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1. INTRODUCTION

Shannon [33] defined the entropy of a system which measures uncertainty contained in
a random variable. The Shannon entropy measure of uncertainty is inversely related to the
occurrence probability of the event. For a non-negative and absolutely continuous random
variable X with probability density function (pdf) f(x), the Shannon entropy is defined by

H(X) = −
∫ ∞

0
f(x) ln f(x)dx.

Moreover, Rényi [30] introduced one parameter extension of Shannon entropy by defining an
entropy of order α called Rényi entropy. The Rényi entropy of X with pdf f(x) is defined by

(1.1) Hα(X) =
1

1− α
ln

∫ ∞

−∞
fα(x)dx, α > 0, (α 6= 1).

It can be easily shown that lim
α→1

Hα(X) = H(X). Some important properties of Rényi entropy

are as follows: Hα(X) can be negative, Hα(X) is invariant under a location transformation,
Hα(X) is not invariant under a scale transformation and for any α1 < α2, we have Hα1(X) ≥
Hα2(X), the equality occurs if and only if X is uniformly distributed. The Rényi divergence
of order α between two random variables X and Y with density functions f(x) and g(y),
respectively, given by

Dα(f, g) =
1

α− 1

∫ ∞

−∞

[
f(x)
g(x)

]α−1

f(x)dx.(1.2)

For details, see Golshani and Pasha [19] and Contreras-Reyes [8]. The intriguing properties
and applications of Rényi entropy have been extensively studied in literature.

Morales et al. [27] studied properties of Rényi entropy with respect to testing of hy-
pothesis in parametric models. The connection of Rényi information with log-likelihood of
the random variable derived from the gradient of the spectrum of Rényi information is dis-
cussed in Song [34]. Csiszár [10] gave Rényi’s entropy and divergence of order α operational
characterizations in terms of block coding and hypothesis testing. In the field of statistical
mechanics, the ergodic diffusion processes in terms of Rényi entropy has been discussed in
De Gregorio and Iacus [12]. Further, Kirchanov [24] uses Rényi entropy to describe quantum
dissipative systems. For more details about the application of Rényi entropy, one may refer
Nadarajah and Zografos [28], Asadi et al. [5], Contreras-Reyes [8] and Contreras-Reyes and
Cortés [9].

This paper is structured as follows: Section 2 gives a brief introduction about k-records.
Section 3 expresses Rényi Entropy of k-records arising from any continuous distribution.
In Section 4, we discuss some important properties of Rényi entropy of upper and lower
k-records. Section 5 presents two applications of Rényi entropy of k-records. The overall
findings are stated in Section 6.
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2. BACKGROUND OF k-RECORDS

Chandler [7] defined records as successive extremes occuring in a sequence of indepen-
dent and identically distributed (iid) random variables. Records are of great importance in
several real life problems involving weather, economic studies, sports, etc. Prediction of next
record value is an interesting problem in many real life situations. For example, the prediction
of next record level of water that a dam can capture is helpful in holding or discharge of the
water. Similarly, prediction of lowest share value in stock markets is essential to plan for the
investment strategies. More applications of record values are available in Arnold et al. [4]
and Ahsanullah [3].

In many events associated with athletics, temperature, wind velocity, etc., one is com-
pelled to depend upon the available record data to deal with statistical inference problems of
the parent distribution. But, statistical inferences based on records are difficult to make since
the records occurs rarely in real life situations. We can observe that the expected waiting
time for every record after the first observation is infinite. One may overcome this difficulty
by the use of k-records introduced by Dziubdziela and Kopociński [13] which occur more
frequently than the classical records. For example, consider first 10 observations from the
data given in David and Nagaraja [11]: 0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179, −1.501,
−0.690, 1.372. The records observed from the data are: 0.464 and 1.486. We can construct
upper k-records from the data as given below:

Table 1: Sequences of k-records for k = 2, 3, 4.

2-Records 0.060, 0.464, 1.022, 1.394.

3-Records 0.060, 0.464, 1.022, 1.179, 1.372

4-Records 0.060, 0.464, 0.906, 1.022, 1.179

It is well known that if the number of observations on the random variable increases
the statistical inferences becomes more reliable. In other words, the uncertainty contained in
the random variable reduces.

