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1. INTRODUCTION

Recently, many distributions have been defined for modeling lifetime data. The Weibull
distribution has survival and hazard rate functions in closed-forms; see Murthy et al. [14].
Gupta and Kundu [8] introduced the exponentiated exponential (EE) distribution as an
alternative to the gamma and Weibull distributions. It has many properties similar to those
of the gamma and Weibull with closed-form survival and hazard rate functions; see Gupta
and Kundu [9]. The hazard rate functions (hrfs) of the gamma, Weibull and EE distributions
can not be upside-down bathtub and bathtub shapes but only monotonically increasing,
monotonically decreasing or constant shapes.

Taking into account these points, we define a new two-parameter alternative to the
above distributions to overcome the above-mentioned drawback. Further, it is common in
practical situations to use an appropriate regression based on an asymmetric distribution
for censored data and survival time data. Recently, various papers have been published on
that subject such as those by Lanjoni et al. [10], Cordeiro et al. [5], among others. Another
objective of this work is to propose a location-scale regression based on the logistic-exponential
distribution named the log-logistic exponential regression. It is a new regression that can be
applied to data sets with the presence of censored data.

The paper is outlined as follows. In Section 2, the new logistic-G (LG) family is intro-
duced and some of its structural properties are studied. A special model of the LG family
called the logistic-exponential (LE) distribution is presented in Section 3. Some of its math-
ematical properties are addressed in Section 4. The parameters of the LE distribution are
estimated by maximum likelihood (ML) in Section 5. Further, a Monte Carlo simulation
study is conducted to assess the performance of the ML method. An extended regression
model is proposed and studied in Section 6. In Section 7, the usefulness of the new models is
shown empirically by means of three real data sets. Finally, Section 8 offers some concluding
remarks.

2. THE NEW LG FAMILY

Alzaatreh et al. [2] defined the T-X family of distributions as follows. Let r(t) be the
probability density function (pdf) of a random variable (rv) T ∈ [a,b] for −∞≤ a < b <∞
and let W (·) : [0, 1] → R be an adequate link function. The cumulative distribution function
(cdf) of the T-X family is

F (x; ξ) =
∫ W [G(x;ξ)]

a
r(t) dt ,

where ξ is the parameter vector of G.

Based on the above definition, if the function W
[
G(x;ξ)

]
is monotonically non-increasing

with W (0) → b and W (1) → a, one can redefine the T-X family cdf as

(2.1) F (x; ξ) = 1−
∫ W [G(x;ξ)]

a
r(t) dt .
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Let T be a logistic rv with pdf r(t) = α e−αt(1+e−αt)−2 and support in R, where α > 0.
By setting W

[
G(x; ξ)

]
= log

{
− log

[
G(x; ξ)

]}
, a monotonically non-increasing function in

G(x; ξ), the cdf of the LG family follows from (2.1):

(2.2) F (x;α, ξ) = 1−
[
1 +

{
− log

[
G(x; ξ)

]}−α
]−1

, x ∈ R .

If g(x; ξ) = dG(x; ξ)/dx, the associated pdf to (2.2) is

(2.3) f(x;α, ξ) =
α g(x; ξ)

{
− log

[
G(x; ξ)

]}−α−1

G(x; ξ)
[
1 +

{
− log

[
G(x; ξ)

]}−α
]2 .

The dependence on the baseline vector ξ and α is omitted and then G(x) = G(x; ξ)
and f(x) = f(x;α, ξ). Hereafter, a rv with pdf (2.3) is denoted by X ∼ LG(α, ξ).

The hrf of X has the form

(2.4) h(x) =
α g(x)

{
− log

[
G(x)

]}−α−1

G(x)
[
1 +

{
− log

[
G(x)

]}−α
] .

The quantile function (qf) of X follows by inverting F (x) = u in (2.2):

(2.5) Q(u) = QG

(
e−v
)
,

where QG(v) = G−1(v) is the parent qf and v =
[
(1−u)/u

]1/α. Then, the solution of the
nonlinear equation X = Q(U) has density (2.3) if U has a uniform U(0, 1) distribution.

Equation (2.5) gives a simple interpretation for the LG family. If T has a logistic density
r(t) with shape parameter α, the LG family is obtained from the qf of the G distribution by
X = QG

(
e−eT )

.

Proposition 2.1. Let c = inf
{
x : G(x) > 0

}
. The asymptotics of Equations (2.2),

(2.3) and (2.4) when x → c are:

F (x) ∼
{
− log

[
G(x)

]}−α
,

f(x) ∼ α g(x)
G(x)

{
− log

[
G(x)

]}−α−1
,

h(x) ∼ α g(x)
G(x)

{
− log

[
G(x)

]}−α−1
.

