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1. INTRODUCTION

Correct identification of a probability distribution is essential in many areas of para-
metric statistics, from the modelling of probability distributions to the regression modelling
(assuming a dependent variable distribution), multivariate statistics, extreme-value analy-
sis or time series analysis. The assumption about distribution form is crucial for parametric
statistics, the correct or at least suitable choice of distribution allows a wide range of paramet-
ric procedures to be applied; in case of inappropriate choice, the results might be misleading
or even incorrect. To test such the assumption, a large spectrum of statistical goodness-of-fit
tests is available. For the general information on the sample, empirical distribution (histogram
of data or nonparametric kernel density estimate) can be plotted. Sample characteristics of
the location, variability, shape and concentration also can be evaluated. The typical sample
characteristics are (raw, centred or standardised) product moments: mean, sample variance,
coefficient of skewness and coefficient of kurtosis. Theoretical and sample moments are used
not only to describe the distribution but also in the choice of suitable distribution to model
the data or in inferential statistics. For example, if the normal distribution of data is assumed,
the absolute value of the sample coefficient of skewness is supposed to be small, and the co-
efficient of kurtosis close to three. A frequently used test of normality Jarque–Bera compares
theoretical and sample coefficients of skewness and kurtosis. The moment matching method
can be applied to estimate parameters, the equations of theoretical and sample moments are
solved explicitly or numerically with respect to the unknown parameters.

In the definition of the coefficient of skewness, a finite third raw moment is needed
and for a finite value of the coefficient of kurtosis, the finite fourth raw moment is required.
Moreover, the sample coefficients of skewness and kurtosis are strongly dependent on the
sample size and the presence of outliers in the data. With higher sample product moments,
the impact of outliers becomes more substantial. If the sample is drawn from long- or heavy-
tailed distributions, we expect multiple outliers in the data and the use of more robust
methods is essential.

We analyse data of this type in many fields of applications. For this reason, more robust
characteristics and its estimates can be preferred to describe the distribution. There are
various robust characteristics whose estimates are based on sample quantiles, which are more
robust than sample product moments. Robust quantile characteristics of the distribution
shape were presented, e.g., by [5], [10], [17] and [9], those of tail heaviness being dealt with
by [7], [19] and many others. Hosking in [11] defined L-moments as a linear combination of
order statistics, a robust alternative to product moments (robust moment characteristics).
According to [11], [12], [14], [2] and other authors, estimates of L-moments are more reliable
than those of product moments. TL-moments, defined as a trimmed linear combination of
order statistics, are even more robust than L-moments. They were applied by [8] to describe
the probability distribution.

The present article is focused on the estimation of the distribution shape and tail heav-
iness using robust moments and quantile characteristics. We treat L- and TL-moments in
comparison with product moments and robust quantile characteristics. In this paper, we con-
sider random samples from both symmetric (Student, normal, and Laplace) and asymmetric
(gamma and beta) probability distributions. The latter ones being flexible, a different com-
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bination of their parameters allows us to obtain different shapes of the distribution, including
asymmetric distributions. The aim of the article is to compare estimated characteristics (bias
and both standard and mean squared errors) of the shape and tail heaviness characteristics of
distributions depending on the distribution and size of the random sample, employing Monte
Carlo simulations. The calculation was performed in the program R ([20]), using predefined
and author-written functions (cf. [22] and [2]). Along with formulas and a short description
of the considered robust moment and quantile characteristics, the following methodology sec-
tion also contains the algorithm of the simulation study. Results and inferences drawn from
Monte Carlo simulation are summarised in the next part of the paper, the concluding section
assessing the outcomes of the simulation.

2. METHODS

2.1. L-moments

Let X be a continuous random variable with a cumulative distribution function F (x),
quantile function Q(x) and let X1:n, X2:n, ..., Xn:n be an ordered sample of the size n drawn
from the distribution of the random variable X. L-moments are defined in [11] as a linear
combination of order statistics, the r-th L-moment λr being as follows:

(2.1) λr =
1
r

r−1∑
k=0

(−1)k

(
r−1

k

)
EXr−k:r , r = 1, 2, ... ,

where EXr−k:r is an expected value of the (r−k)-th order statistics from a sample of size r.
L-moments, a robust alternative to product moments, are used to describe random variables
similarly as the classical product moments. The most used L-moments are those of order
r = 1, 2, 3, and 4. The λ1 is equal to the expected value of the variable X, describing its
level, λ2 indicating variability, λ3 shape, and λ4 tail heaviness of the distribution. Hosking and
Wallis in [14] mentioned a dimensionless version of L-moments which is independent of the
distribution scale and more useful than the unbounded version. Dimensionless L-moments τ

are called L-moment ratios. They are defined as

(2.2) τr = λr/λ2 , r = 3, 4, ... ,

where τ3 (L-skewness) and τ4 (L-kurtosis) are most widely used in selection of probability
distributions. Common properties of L-moments and L-moment ratios are as follows:

• They are defined for all distributions with finite expected values (finite values of
higher moments are not required);

• There are not two distributions with the same values of all L-moments;

• −1 < τr < 1 for r = 3, 4, ...;

• 1
4

(3 τ2
3 − 1) ≤ τ4 < 1;

• λ3 = τ3 = 0 for symmetric distributions.
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Estimates of λr and τr are based on an ordered random sample X1:n, X2:n, ..., Xn:n

drawn from the probability distribution of X. Estimates can be calculated using the following
formulas:

λ̂r =
1
r

(
n

r

)−1 n∑
i=1

r−1∑
j=0

(−1)j

(
r − 1

j

)(
i− 1

r − 1− j

)(
n− i

j

)
Xi:n ,(2.3)

τ̂r = λ̂r/λ̂2 , r = 3, 4, ... .(2.4)

Statistical characteristics of estimates are available, e.g. in [2] or [11]).

The R package Lmoments [18] provides functions for evaluation of both symmetric and
asymmetric sample moments. R packages lmomco [3] and Lmoments [16] allow a wide range
of calculations based on L-moments.

2.2. TL-moments

Elamir and Seheult in [8] introduced TL-moments (trimmed L-moments) as a robust
version of L-moments defined by the formula

(2.5) λ(t)
r =

1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
EXr+t−k:r+2t , r = 1, 2, ... ,

where t represents the number of trimmed expected values from both sides of the sample.
Zero weight is assigned to expected (mean) values, which are thus considered as outliers.
Trimming can be either symmetric or asymmetric, the choice of the respective approach
depends on the nature of the data. In the asymmetric form, the ordered sample is trimmed
by t1 values from left and t2 values from right. The EXr+t−k:r+2t in (2.5) is then changed to
EXr+t1−k:r+t1+t2 . The TL-moment is then denoted by λ

(t1,t2)
r .

In this article, we focus only on symmetric trimming with t = 1; this choice is usually
applied in the literature (also in [8]) as well as in practical applications. Trimming of one
value is sufficient to overcome the problem of finite values of the moments for example for
Cauchy distribution and enables the existence of all TL-moments to be finite ([8]), as only
the expected values of minimum and maximum are not defined and their trimming allows
the calculation of all TL-moments. The existence of TL-moments depends on the existence
of expected values of ordered statistics and sometimes, more trimmed values should be used.
For the Pareto distribution, from the formula (6) in [1], the number of necessary trimmed
values depends on the shape parameter. The smaller the parameter, the higher the number of
trimmed values. TL-moments can be used for the description of the distribution of a random
variable. λ

(t)
1 is equal to the expected value of the random variable (if it exists), describing

its level; λ
(t)
2 quantifying variability, λ

(t)
3 shape and λ

(t)
4 tail heaviness of the distribution.

The TL-moment ratios for the shape of distribution τ
(t)
3 (TL-skewness) and tail heavi-

ness τ
(t)
4 (TL-kurtosis) are:

(2.6) τ (t)
r = λ(t)

r /λ
(t)
2 , r = 3, 4, ... .
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Both characteristics are location and scale invariant ([8]). Main properties of TL-moments
and TL-moment ratios are as follows:

• We obtain the L-moments for t = 0 (or t1 = t2 = 0);

• For r ≥ 3 applies (see [13] for the more general equation for the trimming (t1, t2)
instead of symmetric (t, t) denoted by (t)):∣∣τ (t)

r

∣∣ ≤ 2(t + 1)! (r + 2t)!
r(t + r − 1)! (2 + 2t)!

;(2.7)

•
∣∣τ (1)

3

∣∣ ≤ 10
9

and
∣∣τ (1)

4

∣∣ ≤ 5
4

(substituting t = 1 to (2.7));

• τ
(t)
3 = 0 for symmetric distributions.

Sample counterparts of (symmetric) TL-moments λ
(t)
r and τ

(t)
r are based on an ordered ran-

dom sample of size n:

λ̂(t)
r =

1
r

n−t∑
i=t+1

r−1∑
k=0

(−1)k

(
r − 1

k

)(
i− 1

r + t− k − 1

)(
n− i

t + k

)
(

n

t + 2t

) xi:n ,(2.8)

τ̂ (t)
r = λ̂(t)

r /λ̂
(t)
2 , r = 3, 4, ... .(2.9)

The R packages TLmoments [18] and lmomco [3] provides a wide range of useful functions for
application of both symmetric and asymmetric sample TL-moments. In our analysis, we
applied the former one.