Many works are going on to detect outliers in a data so as to delete them for devising
more reasonable statistical methods to the problem of interest. The integer parameter k
involved in k-records can be chosen in such a manner that the record data generated will ex-
clude the specified number of outliers which are feared to be crept into the data. For example,
if some initial scrutiny of the data reveals that there is a possibility of occurrence of only one
outlier in terms of its largeness in the data, then it is enough to consider upper 2-records
as the desirable record data that may be used for further analysis. Hence, it is beneficial to
construct k-records from a sequence of random variables than constructing classical record
values in such situations.

Suppose {Xi, i ≥ 1} is a sequence of iid random variables. If for a positive inte-
ger k, we collect those observations in the sequence which occupy the k-th largest posi-
tion but exceeds in value for the first time the just previously recorded k-th largest value.
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Then, the resulting sequence is known as the sequence of k-th upper records or simply
k-records. We denote the times at which upper k-record values occur as Tn(k) for n = 1, 2, ...
and are defined by T1(k) = k and for n > 1, Tn+1(k) = min{j : j > Tn(k), X[j : j + k − 1] >
X[Tn(k) − k + 1 : Tn(k)]}, where X[p : q] is the p-th order statistic in a random sample of
size q. Then we define the sequence of upper k-record values denoted by Un(k) as Un(k) =
X[Tn(k) − k + 1 : Tn(k)]. If the parent distribution is absolutely continuous with survival func-
tion F̄X(x) and pdf fX(x), then, the pdf of the n-th upper k-record value Un(k) is given by
(see Arnold et al. [4])

fn(k)(x) =
kn

Γ(n)
[
− ln F̄X(x)

]n−1[F̄X(x)]k−1fX(x), n = 1, 2, ....(2.1)

Similarly, we can define the lower k-records. For a positive integer k, if we denote the
times at which lower k-records occur as TLn(k) for n = 1, 2, ... and are defined by TL1(k) = k and
for n > 1, TLn+1(k) = min{j : j > TLn(k), X[j : j + k − 1] < X[TLn(k) − k + 1 : TLn(k)]}. Then we
define the sequence of lower k-records denoted by Ln(k) as Ln(k) = X[TLn(k) − k + 1 : TLn(k)].
If the parent distribution is absolutely continuous with cumulative distribution function
(cdf) FX(x) and pdf fX(x), then, the pdf of the n-th lower k-record value Ln(k) is given by
(see Ahsanullah [3])

gn(k)(x) =
kn

Γ(n)
[− lnF (x)]n−1[F (x)]k−1f(x), n = 1, 2, ....(2.2)

Several applications of k-records are available in the literature. In reliability, a k-out-of-n
system breaks down at the time of the failure of (n− k + 1)-th component. The life time of
a k-out-of-n system is the (n− k + 1)-th order statistic in a sample of size n. Consequently,
the n-th upper k-record value can be regarded as the life length of a k-out-of-Tn(k) system.
In actuarial science, there arises situations where second or third largest set of values are of
special interest when the insurance claim of some non-life insurance is considered. One may
refer Kamps [23] for more details. Detailed description on the theoretical aspects as well as
applications of k-records are available in Arnold et al. [4], Nevzorov [29] and Ahsanullah [3].

Many authors have discussed about the information measures of classical records and
its generalized version (k-records) arising from probability distribution. Hofmann and Na-
garaja [21] derived some general results on the Fisher information contained in the classical
record values and Hofmann and Balakrishnan [20] derived some general results on the Fisher
information contained in the k-record values generated from an iid sample of fixed size from
a continuous distribution. Madadi and Tata [25] present results on the Shannon information
contained in classical record values and Madadi and Tata [26] present results on the Shannon
information contained in k-record values. They have established a relationship between the
Shannon information content of a random sample of fixed size and the Shannon information
in the data consisting of sequential maxima. Also, they have considered the information con-
tained in the k-record data from an inverse sampling plan as well. Goel et al. [18] discussed
the measure of entropy for past lifetime distributions based on k-records. Recently, Jose and
Sathar [22] studied some important properties of residual extropy of k-record values as well.
It is to be noted that, when k = 1, we can easily obtain classical record values from k-records.
Hence, k-records can be also considered as a generalized version of classical records. Barat-
pour et al. [6] studied entropy properties of classical records. Abbasnejad and Arghami [2]
have discussed about the information contained in classical record values in detail and have
derived some important properties as well. But to the best of our knowledge, no attention
has been paid to the study of Rényi information contained in k-records.
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Through this paper, the Rényi entropy of k-records arising from any continuous dis-
tribution has been discussed in detail. We also explore some of its important properties and
have presented two applications of Rényi entropy of k-records.