Proposition 2.2. The asymptotics of Equations (2.2), (2.3) and (2.4) when x →∞
are given by

1− F (x) ∼ Ḡ(x)α , f(x) ∼ α g(x) Ḡ(x)α−1 and h(x) ∼ α g(x)
Ḡ(x)

.
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Theorem 2.1. The Shannon’s entropy of the LG family takes the form

(2.6) ηX = E

[
log
{

g
[
G−1

(
e−eT )]}]−B

(
1− 1

α
, 1 +

1
α

)
− log α + 2 ,

where B(·, ·) is the beta function.

Proof: Alzaatreh et al. [2] obtained the Shannon entropy of the T-X family, where
W
[
G(x)

]
= − log

[
1−G(x)

]
. One can use their same technique to obtain this entropy for the

LG family in (2.2) when W
[
G(x)

]
= log

{
− log

[
G(x)

]}
as

(2.7) ηX = E
[
log
{

g
[
G−1

(
e−eT )]}]− E

(
eT
)

+ µT + ηT ,

where µT and ηT are the mean and Shannon entropy of the rv T , respectively. If T has the
logistic distribution, (2.6) follows easily from (2.7).

2.1. Linear representation

We can rewrite Equation (2.2) as

(2.8) F (x) =

{
− log

[
G(x)

]}−α

1 +
{
− log

[
G(x)

]}−α .

The power series
{
− log

[
G(x)

]}−α =
∑∞

k=0 pk

[
1−G(x)

]k holds, where p0 = 1, p1 =−α/2,
p2 = (3 α2− 5 α)/24, p3 = (−α3 +5 α2− 6 α)/48, etc. The radius of convergence of this series
is infinite for 0 < G(x) < 1 and then it converges for all real numbers x with great rapidity.

Then, we can express Equation (2.8) as a ratio of two convergent power series of G(x):

F (x) =

∞∑
k=0

pk

[
1−G(x)

]k
∞∑

k=0

qk

[
1−G(x)

]k =
∞∑

k=0

bk

[
1−G(x)

]k
.

Here, q0 = 1 + p0, b0 = p0/q0 and, for k ≥ 1, qk = pk and

bk =
1
q0

(
pk −

1
q0

k∑
r=1

qr bk−r

)
.

Further, F (x) can be rewritten as

F (x) =
∞∑

k=0

bk

[
1−G(x)

]k =
∞∑

j=0

∞∑
k=j

(−1)j bk

(
k

j

)
G(x)j
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and then

(2.9) F (x) =
∞∑

j=0

dj G(x)j ,

where dj =
∑∞

k=j (−1)j bk

(
k

j

)
and G(x)j denotes the exponentiated-G (“exp-G” for short)

cdf with power parameter j.

Hence, the density of X has a linear representation in terms of exp-G densities, namely

(2.10) f(x) =
∞∑

j=0

dj+1 hj+1(x) ,

where hj+1(x) = (j +1) g(x) G(x)j is the exp-G density with power parameter j +1. Some
exp-G properties are addressed in more than 50 papers cited by Tahir and Nadarajah [19].

Clearly, some mathematical properties of the LG family can be derived from Equation
(2.10) and those exp-G properties.

2.2. Moments

Let Yj+1 be a rv having density hj+1(x). The n-th moment of X follows from (2.10) as

E(Xn) =
∞∑

j=0

dj+1 E(Y n
j+1) =

∞∑
j=0

(j +1) dj+1 τn,j ,(2.11)

where τn,j =
∫∞
−∞ xnG(x)j g(x) dx =

∫ 1
0 QG(u)nuj du. Cordeiro and Nadarajah [4] determined

the quantity τn,j for the normal, beta, gamma and Weibull distributions. Their developments
can be used to other distributions.

The n-th incomplete moment of X, say mn(y) =
∫ y
0 xnf(x) dx, is given by

mn(y) =
∞∑

j=0

dj+1

∫ y

0
xn hj+1(x) dx

=
∞∑

j=0

(j +1) dj+1

∫ G(y)

0
QG(u)n uj du .(2.12)

The main application of the first incomplete moment m1(y) refers to the deviations
from the mean and median and the Bonferroni and Lorenz curves of X. A further important
application is related to the mean residual life (MRL) of X, i.e. the function measuring the
remaining life expectancy at age t, given by ν(t) =

[
1−m1(t)

]/[
1−F (t)

]
− t. This function is

like the density and generating functions: for a distribution with a finite mean, it completely
determines the distribution. The use of the MRL is a helpful tool in model building.
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2.3. Generating function

The moment generating function (mgf) M(t) = E(etX) of X can be determined from
(2.10) as

M(t) =
∞∑

j=0

dj+1 Mj+1(t) =
∞∑
i=0

(j +1) dj+1 ρ(t, j),(2.13)

where Mj+1(t) is the mgf of Yj+1 and ρ(t, j) =
∫ 1
0 exp

[
t QG(u)

]
uj du.