2.3. Quantile characteristics of the distributional shape

In classical parametric statistics, the product moment coefficient of skewness is used as
a third standardised raw moment

(2.10) α3 = E(X − EX)3
/

(VarX)3/2,

in the sample version (Xi, i = 1, 2, ..., n) based on the sample moments

(2.11) a3 =
n∑

i=1

(
Xi − X̄

)3
/[

n∑
i=1

(
Xi − X̄

)2

]2/3

,

where X̄ is a mean of the sample.

In the paper, we use more robust characteristics of shape based on robust moments
as L-skewness (2.2) and TL-skewness (2.6) and quantiles. The first characteristic of the
distribution shape mentioned above is the medcouple (referred to as MCF ); see [6]. The
sample version is defined as

(2.12) MCF = mediani,j; xi < xj h(xi, xj) ,
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where h is a kernel function measuring the difference in the distances of xi and xj to the
sample median x̃. This function is given by

(2.13) h(xi, xj) =
[
(xj − x̃)− (x̃− xi)

]/
(xj − xi) ,

for xi 6= xj . If xi = x̃, the value of h(x̃, xj) = 1 for xj > Q(0.5); xj = x̃ gives h(xi, x̃) = −1
for xi < x̃. If xj is infinitely larger than x̃, h is closed to 1. On the other hand, if xi is
infinitely smaller than x̃, h approaches −1. Thus, the medcouple is not influenced by the
presence of extreme values in a random sample; there are no larger/smaller values than ±1.
The medcouple is defined for all continuous distribution functions, existence of the expected
value of any distribution moment is not needed. The functional form of the characteristics is
given in [6].

Bowley in [5] introduced the characteristic of shape based solely on distribution quar-
tiles. It is called the Bowley coefficient of skewness (BC) and is defined as:

(2.14) BC =
{[

Q(0.75)−Q(0.5)
]
−

[
Q(0.5)−Q(0.25)

]}/[
Q(0.75)−Q(0.25)

]
.

Some authors use the term “quartile skewness” instead of the Bowley coefficient.

Hinkley [10] introduced the generalisation of Bowley measure:

(2.15) ν1(p) =
{[

Q(1− p)−Q(0.5)
]
−

[
Q(0.5)−Q(p)

]}/[
Q(1− p)−Q(p)

]
,

for p ∈ (0, 1). It is obvious that the Bowley coefficient is a special case of (2.15) for p = 0.25.

If we use (in (2.15)) the first and sevenths octiles Q(0.125) and Q(0.875), we obtain the
octile skewness (OC):

(2.16) OC =
{[

Q(0.875)−Q(0.5)
]
−

[
Q(0.5)−Q(0.125)

]}/[
Q(0.875)−Q(0.125)

]
.

Groeneveld and Meeden in [9] proposed the coefficient of skewness (GMC) given by

(2.17) GMC =
[
EX −Q(0.5)

]/
E

∣∣X −Q(0.5)
∣∣ .

The last robust quantile characteristic considered is the Pearson coefficient (PC) in-
troduced by Kendall and Stuart in [17]. Its formula is based on (2.17), where instead of
the expected value of the absolute deviation between xi and the median, they employ the
standard deviation

√
VarX of a distribution:

(2.18) PC =
[
EX −Q(0.5)

]/√
VarX .

GMC is defined only for distributions with a finite value E|X|, whereas PC is defined for
that with a finite variance.

All robust quantile and moment characteristics of the distribution shape (2.14)–(2.18)
are defined on a range of values [−1, 1] (except TL-moments,

∣∣τ (1)
3

∣∣ ≤ 1.11). For symmetric
distributions, they are equal to zero. This allows us to compare properties of their estimates
(bias and MSE) using an absolute value basis. The same applies for asymmetric distributions
as they are functionally bounded (despite particular characteristics acquiring different values).
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The robust characteristics considered are applied only to the distributions for which they are
defined (this is not the case, e.g., of Student distribution with 1 degree of freedom [the Cauchy
distribution] and all characteristics based on classical moments or L-moments).

Sample counterparts of characteristics (2.14)–(2.18) are obtained by substituting the
mean for the EX, sample standard error or more robust median absolute deviation for the
standard deviation. There is not a generally accepted method for evaluation of sample quan-
tiles. In the present paper, we use linear interpolation of the inverse of the empirical cumu-
lative distribution function in the form

(2.19) Q̂(p) = xbhc:n +
(
h− bhc

) (
xbhc+1:n − xbhc:n

)
,

where h = (n− 1)p + 1 and bhc is the floor function.