3. RÉNYI ENTROPY OF k-RECORDS

Let {Xi, i ≥ 1} be a sequence of iid random variables with parent distribution f(x).
Then, analogous to (1.1), the Rényi entropy of n-th upper k-record value

(
Un(k)

)
is defined by

Hα(Un(k)) =
1

1− α
ln

∫
x

fαn(k)(x)dx, α > 0, (α 6= 1).(3.1)

In the following example, we illustrate that Rényi entropy measure of uncertainty con-
tained in the original random variable is more when compared to that of k-records arising
from the observations on the original random variable.

Example 3.1. Assume X is a random variable following U(2, 4) with pdf given by

fX(x) =


1
2
, 2 ≤ x ≤ 4,

0, otherwise.

We use the Rényi entropy to measure the uncertainty involved in the random variable X.
Let Hα(X) denote the Rényi entropy of X. Then from (1.1), we get Hα(X) = ln 2. Also, the
Rényi entropy of n-th upper k-record value arising from U(2, 4) is obtained from (3.1) as

Hα
(
Un(k)

)
=

1
1− α

ln
[

kαn

Γα(n)2α−1

Γ(α(n− 1) + 1)
(α(k − 1) + 1)α(n−1)+1

]
.

It is to be noted that Hα(X) is independent of α. Moreover, Hα(X)−Hα
(
Un(k)

)
≥ 0 for

α > 0. This means that the uncertainty of X is more than Un(k). Thus, the predictability of
X is smaller than the predictability of Un(k). The graphical representation of Rényi entropy
of X and the Rényi entropy of Un(k) for varying α is given in Figure 1.

Figure 1: Rényi entropy of X and Un(k) for various values of α.
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Fashandi and Ahmadi [15] have represented Rényi entropy of n-th upper k-record value
in terms of Rényi entropy of n-th upper k-record value arising from U(0, 1). But they have
not used that representation to study the properties of Rényi entropy of n-th upper k-record
value arising from any continuous distribution. In this paper, we use the expression of Rényi
entropy of n-th upper k-record value in terms of Rényi entropy of n-th upper k-record value
arising from U(0, 1) to carry out investigation on properties and divergence of Rényi entropy
of n-th upper k-record value. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Let U∗n(k) denote the n-th upper k-record value arising from the
sequence {Xi, i ≥ 1}. Using (2.1) in (3.1), we get

Hα

(
U∗n(k)

)
=

1
1− α

ln
∫ ∞

−∞

kαn

Γα(n)
[ln(1− x)]α(n−1)[1− x]α(k−1)dx.

Using the transformation z = − ln(1− x), we have

Hα

(
U∗n(k)

)
=

1
1− α

ln
∫ ∞

0

kαn

Γα(n)
zα(n−1)e−z(α(k−1)+1)dz.

Then, the Rényi entropy of U∗n(k) is given by

Hα

(
U∗n(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.(3.2)

Then, for a sequence of iid random variables {Xi, i ≥ 1} with cdf F (x) and pdf f(x).
If we denote Un(k) the n-th upper k-record value of the sequence {Xi}. Applying (2.1) in
(3.1), we get

Hα
(
Un(k)

)
=

1
1− α

ln
kαn

Γα(n)

∞∫
−∞

[− ln(1− F (x))]α(n−1)[1− F (x)]α(k−1)fα(x)dx.