Hence, M(t) can be determined from the exp-G generating function. The characte-
ristic function of X is simply M(−i t), where i =

√
−1, and it always exists, even when the

generating function does not.

3. THE LE DISTRIBUTION

Consider the baseline exponential with cdf G(x) = 1− e−λx. The cdf of the LE distri-
bution can be determined from (2.2) as

(3.1) F (x) = F (x;α, λ) = 1−
[
1 +

{
− log

(
1−e−λx

)}−α
]−1

.

Hereafter, let X ∼ LE(α, λ) have the cdf (3.1). The pdf of X is

(3.2) f(x) =
α λ
{
− log

(
1−e−λx

)}−α−1

(
eλx−1

) [
1 +

{
− log

(
1−e−λx

)}−α
]2 .

The hrf of X becomes

(3.3) h(x) =
α λ
{
− log

(
1−e−λx

)}−α−1

(
eλx−1

) [
1 +

{
− log

(
1−e−λx

)}−α
] .

Equation (3.1) has two parameters α and λ such as the gamma, log-normal, Weibull
and EE distributions. The LE model has closed-form survival and hazard functions like the
Weibull and EE distributions.

Figures 1 and 2 display some plots of the density and hrf of X for selected values
of α when λ = 1. Figure 1 shows that the LE density is a right-skewed distribution. The
plots in Figure 2 indicate that the hrf of X can have decreasing failure rate (DFR), bathtub
(BT) and decreasing-increasing-decreasing (DID) shapes. The limiting behavior of this hrf is
limx→∞ h(x) = α and limx→0 h(x) =∞, and it always approaches α when X goes to infinity.
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Figure 1: Plots of the LE density varying α with λ = 1.
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Figure 2: Plots of the LE hrf varying α for λ = 1.
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4. PROPERTIES OF LE DISTRIBUTION

In this section, we obtain some properties of the LE distribution.

4.1. Asymptotics and shapes

Proposition 4.1. The asymptotics of the cdf, pdf and hrf of X when x → 0 are:

F (x) ∼ 1−
{

1 +
[
− log(λ x)

]−α
}−1

,

f(x) ∼ α

x

[
− log(λ x)

]−α−1
{

1 +
[
− log(λ x)

]−α
}−2

,

h(x) ∼ α

x

[
− log(λ x)

]−α−1
{

1 +
[
− log(λ x)

]−α
}−1

.

Proposition 4.2. The asymptotics of the cdf, pdf and hrf of X when x →∞ are

1− F (x) ∼ e−αλx , f(x) ∼ αλ e−αλx and h(x) ∼ αλ .

4.2. Transformation

If Y has the logistic distribution with parameter α, then X =−λ−1 log
(
1−e−eY )

follows
the LE(α, λ) model.

4.3. Mode

Lemma 4.1. The modes of the LE density are the solutions of k(x) = 0, where

k(x) = −λ− λ

eλx−1

1− α+1{
− log

(
1−e−λx

)} +
2 α
{
− log

(
1−e−λx

)}−α−1

1 +
{
− log

(
1−e−λx

)}−1

 .

4.4. Quantile function

The qf of X is Q(u) =−λ−1 log(1−e−v), u ∈ (0, 1), where v =
[
(1−u)/u

]1/α.
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4.5. Shannon entropy

Theorem 4.1. The Shannon entropy of X is

ηX =
λ

λ−1
−B

(
1− 1

α
, 1+

1
α

)
− log α + 2 .(4.1)

Proof: For the LE distribution, the result holds:

E
[
log
{

g
[
G−1

(
e−eT )]}]

= E(eT ) =
λ

λ−1
.

Equation (4.1) follows by substituting the above result in (2.6).

4.6. Moments and generating function

The LE density comes from (2.10) as

f(x) =
∞∑

j=0

dj+1 (j +1) λ e−λx
(
1−e−λx

)j
.

The moments of X follow from the EE distribution and (2.11):

µ′n = E(Xn) = n!
∞∑

j,l=0

(−1)l (j +1) dj+1 A(j, l)
λj+1 (l+1)n+1

,(4.2)

where A(j, l) = j (j−1) ··· (j− l)/l! .

The skewness and kurtosis of X for some values of α by taking λ = 1 are displayed
in Figure 3. The distribution of X is right-skewed. For fixed λ, the skewness is a decreas-
ing function of α, whereas the kurtosis decreases steadily towards asymptotic limits when
α increases.

