1.6212 0.5708 1.6131
MSE 0.0190 0.1464 0.0104 0.0233 0.0102 0.0210 0.0097 0.0193

3
Avg 0.5708 1.7106 0.5749 1.6329 0.5738 1.6244 0.5690 1.6166
MSE 0.0205 0.2600 0.0102 0.0247 0.0101 0.0224 0.0096 0.0208

1
Avg 0.5911 1.8252 0.5879 1.6367 0.5870 1.6279 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

2 2
Avg 0.5556 1.6352 0.5698 1.6274 0.5686 1.6189 0.5631 1.6108
MSE 0.0173 0.1323 0.0097 0.0239 0.0095 0.0218 0.0090 0.0203

3
Avg 0.5750 1.7253 0.5750 1.6335 0.5738 1.6249 0.5689 1.6170
MSE 0.0204 0.2508 0.0102 0.0249 0.0101 0.0227 0.0096 0.0211
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Table 5: Confidence intervals and coverage probabilities of NR and MCMC methods.
(U: upper, L: lower, IL: interval length, CP: coverage probability.)

NR MCMC: Informative MCMC: Non-Informative
T R

L U IL CP L U IL CP L U IL CP

1
α 0.2952 0.8166 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90
β 0.4102 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7989 3.4874 2.6885 92.80

1 2
α 0.2972 0.7585 0.4614 95.02 0.4027 0.6526 0.2498 99.88 0.3232 0.7854 0.4622 94.64
β 0.6301 2.6658 2.0357 95.78 1.0944 2.1159 1.0215 99.98 0.7981 2.7963 1.9982 94.52

3
α 0.3203 0.7668 0.4466 94.58 0.4067 0.6481 0.2414 99.90 0.3371 0.7796 0.4424 93.50
β 0.6540 2.8541 2.2001 96.38 1.1111 2.1114 1.0003 99.96 0.8604 2.9774 2.1170 92.98

1
α 0.2952 0.8167 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90
β 0.4103 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7990 3.4875 2.6885 92.80

2 2
α 0.3161 0.7400 0.4239 94.92 0.4044 0.6491 0.2447 99.66 0.3375 0.7609 0.4235 94.30
β 0.7199 2.5624 1.8426 95.68 1.1020 2.0980 0.9959 99.88 0.8484 2.6496 1.8013 93.82

3
α 0.3258 0.7695 0.4436 94.86 0.4074 0.6481 0.2407 99.86 0.3424 0.7820 0.4396 93.72
β 0.6702 2.8649 2.1947 97.20 1.1140 2.1110 0.9970 99.86 0.8740 2.9859 2.1119 93.46

6. REAL DATA EXAMPLE

We consider a data set reported by [5] representing the strength measured in GigaPAscal
(GPA) for single carbon fibres, and impregnated 1000-carbon fibre tows. Single fibres were
tested under tension at gauge lengths of 10 mm. This data was analyzed by [3] considering a
hybrid censoring scheme for the Weibull distribution. Following [3], we analyze this data set
using two-parameter Weibull distribution after subtracting 1.75. The authors recorded that
the validity of the Weibull model based on the Kolmogorov–Smirnov (K–S) test is full-filled,
namely, K–S=0.072 and p-value =0.885.

To compute the Bayes estimates, since we have no prior information about the unknown
parameters, we assume the non-informative priors by setting a= b= c= d= 0. Takingm= 40
and T = 2, we use the following schemes:

• Scheme 1: R = (039, 23);

• Scheme 2: R = (23, 039);

• Scheme 3: R = (2, 010, 23, 010, 23, 010, 33).

We have produced 60000 MCMC samples and the first 10000 of them are considered
as the burn-in sample. We have provided the histograms of the samples for each parameter
in Figures 1–2 and also some diagnostics showing the efficiency of the MCMC algorithm in
Figures 3–5. The acceptance rate after the burn-in sample is close to 0.36 and it is stable.
Therefore, it can be said that the MCMC algorithm works well.