Using the transformation u = − ln(1− F (x)) and on integrating, we get

Hα
(
Un(k)

)
=

1
1− α

ln
{

kαn

Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1
E

[
fα−1

(
F−1(1− e−V )

)]}
,

where V follows gamma distribution with parameters α(n− 1) + 1 and α(k − 1) + 1 and we
denote it by V ∼ Gamma(α(n− 1) + 1, α(k− 1) + 1). Then, from (3.2), the Rényi entropy of
Un(k) is given by

Hα
(
Un(k)

)
= Hα

(
U∗n(k)

)
+

1
1− α

ln
{
E

[
fα−1

(
F−1(1− e−V )

)]}
.(3.3)

Similarly, the Rényi entropy of n-th lower k-record value arising from any continuous
distribution can be expressed in terms of Rényi entropy of n-th lower k-record value arising
from U(0, 1). Let Ln(k) denote the n-th lower k-record value of the sequence {Xi}. Then,
the Rényi entropy of Ln(k) is given by

Hα
(
Ln(k)

)
= Hα

(
L∗n(k)

)
+

1
1− α

ln
{
E

[
fα−1

(
F−1(e−V )

)]}
,(3.4)

where Hα
(
L∗n(k)

)
denote the Rényi entropy of n-th lower k-record value arising from U(0, 1)

and V ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1).
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As an illustration, we obtain the Rényi entropy of k-records arising from exponential
and Pareto distribution in the following examples.

Example 3.2. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common
Pareto distribution with density function given by

f(x) =
β

σ

(x
σ

)−β−1
, x > σ.

Here,

F−1(x) = σ[1− x]−
1
β .

Now, we have

E
[
f(F−1(1− e−Vn))

]
=

βαn

σα−1

[
α(k − 1) + 1
α(βk + 1)− 1

]α(n−1)+1

.

Then, from (3.2) and (3.3), we get

Hα
(
Un(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
βαnΓ(α(n− 1) + 1)

σα−1[α(βk + 1)− 1]α(n−1)+1

]
.

The graphical representation of the Rényi entropy of UXn(k) arising from Pareto distribu-
tion with shape parameter β=3 and scale parameter σ=2 is given in Figure 2, for varying α.
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Figure 2: Rényi entropy of UX
n(k) for various values of α.

If we put k=1, we can easily obtain the classical records from the sequence of k-records.
From the figure, it can be observed that the Rényi entropy of classical upper record values
(when k = 1) is greater than the Rényi entropy of upper k-records. This means that the un-
certainty contained in classical records is more than that of k-records. Hence, one may observe
certain situations where the predictability of classical records is less than the predictability
of k-records when analyzed using Rényi entropy.
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Example 3.3. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common
exponential distribution with density function given by

f(x) = θe−θx, x > 0, θ > 0.

Here,

F−1(x) = −1
θ

ln(1− x).

Now, we have

E
[
fα−1(F−1(1− e−V ))

]
=

[
α(k − 1) + 1

αk

]α(n−1)+1

θα−1.

Then, from (3.2) and (3.3), we get

Hα
(
Un(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
θα−1Γ(α(n− 1) + 1)

(αk)α(n−1)+1

]
.

4. PROPERTIES OF RÉNYI ENTROPY OF k-RECORDS

In this section, we discuss some important properties of Rényi entropy of upper and
lower k-records arising from any continuous distribution. To determine the monotonicity of
Rényi entropy of upper and lower k-records arising from any continuous distribution we make
use of the following definitions of stochastic and likelihood ratio orders given in Shaked and
Shanthikumar [32].

Definition 4.1. LetX and Y be two non-negative random variables with cdfs F andG
and with pdfs f and g respectively, then X is said to be smaller than Y :

(1) in the likelihood ratio order, denoted by X ≤lr Y, if f(x)
g(x) is decreasing in x ≥ 0;

(2) in the usual stochastic order, denoted by X ≤st Y, if F̄ (x) ≤ Ḡ(x) for all x ≥ 0,
where H̄(·) is the survival function.

It is well known that X ≤lr Y =⇒ X ≤st Y and X ≤st Y if and only if E[φ(X)] ≤ E[φ(Y )]
for all increasing functions φ.

Definition 4.2. The random variable X is said to be less than or equal to the random
variable Y in Rényi entropy ordering, denoted by X ≤RE Y, if Hα(X) ≤ Hα(Y ) for all α > 0.

The following theorem reveals the monotone behaviour of Rényi entropy of upper
k-record values based on n.

Theorem 4.1. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

cdf F (x) and pdf f(x). Let Un(k) denote the n-th upper k-record value. If f(x) is non-

decreasing in x, then for n > k, Hα
(
Un(k)

)
is non-increasing in n.