The n-th incomplete moment of X is obtained from (2.12):

mn(y) = λ−n
∞∑

j=0

(j +1) dj+1 A∗n(j +1) ,(4.3)

where

A∗n(j +1) =
∞∑

p=0

(−1)p

(p+1)r+1

(
j

p

)
γ
(
n+1, (p+1) λy

)
, n = 1, 2, ... ,

and γ(p, x) =
∫ x
0 wp−1 e−w dw (for p > 0) is the incomplete gamma function.

The mgf of X follows from (2.13) as

(4.4) M(t) = Γ
(

1− t

λ

) ∞∑
j=0

(j +1)! dj+1

Γ
(
j + 2− t

λ

) .

Equations (4.2), (4.3) and (4.4) are the main results of this section.
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Figure 3: (a) Skewness and (b) Kurtosis plots of X for λ = 1.

4.7. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, ..., Xn is a random sample from the LE distribution. Let Xi:n denote the i-th
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K
n−i∑
j=0

(−1)j

(
n− i

j

)
f(x) F (x)j+i−1 ,

where K = 1/B(i, n− i+1).

Gradshteyn and Ryzhik [7] provided a power series raised to a positive integer n:( ∞∑
i=0

ai u
i

)n

=
∞∑
i=0

bn,i u
i ,(4.5)

where the coefficients bn,i (for i = 1, 2, ...) satisfy the recurrence equation (with bn,0 = an
0 )

bn,i = (i a0)−1
i∑

m=1

[
m(n+1)− i

]
am bn,i−m .

The density function of Xi:n can be reduced to

fi:n(x) =
∞∑

r,k=0

mr,k πEE(x;λ, r+k+1) ,(4.6)

where πEE(x;λ, r+k+1) (for r, k ≥ 0) denotes the EE density function with parameters λ

and r+k+1, and

mr,k =
n! (r+1) (i−1)! dr+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j!
.
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Here, dr is defined in (2.9) and the quantities fj+i−1,k follow recursively from (for k ≥ 1)

fj+i−1,k = (k d0)−1
k∑

m=1

[
m (j + i)− k

]
dm fj+i−1,k−m ,

and fj+i−1,0 = dj+i−1
0 .

Equation (4.6) shows that the pdf of the LE order statistics is a double linear combi-
nation of EE densities. Therefore, several mathematical quantities of these order statistics
can be derived from this result.

5. ESTIMATION

The maximum likelihood estimates (MLEs) enjoy desirable properties for construct-
ing confidence intervals. We consider the estimation of the unknown parameters of the LE
distribution by the maximum likelihood method. Further works could be addressed using
different methods to estimate the LE parameters such as moments, least squares, weighted
least squares, bootstrap, Jackknife, Cramér–von-Mises, Anderson–Darling, Bayesian, among
others, and compare the estimators from these methods.

Let x1, ..., xn be n observed values from the LE distribution given in Equation (3.2)
with vector of parameters Θ = (α, λ)>. The log-likelihood ` = `(Θ) for Θ is

` = n log(αλ)−
n∑

i=1

log
(
eλxi−1

)
− (α+1)

n∑
i=1

log
{
− log

(
1−e−λxi

)}
− 2

n∑
i=1

log
[
1 +

{
− log

(
1−e−λxi

)}−α
]

.(5.1)

Equation (5.1) can be maximized either directly by using well-known platforms such as
R (optim function), SAS (PROC NLMIXED) and Ox program (MaxBFGS subroutine).

5.1. Simulation results

We examine the accuracy of the MLEs of the parameters of the LE distribution using
Monte Carlo simulations. The simulation analysis is carried out by generating 5,000 samples
for some sample sizes and parameter combinations. Table 1 gives the average biases (Biases)
of the MLEs, mean square errors (MSEs), coverage probabilities (CPs) and average widths
(AWs) of 95% confidence intervals for α and λ. These results indicate that the MLEs are
accurate. The biases, MSEs and AWs of X are small for large samples. Further, the CPs
are quite close to the 95% nominal levels. So, we conclude that the MLEs can be used for
estimating and constructing confidence intervals for the model parameters.
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Table 1: Simulation results.