2.4. Quantile characteristics of the tail heaviness

The moment coefficient of the kurtosis is defined as the fourth standardised raw moment

(2.20) α4 = E(X − EX)4/ (VarX)2 ,

in the sample version based on the sample moments

(2.21) a4 =
n∑

i=1

(
Xi − X̄

)4
/ [

n∑
i=1

(
Xi − X̄

)2

]2

.

This sample formula is a biased estimator to α4 (as well as for α3 given in (2.11)) even for a
sample from the normal distribution ([15]).

The first robust characteristics of tail heaviness based on octiles is the Moors coefficient
of kurtosis (MKC); see [19]. The coefficient is defined as

(2.22) MKC =
{[

Q(0.875)−Q(0.625)
]
+

[
Q(0.375)−Q(0.125)

]}/[
Q(0.625)−Q(0.125)

]
.

MKC exists for any continuous distribution taking all positive values.

Crown and Siddiqui in [7] introduced their coefficient defined as

(2.23) CKC =
[
Q(1− α)−Q(α)

]/ [
Q(1− β)−Q(β)

]
,

for α, β ∈ (0, 0.5). The authors recommend using α = 0.025 and β = 0.25 for the normal
distribution. In our study, we follow Crown and Siddiqui recommendation regarding the
considered probability distributions because many of them are symmetric. The suitability of
this arrangement for asymmetric distributions is also open to analysis.

The last characteristic of tail heaviness considered, defined by Schmid and Trede in [21]
as a special case of (2.23), selects α = 0.125 and β = 0.25:

(2.24) PKC =
[
Q(0.875)−Q(0.125)

]/ [
Q(0.75)−Q(0.25)

]
.
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All the above robust quantile characteristics of tail heaviness exist for any distribution, no
finite moment values being necessary. The range of values of these characteristics is [0,∞].
A comparison of the characteristics of tail heaviness estimates based on their absolute values
(means and standard deviations) is not appropriate because of various possible ranges of val-
ues; modification of characteristics (expected value and variance) is thus applied (see (2.25)).

2.5. The algorithm of simulation and methods of comparison

The simulation study employs the Monte Carlo methodology, which assumes knowledge
of the theoretical distribution and its parameters, random samples being drawn from the dis-
tribution and values of all characteristics of interest being computed. Let us consider samples
ranging from 10 to 500 observations, because the greatest differences in estimate character-
istics are expected to concentrate in small-sized samples. The samples comprising 100 and
more observations are used to analyse the convergence of estimation bias and variability.
In the simulation study, we have chosen three symmetric and two asymmetric distributions:

• Student distribution (t(ν), degrees of freedom ν = 1, 2, 3);

• Standard normal distribution (N(0; 1));

• Laplace distribution (La(µ; b), µ = 0, the location parameter, b = 10 the scale of
the distribution);

• Gamma distribution (Gamma(θ; k), θ = 2 the shape parameter, k = 2 the scale
parameter);

• Beta distribution (Beta(θ1; θ2), θ1 = 2, θ2 = 5 the shape parameters).

In Table 1, all characteristics introduced in Sections 2.1–2.4 for selected distributions
are given.

The Student distribution is a symmetric continuous probability distribution, bell-shaped
(similar to the normal distribution) and heavy-tailed (unlike the normal distribution). With
an increasing number of degrees of freedom, the shape of the Student distribution converges
to that of the normal distribution. We focus on how the above affects the properties of esti-
mates. Gamma and beta distributions are also well-established distribution families. Their
shape can be modified by setting different values of parameters. We choose combinations of
parameter values to obtain a positively skewed shape.

The Laplace distribution is also called the double exponential distribution. It is sym-
metrically shaped like Student and normal distributions. The distinction between probability
density functions of Laplace and normal distributions lies in that the latter is expressed as the
squared difference, while the former as the absolute difference from their means, respectively.
The Laplace distribution as a result has heavier tails than the normal distribution. Some of
the chosen robust quantile and moment characteristics exist only if the distribution has one or
more defined raw moments (Table 1). L-moments, for example, exist only for the distribution
with a finite expected value, which does not apply to the Student distribution with one degree
of freedom (Cauchy distribution). The existence of the moment characteristics of skewness
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(coefficient of skewness) assumes finite 3rd raw moment, for the coefficient of kurtosis, we
need finite 4-th raw moment. Estimate calculations are done only if the characteristics are
defined for a particular distribution.

Table 1: Basic characteristics of probability distributions selected in the simulation.
We use “—” for non-existence.