Proof: The proof is straightforward as in Theorem 2.1 of Abbasnejad and Arghami [2].
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In a similar way, we can state the monotone behaviour of Rényi entropy of lower
k-records as given in the following theorem. The proof is not included since it easily follows
as in Theorem 4.1.

Theorem 4.2. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

cdf F (x) and pdf f(x). Let Ln(k) denote the n-th lower k-record value. If f(x) is non-

increasing in x, then for n > k, Hα
(
Ln(k)

)
is non-increasing in n.

We will now discuss about the Rényi entropy ordering of n-th upper k-record value
of two random variables. Abbasnejad and Arghami [2] have used Rényi entropy ordering
of the random variables to establish their Rényi entropy ordering of classical record values.
In the following theorem, we make use of Rényi entropy ordering of the random variables to
establish their Rényi entropy ordering of n-th upper k-record value.

Theorem 4.3. Let X and Y be two continuous random variables with cdfs F (x) and

G(y) and pdfs f(x) and g(y) respectively. Suppose that UXn(k) and Uyn(k) represents the n-th

upper k record value arising from X and Y respectively. Assume that

Λ1 =
{
v > 0

g(G−1(1− e−v))
f(F−1(1− e−v))

≤ 1
}
,

Λ2 =
{
v > 0

g(G−1(1− e−v))
f(F−1(1− e−v))

> 1
}

and X ≤RE Y . If inf Λ1 ≥ supΛ2, then UXn(k) ≤RE U
Y
n(k), ∀ n ≥ 1 and n > k.

Proof: The proof is omitted since it is similar to that of Theorem 2.3 in Abbasnejad
and Arghami [2].

In the following example, we apply Theorem 4.3 to obtain Rényi entropy ordering of
two random variables following exponential distribution based on upper k-records.

Example 4.1. Let X and Y be two random variables having common exponential
distribution with different scale parameters σ and λ respectively, where σ > λ. Then from
(1.1), we get

Hα(X) =
1

1− α
ln(α)− ln(σ).

It can be easily verified that Hα(X) is a decreasing function of σ. Thus, we have Hα(X) ≤
Hα(Y ) and thereby X ≤RE Y . We have f(F−1(1− e−x)) = 1

σ e−x and inf Λ1 = supΛ2. Hence,
by Theorem 4.3 we get UXn(k) ≤RE U

Y
n(k).

Similar to Theorem 4.3, we establish the Rényi entropy ordering of two random variables
based on lower k-records.
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Theorem 4.4. Let X and Y be two continuous random variables with cdfs F (x) and

G(y) and pdfs f(x) and g(y) respectively. Suppose

Λ1 =
{
v > 0

g(G−1(e−v))
f(F−1(e−v))

≤ 1
}
,

Λ2 =
{
v > 0

g(G−1(e−v))
f(F−1(e−v))

> 1
}

and X ≤RE Y . If inf Λ1 ≥ supΛ2, then LXn(k) ≤RE L
Y
n(k), ∀ n ≥ 1 and n > k.

The following lemma explains the effect of location-scale transformation on random
variable in the case of Rényi entropy of k-records. The proof is simple and hence omitted.

Lemma 4.1. Consider a non-negative random variable X with pdf f and cdf F . Let

Z = aX + b be a transformation on X, where a > 0 and b ≥ 0 are constants. Then

Hα

(
UZn(k)

)
= Hα

(
UXn(k)

)
+ ln a,(4.1)

where UZn(k) and UXn(k) are the n-th k-record corresponding to Z and X respectively.

Thus, the Rényi entropy of k-records changes due to the change in scale, but it does
not change due to the change in location. The next theorem will discuss on the Rényi entropy
ordering of k-records under location-scale transformation.

Theorem 4.5. Consider two absolutely continuous random variablesX and Y. Assume

that UZn(k) and UXn(k) are the n-th upper k-record corresponding to X and Y respectively. Let

UZ1

n(k) = a1U
X
n(k) + b1 and UZ2

n(k) = a2U
Y
n(k) + b2, where a1, a2 > 0 and b1, b2 ≥ 0 are constants.

If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k) for a1 ≤ a2.