Parameter n
α = 0.3, λ = 1 α = 0.8, λ = 1

Bias MSE CP AW Bias MSE CP AW

α

25 −0.006 0.003 0.92 0.210 −0.091 0.029 0.92 0.599
50 −0.004 0.002 0.93 0.149 −0.070 0.016 0.96 0.437
75 −0.004 0.001 0.94 0.121 −0.073 0.013 0.96 0.354

100 −0.002 0.001 0.95 0.106 −0.067 0.011 0.95 0.309

λ

25 0.013 0.018 0.93 0.510 −0.039 0.083 0.95 0.988
50 0.011 0.009 0.95 0.360 −0.035 0.044 0.96 0.707
75 0.006 0.006 0.96 0.292 −0.059 0.028 0.95 0.559

100 0.005 0.004 0.95 0.254 −0.053 0.021 0.95 0.488

Parameter n
α = 1.5, λ = 1 α = 3, λ = 1

Bias MSE CP AW Bias MSE CP AW

α

25 0.175 0.149 0.96 1.362 0.156 0.400 0.94 2.260
50 0.111 0.067 0.95 0.932 0.084 0.188 0.94 1.565
75 0.097 0.046 0.96 0.758 0.048 0.104 0.95 1.267

100 0.090 0.036 0.95 0.653 0.044 0.084 0.96 1.095

λ

25 0.002 0.068 0.93 0.968 0.020 0.025 0.92 0.572
50 −0.007 0.034 0.95 0.677 0.011 0.012 0.93 0.401
75 −0.013 0.021 0.96 0.551 0.007 0.007 0.96 0.326

100 −0.027 0.016 0.96 0.465 0.002 0.005 0.95 0.280

6. THE LOG-LOGISTIC EXPONENTIAL REGRESSION
WITH CENSORED DATA

If X follows the LE distribution (3.2), Y = log(X) will have the log-logistic exponential
(LLE) distribution. The density function of Y (for y ∈ R), parameterized in terms of λ = e−µ,
takes the form

f(y) =
α exp

[
(y−µ)− exp(y−µ)

] [
− log

{
1− exp

[
− exp(y−µ)

]}]−α−1

{
1− exp

[
− exp(y−µ)

]} {
1 +

[
− log

{
1− exp

[
exp(y−µ)

]}]−α
}2 ,(6.1)

where µ ∈ R is a location parameter and α is a positive shape parameter.

We refer to Equation (6.1) as the LLE distribution, say Y ∼ LLE(α, µ). Thus,

if X ∼ LE(α, λ) then Y = log(X) ∼ LLE(α, µ) .

Some shapes of the density function of Y are given in Figure 4.

The survival function of Y is

S(y) =
1

1 +
[
− log

{
1− exp

[
− exp(y−µ)

]}]−α .(6.2)
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Figure 4: The LLE density function. (a) For different values of α > 1 with µ = 0.
(b) For different values of α < 1 with µ = 0.

The density function of Z = (Y −µ) is

π(z;α) =
α exp

[
z − exp(z)

] [
− log

{
1− exp

[
− exp(z)

]}]−α−1

{
1− exp

[
− exp(z)

]}{
1 +

[
− log

{
1− exp

[
− exp(z)

]}]−α
}2 , z ∈ R .(6.3)

Based on the LLE density, we propose the location-scale linear regression

(6.4) yi = v>i β + zi , i = 1, ..., n ,

where the random error zi has density function (6.3), v>i = (vi1, ..., vip) is the vector of explana-
tory variables, β = (β1, ..., βp)> and α are unknown parameters. The parameter µi = v>i β

is the location of yi. The location parameter vector µ = (µ1, ..., µn)> is represented by
a linear model µ = Vβ, where V= (v1, ...,vn)> is a known model matrix. Equation (6.4)
is referred to as the LLE regression for censored data and opens new possibilities for fitting
several types of data. It is an extension of the log-exponential regression for censored data.

Consider a sample (y1,v1), ..., (yn,vn) of n independent observations, where each ran-
dom response is defined by yi = min

{
log(Xi), log(Di)

}
assuming that the observed lifetimes

and censoring times are independent. Let F and D be the sets of individuals for which yi is
the log-lifetime or log-censoring, respectively.

The log-likelihood function for the vector of parameters θ =
(
α, β>

)> from regression
(6.4) is

l(θ) = r log(α) +
∑
i∈F

zi −
∑
i∈F

exp(zi) − (α+1)
∑
i∈F

log
[
− log

{
1− exp

[
− exp(zi)

]}]
−
∑
i∈F

log
{

1− exp
[
− exp(zi)

]}
− 2

∑
i∈F

log

{
1 +

[
− log

{
1− exp

[
− exp(zi)

]}]−α
}

−
∑
i∈D

log

{
1 +

[
− log

{
1− exp

[
− exp(zi)

]}]−α
}

,(6.5)



646 M. Mansoor, M.H. Tahir, G.M. Cordeiro, E.M.M. Ortega and A. Alzaatreh

where zi = (yi−v>i β), and r is the number of uncensored observations (failures). The MLE θ̂

of the vector of unknown parameters can be determined by maximizing the log-likelihood (6.5)
using the subroutine NLMixed in SAS.