Characteristic t(1) t(3) N(0; 1) La(0; 10) Gamma(2; 2) Beta(2; 5)

EX — 0 0 0 4 217√
Var X — 1 14.142 2.828 0.126

α3 — 0 0 0 1.414 0.596
α4 — — 3 3 0.142 2.88

τ3 — 0 0 0 0.235 0.123

τ
(1)
3 0 0 0 0 0.150 0.080

MCF 0 0 0 0 0.225 0.128
BC 0 0 0 0 0.172 0.095
OC 0 0 0 0 0.287 0.160
GMC 0 0 0 0 0.306 0.165
PCMAD 0 0 0 0 0.227 0.133
PCSD — 0 0 0 0.227 0.133

τ4 — 0.035 0.123 0.035 0.071 0.090
τ1
4 0.077 0.041 0.063 0.041 1.731 0.048

Pearson 8.630 0.547 1.706 0.547 1.262 1.659
MKC 8.663 0.590 1.233 0.590 3.078 1.181
CKC 24,628,907 5.325 2.906 5.325 3.078 2.619

Some 50,000 times random samples were generated from the considered distributions
for sample sizes 10–500, point estimates and standard errors of analysed characteristics cal-
culated as the mean and the sample standard deviation of 50,000 generated values. Bias in
characteristics of shape is shown by the difference between their theoretical value and esti-
mated expected value. We compare the variability of characteristics using estimates of their
standard errors calculated as sample standard deviations and mean squared error MSE.

Because of the wide range of tail heaviness values, which acquire different ones for given
distributions, a comparison using bias and standard error does not induce relevant inferences.
Therefore, we use modified bias and modified MSE characteristics, which are the same as
classical ones divided by the (squared) theoretical value of a robust characteristic. All the
characteristics are put on the same level, the coefficient of variation being based on such an
approach. Finally, we obtain the ratio of the value of bias and MSE to the theoretical value
of the robust characteristic. The modified bias and modified MSE are calculated as (θ is a
parameter, θ̂ is its estimate)

(2.25) E(θ̂ − θ)/θ , Var(θ̂)/θ2.

This allows for a statistical comparison between the properties of different estimates.
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3. RESULTS

3.1. Characteristics of skewness

The bias in estimated characteristics is low for symmetric distributions (Student, normal
and Laplace). Figure1 shows its development depending on sample sizes. For the Student distri-
bution with one degree of freedom (Cauchy distribution), the characteristics τ3, GMC, and PC

are undefined (EX does not exist) and they are not included in the figure (see also Figure 2).
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Figure 1: Estimated bias in distribution shape characteristics
((2.4), (2.9), (2.12), (2.14), (2.16)–(2.18)) for n = 10–500.

Bias curves are similar for all estimates, differing only in their levels, converging to zero
(represented by the dashed line) with an increasing number of observations. Estimation bias
is volatile in small samples (up to 100 observations), which show no constant development.
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The figure indicates the highest bias in BC for each symmetric distribution, τ3 and τ
(1)
3 being

among the estimates with the lowest bias value. In absolute terms, however, it is obvious that
estimation bias is generally small. Values for Student distribution are shown in Table 2. The
lowest values (the best performance for the particular distribution and degrees of freedom)
are highlighted in bold letters, the highest in italics (the worst performance in the block in the
table). The TL-skewness is superior in bias from two degrees of freedom and performs well.
For the Cauchy distribution, the L-skewness is undefined (this characteristic is equivalent to
TL-skewness for t = 0 (no trimmed values)), and the TL-skewness is a first possible defined
value concerning the number of trimmed values.

Table 2: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300),
characteristics of shape ((2.4), (2.9), (2.12), (2.14)–(2.18)). Estimated stan-
dard errors of estimates.

DF Char. 10 20 30 50 70 90 100 150 200 300

τ
(1)
3 0.328 0.264 0.235 0.201 0.178 0.162 0.155 0.132 0.117 0.097

1
MCF 0.335 0.276 0.236 0.190 0.163 0.145 0.1382 0.114 0.099 0.081
BC 0.393 0.307 0.261 0.210 0.180 0.159 0.152 0.126 0.109 0.090
OC 0.439 0.357 0.306 0.253 0.218 0.196 0.186 0.155 0.136 0.111

τ3 0.304 0.255 0.231 0.202 0.18 0.177 0.165 0.146 0.133 0.115

τ
(1)
3 0.236 0.150 0.124 0.093 0.078 0.069 0.066 0.054 0.046 0.038

2
MCF 0.285 0.235 0.201 0.162 0.139 0.123 0.118 0.096 0.084 0.069
BC 0.358 0.278 0.237 0.189 0.161 0.143 0.135 0.111 0.097 0.079
OC 0.350 0.263 0.226 0.179 0.151 0.136 0.128 0.105 0.092 0.075
GMC 0.346 0.282 0.249 0.209 0.186 0.170 0.164 0.142 0.127 0.106