Proof: If UXn(k) ≤RE U
Y
n(k), then

Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
.

Since a1 ≤ a2, ln a1 ≤ ln a2. Hence,

ln a1 +Hα

(
UXn(k)

)
≤ ln a2 +Hα

(
UYn(k)

)
.

Thus, from (4.1), we get UZ1

n(k) ≤RE U
Z2

n(k). Hence the theorem.

We will now deduce the following corollary which removes the restriction on the scale
constants.

Corollary 4.1. Consider two absolutely continuous random variablesX and Y. Assume

that UZn(k) and UXn(k) are the n-th upper k-record corresponding to X and Y respectively.

Let UZ1

n(k) = aUXn(k) + b and UZ2

n(k) = aUYn(k) + b, where a > 0 and b ≥ 0 are constants.

If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k).
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We will now discuss the effect of monotone transformation for Rényi entropy of k-records
through the following theorem.

Theorem 4.6. Assume a strictly convex function ψ having ψ(0) = 0 and ψ(∞) =∞.

Consider, if Y = ψ(X) then

Hα

(
UYn(k)

)
= Hα

(
U∗n(k)

)
+

1
1− α

ln

{
E

[
f(F−1(1− e−Vn))
ψ ′(F−1(1− e−Vn))

]α−1
}
,(4.2)

where Vn ∼ Gamma(α(n− 1)+1, α(k− 1)+1). Here, UYn(k) are the n-th upper k-record value

corresponding to Y .

Proof: Let gn(k)(y) and Ḡn(k)(y) be the pdf and survival function of n-th upper
k-record value corresponding to Y . Then, from (2.1) we get

Hα

(
UYn(k)

)
=

1
1− α

ln
∫ ∞

0

kαn

Γα(n)
[
− ln Ḡ(y)

]α(n−1)[Ḡ(y)]α(k−1)gα(y)dy.

Applying the transformation Y = ψ(X), we have

Hα

(
UYn(k)

)
=

1
1− α

ln
kαn

Γα(n)

∞∫
0

[
− ln F̄ (x)

]α(n−1)[F̄ (x)]α(k−1)

(
f(x)
ψ ′(x)

)α

ψ ′(x)dx.

Using the substitution u = − ln F̄ (x) in the integral, the theorem follows.

The following theorem, establishes the Rényi entropy ordering of strictly increasing
convex functions of two n-th upper k-records based on the Rényi entropy ordering of their
respective k-records.

Theorem 4.7. Suppose X and Y are non-negative random variables such that

UXn(k) ≤RE U
Y
n(k) and ψ be a strictly increasing convex function with ψ(0) = 0, ψ(∞) = ∞,

ψ ′(x) exists and is continuous with ψ ′(0) ≥ 1. Then ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
, where UXn(k)

and UYn(k) denote the n-th upper k-record value corresponding to X and Y respectively.

Proof: Since UXn(k) ≤RE U
Y
n(k), we have Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
. This implies

Hα

(
UX∗n(k)

)
E

[
fα−1

(
F−1(1− e−Vn)

)]
≤ Hα

(
UY ∗n(k)

)
E

[
gα−1

(
G−1(1− e−Vn)

)]
,(4.3)

where Vn ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1). Then, from (4.2), we have

Hα

(
ψ

(
UXn(k)

))
−Hα

(
ψ

(
UYn(k)

))
=

= Hα

(
UX∗n(k)

)
−Hα

(
UY ∗n(k)

)
+

1
1− α

ln


E

[
f(F−1(1−e−Vn ))
ψ′(F−1(1−e−Vn ))

]α−1

E
[
g(G−1(1−e−Vn ))
ψ′(G−1(1−e−Vn ))

]α−1

.
Since ψ ′(0) ≥ 1 and from (4.3), we obtain Hα

(
ψ

(
UXn(k)

))
−Hα

(
ψ

(
UYn(k)

))
≤ 0. Hence,

ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
.
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Therefore, we can observe that the Rényi entropy ordering of two random variables
determine the Rényi entropy ordering of their respective k-records and the Rényi entropy
ordering of the respective convex function of k-records are determined by the Rényi entropy
ordering of their respective k-records. The following example discusses the same.