The NLMixed procedure of SAS has been exhaustively used to estimate the parameters
for several distributions. Further, Molenberghs et al. [13] adopted this procedure to obtain
the estimates in generalized linear models for repeated measures with normal and conjugate
random effects, whereas Vangeneugden et al. [20] used it to calculate the estimates of extended
random-effects models for repeated and overdispersed counts.

The estimated survival function for yi (ẑi = yi − v>i β̂) is

S(yi; α̂, β̂) =
1

1 +
[
− log

{
1− exp

[
− exp

(
yi−v>i β̂

)]}]−bα .(6.6)

We can adopt likelihood ratio (LR) statistics in the usual way for comparing some
special models with the LLE regression.

7. EMPIRICAL ILLUSTRATIONS WITH LIFETIME DATA

We now prove empirically that the LE distribution is a good alternative to the gamma,
log-normal, Weibull, EE, Nadarajah–Haghighi (NH) introduced by Nadarajah and Haghighi
[16], power Lindley (PL) defined by Ghitney et al. [6], exponentiated Lindley (EL) studied
by Nadarajah et al. [15], Birnbaum–Saunders (BS) and inverse Gaussian (IG) distributions.
For model comparison, we adopt the Anderson–Darling (A∗), Cramér–von Mises (W∗) and
Kolmogorov–Smirnov (K-S) measures. The cdfs of the EE, NH, PL, EL, BS and pdf of the
IG distributions (for x > 0) are, respectively,

FEE(x;α, λ) =
(
1− e−λx

)α , α, λ > 0 ,

FNH(x;α, λ) = 1− e1−(1+λx)α
, α, λ > 0 ,

FPL(x;β, θ) = 1−
(

1 + θ + θ xβ

1 + θ

)
e−θxβ

, β, θ > 0 ,

FEL(x;α, θ) =

[
1−

(
1 + θ + θ x

1 + θ

)
e−θx

]α

, α, θ > 0 ,

FBS(x;α, β) = Φ

 1
α

{(
x

β

)1/2

−
(

β

x

)1/2
} , α, β > 0 ,

F IG(x;µ, λ) =

√
λ

2π x3
exp
[
−λ(x−µ)2/(2 xµ2)

]
, µ, λ > 0 .

7.1. Application 1: Failure of electrical appliances in life test

The data set taken from Lawless [11] represents the 1000 cycles to failure for a group
of 60 electrical appliances in a life test. These data were also analyzed by Chesneau et al. [3]
and Mazucheli et al. [12]. Some descriptive statistics for these data are: n = 60, x̄ = 2.19297,
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s = 1.920062, skewness =1.2614 and kurtosis = 2.23207. The histogram displayed in Figure 5(a)
and the skewness indicates that the distribution is right-skewed. The TTT plot (Aarset [1])
is given in Figure 5(b). It is first convex and then concave, which suggests a bathtub failure
rate. So, the LE distribution could in principle be appropriate for modeling the current data.
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Figure 5: (a) Histogram. (b) TTT plot for failure data.

Table 2: Estimated quantities and goodness-of-fit measures for failure data.

Distribution Estimates A∗ W∗ K-S K-S p-value

LE(α, λ)
1.9798 0.2625 0.3258 0.0374 0.0547 0.9491

(0.2555) (0.0357)

Gamma(α, θ)
0.9307 2.3562 0.7184 0.1042 0.0897 0.6860

(0.1486) (0.4909)

Weibull(c, λ)
1.0008 0.4555 0.7154 0.1036 0.0777 0.8342

(0.1066) (0.0814)

Log-normal(µ, σ)
0.1597 1.4392 2.5241 0.4291 0.1653 0.0666

(0.1858) (0.1313)

NH(α, λ)
1.6133 0.2274 0.4574 0.0615 0.0914 0.6632

(0.8016) (0.1575)

EE(α, λ)
0.9159 0.4311 0.7103 0.1028 0.0921 0.6543

(0.1502) (0.0735)

PL(β, θ)
0.8883 0.8042 0.6467 0.0766 0.0766 0.8155

(0.0891) (0.1031)

EL(α, θ)
0.7522 0.6203 0.4615 0.0644 0.0698 0.8522

(0.1274) (0.0873)

IG(µ, λ)
2.1929 0.3113 4.6132 0.8576 0.30548 0.0000

(0.7513) (0.1104)

BS(α, β)
1.9391 0.6483 2.4479 0.4343 0.3719 0.0000

(0.1824) (0.1111)
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Table 2 provides the MLEs of the parameters and the values of A∗, W∗ and K-S statistics
and associated p-value for each fitted model. We can conclude that the LE distribution
provides the best fit and has the ability to fit right-skewed data with BT failure rate. We also
provide QQ-plots for all fitted models in Figure 6. Clearly, the new model provides the closest
fit to the data.
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Figure 6: QQ-plots for failure data.