τ3 0.245 0.187 0.161 0.132 0.115 0.104 0.099 0.083 0.073 0.061

τ
(1)
3 0.215 0.128 0.099 0.075 0.062 0.055 0.052 0.042 0.036 0.029

MCF 0.274 0.226 0.194 0.156 0.134 0.119 0.113 0.093 0.081 0.065

3
BC 0.353 0.274 0.233 0.186 0.159 0.141 0.134 0.112 0.095 0.078
OC 0.330 0.243 0.203 0.163 0.138 0.123 0.116 0.095 0.083 0.068
GMC 0.301 0.232 0.197 0.158 0.136 0.121 0.115 0.097 0.083 0.068
PCMAD 0.443 0.280 0.224 0.174 0.148 0.129 0.122 0.099 0.085 0.069
PCSD 0.203 0.156 0.131 0.103 5 0.088 0.078 0.075 0.061 0.053 0.043

For the asymmetric distributions (last row in Figure 1) the τ3 and τ
(1)
3 exhibit the lowest

absolute and relative values of bias for small samples (relative bias is equal to the estimation
bias value divided by the actual value of the characteristic). An extremely high bias even for
the samples with several hundred observations occurs in PCMAD , where MAD is used as a
standard deviation estimate in [19], its convergence being very slow. Both for small and large
samples, bias is low in absolute terms and estimate convergences are relatively fast (except
PC estimates).

Distribution shape estimates vary mostly in variability. Using the standard error of
estimation, Figure 2 illustrates standard errors of estimates. For the Student distribution
with one degree of freedom the characteristics τ3, GMC, and PC are undefined (see also
Figure 1), for this reason, no lines are included. For the normal and Laplace distributions
with relatively low kurtosis and absence of outliers, the standard errors are very close for
both characteristics based on L-moments. Let us first summarise the results for the Student
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distribution (also see Table 3). The τ
(1)
3 and MCF show lower variability (especially in the

case of small samples) than other estimates with one degree of freedom. The shape of the
Student distribution can be estimated using L-moments and Pearson and GM coefficients
only if the number of degrees of freedom is higher than one. The τ3 has lower variability
than the quantile-based estimates but higher than τ

(1)
3 and MCF . For small samples, the

study outcomes confirm that the variability of τ3 and τ
(1)
3 decreases more sharply with an

increasing number of degrees of freedom than the variability of other estimates. The PCSD

and τ
(1)
3 are the estimates with the lowest variability for the Student distribution with three

degrees of freedom, other estimates showing much higher variability.
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Figure 2: Standard errors of estimates of distribution shape characteristics
((2.4), (2.9), (2.12), (2.14), (2.16)–(2.18)) for n = 10–500.

The order of estimates showing the lowest variability for the sample containing ten
observations drawn from the standard normal distribution is τ3, τ

(1)
3 and PCSD. Other

estimates show much higher variability. The difference in variability between τ3 and τ
(1)
3

decreases with an increasing number of observations. The variability of PCSD declines slowly
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compared to τ3 and τ
(1)
3 . Convergence in the variability of other estimates is not fast enough

to reach the value of τ3 and τ
(1)
3 . The last considered symmetric distribution is the Laplace

distribution. As is the case with the normal distribution, τ3 and τ
(1)
3 and PCSD are estimates

with the lowest variability. Also, the speed of their variability convergence seems similar. The
variability of other estimates is significantly higher, their convergence not being fast enough
to achieve τ3 and τ

(1)
3 and PCSD variability. The order of estimates arranged according to

their variability is the same for gamma and beta distributions. The conclusions drawn are
analogous to those concerning the normal distribution. The τ3 and τ

(1)
3 and PCSD show the

lowest variability, that of PCSD decreases more slowly compared to τ3 and τ
(1)
3 . Convergence

in the variability of other estimates is not as fast τ3 and τ
(1)
3 .

Table 3: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300),
modified bias of estimates (defined in (2.25)) of characteristics of kurtosis
((2.4), (2.9), (2.22)–(2.24)).

DF Sample 10 20 30 50 70 90 100 150 200 300

τ
(1)
4 −0.250 −0.193 −0.156 −0.115 −0.074 −0.054 −0.048 −0.042 −0.038 −0.030

1
PKC 0.095 0.110 0.065 0.045 0.019 0.016 0.011 0.010 0.009 0.008
MKC 0.106 0.129 0.075 0.051 0.020 0.017 0.012 0.011 0.010 0.008
CKC 3.028 3.746 3.419 2.768 0.111 0.119 0.026 0.042 0.054 0.021