Example 4.2. Consider a convex function ψ(x) = βx, where β ≥ 1. Hence ψ be a
strictly increasing convex function with ψ(0) = 0, ψ(∞) = ∞, ψ ′(x) exists and is continuous
with ψ ′(0) ≥ 1. From Example 4.1, we have UXn(k) ≤RE U

Y
n(k). Thus, the assumptions of

Theorem 4.7 are satisfied and therefore, we can directly obtain ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
in

which X and Y have common exponential distribution with different scale parameters σ and λ
respectively, where σ > λ.

We will now study another property regarding the bound of Rényi entropy of k-records.
Through the following theorem, we present a lower bound for the Rényi entropy of upper
k-records arising from any continuous distribution.

Theorem 4.8. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

distribution function F (x) and density function f(x). LetHα
(
Un(k)

)
denote the Rényi entropy

of n-th upper k-record value arising from the sequence and Hα

(
U∗n(k)

)
denote the Rényi

entropy of n-th upper k-record value arising from U(0, 1). Suppose that M = f(m) exists,

where M is the mode of X, then for α > 0

Hα
(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.(4.4)

Proof: Since M is the mode of X, we have

f(F−1(y)) ≤M.

Using the transformation y = 1− e−V , we get

f(F−1(1− e−U )) ≤ M,

fα−1(F−1(1− e−U )) ≤ Mα−1.

Taking expectations on both sides, we obtain

E
[
fα−1(F−1(1− e−U ))

]
≤ Mα−1.(4.5)

Similarly, for 0 < α < 1

E
[
fα−1(F−1(1− e−U ))

]
≥ Mα−1.(4.6)

From (4.5) and (4.6), for α > 0, we have

1
1− α

lnE
[
fα−1(F−1(1− e−U ))

]
≥ − lnM.(4.7)

Using (3.3) in (4.7), we get

Hα
(
Un(k)

)
−Hα

(
U∗n(k)

)
≥ − lnM

Hα
(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.

Hence the theorem.
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In the following example, we make use of Theorem 4.8 to obtain bound for Rényi
entropy of upper k-record value arising from Gompertz distribution.

Example 4.3. The pdf of Gompertz distribution with shape parameter λ and scale
parameter β is given by

f(x) = βλeβx+λ(1−eβx), x > 0, β, λ > 0.

We know that mode of this distribution is 1
β ln 1

λ . Thus, from (4.4) we have

Hα
(
Un(k)

)
≥ 1

1− α
ln

[
kαnβ

lnλΓα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.

In the following theorem, similar to Theorem 4.8, we obtain lower bound for Rényi
entropy of lower k-records arising from any continuous distribution.

Theorem 4.9. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

distribution function F (x) and density function f(x). LetHα
(
Ln(k)

)
denote the Rényi entropy

of n-th lower k-record value arising from the sequence and Hα

(
L∗n(k)

)
denote the Rényi

entropy of n-th lower k-record value arising from U(0, 1). Suppose that M = f(m) exists,

where M is the mode of X, then for α > 0

Hα
(
Ln(k)

)
≥ Hα

(
L∗n(k)

)
− lnM.(4.8)

In the following example, we make use of Theorem 4.9 to obtain lower bound for Rényi
entropy of lower k-records arising from Fréchet distribution.

Example 4.4. The density function of Frechet distribution with shape parameter a
and scale parameter s is given by

f(x) =
a

s

(x
s

)−1−a
e−(x

s )
−a

, x > 0; a, s > 0.

We know that mode of this distribution is s
(

a
1+a

) 1
a . Thus, from (4.8), we get

Hα
(
Un(k)

)
≥ 1

1− α
ln

{[
a

a+ 1

]a kαn

s Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

}
.

5. APPLICATIONS OF RÉNYI ENTROPY OF k-RECORDS

This section deals with the applications of Rényi entropy of k-records. One application
of Rényi entropy of k-records is that it can be used to characterize a class of distributions
of non-negative random variables. Another application of Rényi entropy of k-records is that
it determines Rényi divergence between the distribution of k-record values and its parent
distribution.
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5.1. Characterization of exponential distribution

Ebrahimi [14] suggested that maximum entropy paradigm can be used to produce a
model for the data generating distribution. In the maximum entropy procedure, a model that
best approximates the unknown distribution is derived based on the partial knowledge about
this distribution in terms of a set of information constraints. Then, the inference is based
on the model that maximizes the entropy of the random variables subject to the information
constraints. In this subsection, we derive exponential distribution as the distribution that
maximizes the Rényi entropy of k-records under some information constraints.