7.2. Application 2: Lung cancer patients data

This data is also taken from a study reported by Lawless [11]. These data represents
21 advanced lung cancer patients who were randomly assigned the chemotherapy treatments
termed as standard. Survival times t, measured from the start of treatment for each patient.
The main objective was to compare the effects of two chemotherapy treatments in prolonging
survival time. The basic statistics for these data are: n = 21, x̄ = 101.7619, s = 110.8147,
skewness =1.29047 and kurtosis = 1.00438. The histogram displayed in Figure 7(a) and the
skewness indicate that the distribution is right-skewed. The TTT plot of these data shown
in Figure 7(b) indicates a decreasing failure rate.

The measures reported in Table 3 indicate that the LE model provides the most accurate
fit to the data. Further, the QQ-plots for all fitted models in Figure 8 also suggest the same
conclusion.
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Figure 7: (a) Histogram. (b) TTT plot for cancer data.

Table 3: Estimated quantities and goodness-of-fit measures for cancer data.

Distribution Estimates A∗ W∗ K-S K-S p-value

LE(α, λ)
0.8417 0.0108 0.5871 0.0872 0.1574 0.8755

(0.1641) (0.0028)

Gamma(α, θ)
1.2889 57.7242 0.6114 0.0912 0.1970 0.3887

(0.2607) (10.7798)

Weibull(c, λ)
0.8757 0.0185 0.6120 0.0922 0.1616 0.4425

(0.1462) (0.0142)

Log-normal(µ, σ)
3.9144 1.2982 0.7087 0.1130 0.1503 0.2299

(0.2832) (0.2003)

NH(α, λ)
0.6437 0.0217 0.6364 0.0975 0.15307 0.2088

(0.2855) (0.0192)

EE(α, λ)
0.8301 0.0087 0.6056 0.0905 0.1701 0.3776

(0.2288) (0.0025)

PL(β, θ)
0.6293 0.1195 0.6343 0.0965 0.1595 0.5590

(0.1253) (0.0023)

EL(α, θ)
0.4820 0.0274 0.6309 0.0928 0.3064 0.0386

(0.1274) (0.0873)

IG(µ, λ)
101.0077 32.1416 0.6999 0.1152 0.4718 0.0150
(38.6442) (9.9192)

BS(α, β)
1239.8960 1880.1910 1.0941 0.1844 0.5005 0.0000
(503.2201) (642.4328)
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Figure 8: QQ-plots for cancer data.

7.3. Application 3: Entomology data

In this application, we take a data set from a study carried out at the Department of
Entomology of the Luiz de Queiroz School of Agriculture, University of São Paulo. Such study
aims to assess the longevity of the Mediterranean fruit fly (ceratitis capitata), which is consid-
ered a pest in agriculture. Instead of using an insecticide, Silva et al. [18] conducted a study
using small portions of food containing substances extracted from a tree called Azadirachta
indica which is best known internationally by the name “neem”. The experiment was com-
pletely randomized with 11 treatments, consisting of different extracts of the neem tree at
concentrations of 39, 225, and 888 ppm, where the response variable is the lifetime of the
adult flies in days after exposure to the treatments. From the results of the experiment, these
11 treatments are allocated into two groups, namely:

Group 1: Control 1 (deionized water); Control 2 (acetone −5%); aqueous extract of
seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract
of leaves (MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract
of branches (DMB) (39 ppm) 425.

Group 2: MEL (39 ppm); DMB (225 ppm); and DMB (888 ppm).
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Lanjoni et al. [10] analyzed these data by fitting the log-Burr XII geometric type I
(LBXIIGI) and log-Burr XII geometric type II (LBXIIGII) models. Recently, these data were
also analyzed by Cordeiro et al. [5] and Zubair et al. [21] using the generalized Weibull-logistic
regression and log-power-Cauchy negative-binomial regressions, respectively. Following the
same procedure from these surveys, we compare the proposed model with these regressions
in this application.

The response variable in the experiment is the lifetime of the adult lies in days after
exposure to the treatments. The total sample size is n = 72. So, the variables used in this
study are:

• yi : log-lifetime of ceratitis capitata adults in days;

• δi : censoring indicator;

• vi1 : sex of the larvae;

• vi2 : group (0 = group 1, 1 = group 2), i = 1, ..., 74.