τ4 −0.224 −0.183 −0.157 −0.125 −0.093 −0.075 −0.069 −0.063 −0.059 −0.050

τ
(1)
4 −0.010 −0.022 −0.022 −0.017 −0.012 −0.009 −0.008 −0.007 −0.006 −0.005

2 PKC 0.024 0.026 0.018 0.013 0.004 0.004 0.002 0.002 0.002 0.002
MKC 0.025 0.030 0.020 0.013 0.002 0.003 0.001 0.001 0.002 0.002
CKC −0.118 −0.037 0.014 0.021 −0.047 −0.026 −0.041 −0.029 −0.021 −0.025

τ4 −0.127 −0.096 −0.077 −0.058 −0.040 −0.031 −0.028 −0.025 −0.023 −0.018

τ
(1)
4 0.075 0.031 0.018 0.009 0.003 0.000 0.000 −0.001 −0.001 0.000

3 PKC 0.018 0.018 0.014 0.010 0.004 0.004 0.002 0.002 0.002 0.002
MKC 0.019 0.021 0.016 0.010 0.003 0.003 0.001 0.001 0.001 0.001
CKC −0.138 −0.087 −0.051 −0.036 −0.049 −0.034 −0.041 −0.032 −0.026 −0.025

3.2. Characteristics of kurtosis

Given the inconsistent values of tail heaviness characteristics of considered distributions
is shown in Figure 3 and for Student distribution in Table 3. For the Cauchy distribution t(1),
again the characteristics based on L-moments is undefined. The most biased estimate for the
Student distribution with one degree of freedom is CKC, converging faster than the other
considered estimates. It belongs to high-biased symmetric distribution estimates comparable
with those for samples with 100 and more observations. The τ

(1)
4 has a high value of modified

bias for small samples drawn from normal and Laplace distributions. The τ4, MKC, and PKC,
on the other hand, are the least-biased estimates for all symmetric distributions (both small and
large samples) considered.Their bias modification values are similar. Table3 contains the values
of the modified bias of estimates for the Student distribution. MKC and PKC are estimates
with the lowest modified bias values for all degrees of freedom considered, including small sam-
ples. The modified bias of τ

(1)
4 is close to MKC and PKC for two and more degrees of freedom.
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The τ4 and CKC exhibit the highest modified bias for this distribution. The τ
(1)
4 is the most

biased estimate for both distributions considered. The τ
(1)
4 overestimates its theoretical value

(for a sample with 10 observations) in the cases of gamma and beta distributions by about 22
and 41%, respectively. Its decline is relatively sharp with an increasing number of observa-
tions, and bias is similar to that of other estimates for samples with 60 and more observations.
The MKC and PKC show the lowest value of modified bias analogous to that for a symmetric
distribution. τ4 is close to MKC and PKC, and CKC estimate is less biased for asymmetric
distributions than for symmetric ones.

0 100 200 300 400 500

−
0

.5
0

.0
0

.5
1

.0

t(1)

sample size

m
o

d
if
ie

d
 b

ia
s

L−kurtosis
TL−kurtosis
Pearson

MKC
CKC

0 100 200 300 400 500

−
0

.2
0

−
0

.1
0

0
.0

0
0

.1
0

t(3)

sample size

m
o

d
if
ie

d
 b

ia
s

0 100 200 300 400 500

−
0

.1
0

.0
0

.1
0

.2
0

.3

N(0;1)

sample size

m
o

d
if
ie

d
 b

ia
s

0 100 200 300 400 500

−
0

.2
0

−
0

.1
0

0
.0

0
0

.1
0

La(0;10)

sample size

m
o

d
if
ie

d
 b

ia
s

0 100 200 300 400 500

−
0

.1
0

0
.0

5
0

.1
5

0
.2

5

gamma(2;2)

sample size

m
o

d
if
ie

d
 b

ia
s

0 100 200 300 400 500

−
0

.1
0

.1
0

.3

beta(2;5)

sample size

m
o

d
if
ie

d
 b

ia
s

Figure 3: Modified estimation bias (2.25) in distribution tail characteristics
((2.4), (2.9), (2.22)–(2.24)) for n = 10–500.

The variability of estimates is quantified using the variation coefficient. Its development
for symmetric distributions is shown in Figure 4. The τ

(1)
4 has the lowest coefficient of

variation for small samples (up to 25 observations) drawn from the Student distribution
with one degree of freedom, its convergence being slower than that of MKC and PKC.
If a sample consists of more than 25 observations, MKC and PKC are less variable than τ

(1)
4 .
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Figure 4: Variation coefficient of estimates of tail heaviness characteristics
((2.4), (2.9), (2.22)–(2.24)) for n = 10–500.