In SPT estimates, since we don’t have any prior information about parameters, we
use the Bayes estimates as an estimated prior information. Then we substitute them in the
SPT formulae as θ̂SPT = λθ0 + (1−λ) θ̂Bayes I

(
WD <χ

2
1(λ)

)
by setting λ = 0.5 and α = 0.05.
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All the estimation methods considered in this paper are applied to this data and the
estimated parameter values are reported in Table 6. We observe that the estimated values
of α and β based on all the methods are closer to each other. Further, it can be seen that
the Bayes estimates based on the two different methods are quite closer to each other which
also show the stability of the MCMC algorithm. Moreover, asymptotic confidence intervals
of NR method and HPD intervals of MCMC method are given in Table 7. According to this
table, we can say that NR confidence intervals are mostly wider than the ones obtained via
MCMC. This situation is also coincident with the simulation results.

alpha

F
re

q
u
e
n
c
y

1.5 2.0 2.5 3.0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Figure 1: Histogram of the MCMC samples of the parameter α.
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Figure 2: Histogram of the MCMC samples of the parameter β.
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Figure 3: MCMC samples of the parameter α vs iterations.
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Figure 4: MCMC samples of the parameter β vs iterations.

0 10000 20000 30000 40000 50000 60000

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

Iterations

A
c
c
e
p
ta

n
c
e
 R

a
te

Figure 5: Acceptance rate of MCMC samples.
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Table 6: Estimation values of listed methods for Carbon Fibre data.

Scheme 1 Scheme 2 Scheme 3

α β α β α β

MLE Method

NR 2.2542 0.3980 2.3058 0.3918 2.1169 0.3884
EM 2.2641 0.3975 2.2952 0.3986 2.1128 0.3908
SEM 2.2515 0.3981 2.3046 0.3922 2.1304 0.3892

Tierney–Kadane Method

SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX (ν =−0.5) 2.2764 0.4005 2.3310 0.3963 2.1303 0.3914
LINEX (ν = 0.5) 2.2260 0.3978 2.2793 0.3924 2.0915 0.3885
GEL (κ =−0.5) 2.2393 0.3958 2.2929 0.3893 2.1012 0.3863
GEL (κ = 0.5) 2.2169 0.3890 2.2704 0.3793 2.0827 0.3792

MCMC Method

SEL 2.2496 0.3980 2.3042 0.3933 2.1028 0.3915
LINEX (ν =−0.5) 2.2735 0.3994 2.3288 0.3953 2.1232 0.3929
LINEX (ν = 0.5) 2.2261 0.3967 2.2802 0.3914 2.0828 0.3900
GEL (κ =−0.5) 2.2390 0.3947 2.2937 0.3885 2.0932 0.3878
GEL (κ = 0.5) 2.2176 0.3880 2.2725 0.3788 2.0739 0.3805

Shrinkage Method

NR 2.2524 0.3985 2.3049 0.3930 2.1137 0.3892
SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX (ν = 0.5) 2.2634 0.3998 2.3175 0.3953 2.1204 0.3906
GEL (κ = 0.5) 2.2449 0.3974 2.2985 0.3917 2.1058 0.3881

Table 7: Confident intervals and interval lengths of NR and MCMC methods
for Carbon Fibre data (U: upper, L: lower, IL: interval length).

α β
Scheme Method

L U IL L U IL

1
NR 1.6321 2.8764 1.2443 0.2539 0.5420 0.2880
MCMC 1.6668 2.8725 1.2057 0.2682 0.5540 0.2857

2
NR 1.6740 2.9376 1.2636 0.2175 0.5660 0.3485
MCMC 1.7418 2.9404 1.1986 0.2408 0.5834 0.3426

3
NR 1.5703 2.6636 1.0933 0.2417 0.5351 0.2933
MCMC 1.5744 2.6737 1.0993 0.2584 0.5558 0.2974

7. CONCLUSIVE REMARKS

In this paper, we discussed the estimation of parameters of Weibull distribution un-
der type-I progressively hybrid censoring scheme using both classical and Bayesian strategies.
Namely, MLE is obtained using NR, EM and SEM algorithms and Bayesian estimators are com-
puted via T–K approximation and MCMC method under SEL, LINEX and GEL loss functions.
We have also proposed the shrinkage preliminary test estimators based on NR and T–K with
informative priors using equal weights on the prior information and the sample information.
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A real data application and extensive Monte Carlo simulations have been considered to com-
pare the estimators in terms of MSE and Avg and also we compared the lengths of CIs and
CPs. According to the results, EM algorithm beats the other ML estimates. However, we
observed that both the T–K and MCMC methods perform quite closely. Finally, we found
out that shrinkage preliminary test estimates have satisfactory performances in the presence
of having proper prior information.
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