Lanjoni et al. [10] introduced two lifetime distributions by compounding the Burr XII
and geometric distributions, and also defined two extended regressions based on the loga-
rithms of these distributions. Let F and D be the sets of individuals for which yi is the
log-lifetime or log-censoring, respectively. We adopt the classical log-Weibull (LW) regression
as an example to illustrate that the LE regression can provides better fits. In this case, the
total log-likelihood function for the parameters θ =

(
σ,β>

)> is

l(θ) = r∗ log
(

1
σ

)
+
∑
i∈F

zi −
∑
i∈F

exp(zi) −
∑
i∈D

exp(zi) ,

where zi =
(
yi − v>i β

)/
σ .

Next, we present results by fitting the regression (for i = 1, ..., 172)

yi = β0 + β1vi1 + β2 v21 + σ zi ,

where yi can follow the LLE, LBXIIGII and LBXIIGI distributions. For some fitted regres-
sions, Table 4 lists the MLEs (and the corresponding standard errors in parentheses) of the
parameters and the values of the following statistics: Akaike information criterion (AIC),
Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion (CAIC).
The computations are performed using the NLMixed subroutine in SAS. These results indicate
that the LLE regression model with censored data could be chosen as the best regression. So,
this regression is really competitive to the log-Weibull regression.

The MLEs of the parameters and their standard errors are listed in Table 4. Note that
the covariate (v2) is significant at the 1% level, whereas the other covariate is not significant
at the usual significance level.
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Table 4: Estimated quantities, p-values in [ · ] and goodness-of-fit measures
from some regressions fitted to entomology data.

Regression α β0 β1 β2 AIC CAIC BIC

3.9444 3.8567 0.0581 −0.3474 334.5 334.7 347.1
LLE (0.2774) (0.0607) (0.0791) (0.0882)

[<0.0001] [0.4636] [<0.0001]

3.1724 0.1369 −0.4430 423.3 423.5 432.8
LE (0.1198) (0.1569) (0.1766)

[<0.0001] [0.3843] [0.0130]

σ β0 β1 β2

0.5151 3.2435 0.1358 −0.4158 344.3 344.6 356.9
LW (0.03256) (0.06309) (0.08111) (0.09124)

[<0.0001] [0.0960] [<0.0001]

σ k p β0 β1 β2

0.4877 9.3993 1E-8 4.3085 0.1104 −0.4014 348.1 348.6 367.0
LBXIIGI (0.0596) (8.5578) (1E-9) (1.1316) (0.0962) (0.0978)

[0.0002] [0.2525] [<0.0001]

0.9107 6.0541 0.9798 3.1649 0.0354 −0.3252 335.7 336.2 354.6
LBXIIGII (0.3379) (4.8403) (0.0247) (0.8847) (0.0803) (0.0876)

[0.0005] [0.6605] [0.0003]

0.4877 9.4002 0 4.3085 0.1104 −0.4014 346.1 346.4 361.8
LBXII (0.0597) (8.6141) (1.1349) (0.0963) (0.0978)

[0.0002] [0.2528] [<0.001]

Finally, we turn to a simplified model retaining only v2 as an explanatory variable

yi = β0 + β2 vi2 + σ zi .

The MLEs for the LLE regression model fitted to the data are given in Table 5. In order
to assess if the model is appropriate, Figure 9(a) displays the plots of the empirical survival
function and the estimated survival function from the fitted LLE regression. The plots of
its hrfs in Figure 9(b) reveal decreasing shapes. There is a significant difference between the
levels of the covariable v2. In fact, this regression provides a good fit to these data.

Table 5: MLEs of the parameters from the fitted LLE regression model
to the entomology data.

Model α β0 β2

3.9489 3.8845 −0.3486
LLE (0.2777) (0.0475) (0.0878)

[<0.001] [0.0001]
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Figure 9: Entomology data: (a) Estimated LLE survival function and empirical survival.
(b) Estimated hrf.

8. CONCLUDING REMARKS

The Weibull, gamma and exponentiated-exponential distributions have two parameters
and they are used quite often in survival analysis. These distributions can have increasing or
unimodalprobabilitydensity functions, andmonotonehazard functions. However, noneof which
can have non-monotone hazard rate function shape. In many practical situations, one might
observe non-monotone hazard rate functions, and clearly in those cases, none of these distri-
bution functions can be used. The proposed LE distribution can have decreasing or unimodal
density function shapes. It is also interesting to note that the hazard rate function possesses
three different shapes: decreasing failure rate, bathtub and decreasing-increasing-decreasing.

Moreover, the LE distribution has only two parameters which makes estimating the
parameters not very difficult. It may be mentioned that not too many two-parameter distri-
butions can have non-monotone hazard function shape. Therefore, the proposed distribution
will be quite useful. Furthermore, its survival and hazard rate functions have closed-form
representations. Accordingly, this model can readily be utilized to analyze censored data
sets. We also propose a new regression model that can be useful to model real data sets.
The importance of the new models is proved empirically by means of three real data sets.
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