Table 4 shows values of the variation coefficient of CKC, τ
(1)
4 and τ4 for the Student distribu-

tion dependent on degrees of freedom. Interestingly, the variability of CKC declines markedly
when degrees of freedom change from one to two (from 390.565 to 1.103 for a 10-observation
sample), the variability of τ

(1)
4 and τ4 growing with an increase in degrees of freedom. The

latter two estimates are more variable than other ones in the case of small samples generated
from normal and Laplace distributions. For large samples, the variability of τ4 is comparable
with other estimates. PKC has the lowest variability for each symmetric distribution consid-
ered. For the asymmetric distributions both τ4 and τ

(1)
4 show fast convergence of variability.

However, even for the sample with 500 observations, their variability is several times greater
than that of MKC, PKC and CKC, the variability of τ

(1)
4 being the highest. Therefore,

in terms of variability, neither τ4 nor τ
(1)
4 are appropriate estimates of the tail heaviness of

asymmetric distributions.

Because of estimation bias, comparison of estimates is made on the basis of the mod-
ified mean square error (2.25), the method taking into account both bias and variability of
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estimates. The development of modified MSE is similar to that of estimates of a coefficient of
variation (not given in the text). MSE-based methodology provides results similar to those
yielded by variation analysis.

Table 4: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300).
Coefficient of variation of characteristics of kurtosis ((2.4), (2.9), (2.12),
(2.14)–(2.18)).

DF Char. 10 20 30 50 70 90 100 150 200 300

τ
(1)
4 1.025 0.579 0.465 0.365 0.314 0.278 0.265 0.221 0.194 0.160

1
PKC 1.108 0.481 0.350 0.255 0.207 0.182 0.169 0.136 0.118 0.096
MKC 1.327 0.581 0.422 0.308 0.250 0.220 0.205 0.165 0.142 0.116
CKC 96.964 62.156 47.601 1.431 0.844 0.594 0.543 0.405 0.346 0.266

τ4 0.724 0.500 0.422 0.348 0.308 0.281 0.271 0.235 0.213 0.184

τ
(1)
4 1.384 0.685 0.512 0.372 0.307 0.266 0.251 0.202 0.174 0.141

2 PKC 0.462 0.275 0.224 0.175 0.146 0.130 0.122 0.100 0.086 0.071
MKC 0.611 0.368 0.298 0.232 0.194 0.172 0.162 0.132 0.114 0.093
CKC 1.251 0.931 0.685 0.363 0.295 0.261 0.244 0.199 0.175 0.140

τ4 0.805 0.518 0.422 0.332 0.286 0.256 0.245 0.204 0.179 0.149

τ
(1)
4 1.601 0.775 0.568 0.410 0.336 0.292 0.276 0.221 0.189 0.154

3 PKC 0.390 0.247 0.203 0.160 0.134 0.119 0.112 0.092 0.079 0.065
MKC 0.537 0.343 0.279 0.220 0.184 0.163 0.154 0.125 0.108 0.089
CKC 0.623 0.447 0.351 0.269 0.222 0.200 0.189 0.156 0.137 0.111

4. CONCLUSION

Simulation results show that the bias of distribution shape estimates is low for both
symmetric and asymmetric probability distributions. The main difference between estimates
is in their variability (quantified by standard error). τ3 and τ

(1)
3 are estimates with small

variability, the best robust quantile ones in terms of variability being MCF and PCSD. The
variability of τ3 and τ

(1)
3 decreases more sharply than that of other estimates in the case of

small samples with an increasing number of degrees of freedom of the Student distribution.
The τ3 and τ

(1)
3 and PCSD are the most appropriate estimates for symmetric (Student, normal

and Laplace) and asymmetric (gamma and beta) distributions dealt with in this paper.

Some conclusions concerning tail heaviness estimates follow: τ4 and τ
(1)
4 has a high

value of modified bias for small samples drawn from normal and Laplace distributions, τ
(1)
4 is

the most biased estimate for asymmetric distributions, and MKC and PKC are those with the
lowest value of modified bias as far as Student distributions are concerned. We conclude that
τ4, MKC and PKC show the lowest bias for all the considered symmetric and asymmetric
distributions (small and large samples alike), values of their modified bias being mutually
comparable. The variability of τ

(1)
4 and τ4 increases with increasing degrees of freedom of the

Student distribution. As for small samples generated from Normal and Laplace distributions,
τ

(1)
4 and τ4 are more variable than other estimates. The τ4 variability is comparable to

other estimates for large samples. While PKC indicates the lowest variability for each given
symmetric distribution, the variability of τ4 and τ

(1)
4 is much higher than that of other tail

heaviness estimates for asymmetric distributions.
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Estimates of distributional shape based on L- and TL-moments possess the best char-
acteristics (bias and variability), outperforming those yielded by a robust quantile approach
in the situations considered. Our study, however, also confirms that robust quantile-based
estimators produce more reliable tail heaviness estimation outcomes than those based on
L- and TL-moments.
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