Let ξ be a class of distributions F (x) of non-negative random variables X with F (0) = 0
such that

(i) r(x, θ) = a(θ)b(x),

(ii) b(x) ≥ β, β > 0,

where b(x) = B′(x) is a non-negative function of x and a(θ) is a non-negative function of θ.

Abbasnejad and Arghami [2] derived exponential distribution as the distribution that
maximizes the Rényi entropy of classical record values under some information constraints.
In the following theorem we characterize ξ using the Rényi entropy of n-th upper k-record
value.

Theorem 5.1. Let Un(k) be the n-th upper k-record value of F (x; θ), where F (x; θ)
is in class ξ. Then, the n-th upper k-record value of the distribution F (x; θ) has maximum

Rényi entropy in ξ if and only if F (x; θ) = 1− e−a(θ)βx.

Proof: The proof follows similar steps to that of Theorem 4.1 in Abbasnejad and
Arghami [2].

5.2. Rényi divergence of k-records

Several applications of entropy divergence measures in formulating test statistics for
testing of hypotheses and goodness-of-fit tests are available in literature. Gil et al. [16] pre-
sented closed form expressions of Rényi divergence for nineteen commonly used univariate
continuous distributions as well as those for multivariate Gaussian and Dirichlet distributions.
Salicrú et al. [31] suggested test statistics using some families of divergence like φ-divergence.
Vasicek [35] used the sample Shannon entropy estimate to test normality. Abbasnejad [1] ob-
tained a test statistic for exponentiality based on Rényi divergence. Abbasnejad and Arghami
[2] studied Rényi divergence between parent distribution and distribution of classical record
value as well. Through the following theorem, we study Rényi divergence between parent
distribution and distribution of n-th upper k-record value.
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Theorem 5.2. The Rényi divergence between distribution of n-th upper k-record

value and its parent distribution is given by

Dα(fn(k), f) = −Hα
(
U∗n(k)

)
,

where fn(k) is the pdf of Un(k) and U∗n(k) is the n-th upper k-record value arising from U(0, 1).
Moreover, Dα(fn(k), f) is increasing in n.

Proof: Using (2.1) in (1.2) and by the transformation u = − ln F̄ (x), we get

Dα(fn(k), f) =
1

α− 1
ln

∫ ∞

0

kαn

Γα(n)
uα(n−1)e−u(α(k−1)+1)du,

= −Hα
(
U∗n(k)

)
.

Hence, the Rényi divergence between the distribution of the n-th upper k-record value and
the parent distribution is distribution free. Moreover, taking the derivative of Hα

(
U∗n(k)

)
with respect to n, we get

dHα

(
U∗n(k)

)
dn

=
α

α− 1
(1− ln k)− 1

α− 1
ξ(α(n− 1) + 1) +

α

α− 1
ξ(n),

where ξ(u) =
d ln Γ(u)
du

. For every u, the function ξ(u) is non-decreasing and therefore

Hα

(
U∗n(k)

)
is non-increasing in n. Thus the result follows.

Thus, by increasing n, we expect that the divergence between the distribution of the
n-th upper k-record value and the parent distribution increases.

5.3. Numerical illustration

In this subsection, we propose a simple estimator for the Rényi entropy of the n-th
upper k-record value and discuss the merit of k-records over classical records and parent
random variable in terms of uncertainty. To estimate the Rényi entropy based on n-th upper
k-record value, kernel density has been applied to estimate the density function and empirical
distribution has been used as an estimator for the distribution function. The estimator is
proposed for Rényi entropy obtained by replacing the density of the parent random variable
by the density of n-th upper k-record value and hence much complexities arises while deriving
the properties of the proposed estimator directly. Therefore, the proposed simple estimator for
Rényi entropy based on n-th upper k-record value can be analysed numerically by evaluating
the average bias and MSE for different sample sizes which examines the bias and consistency
characteristics of the proposed estimator. A numerical illustration has been presented with
an intention to describe the benefit of applying Rényi entropy based on n-th k-record in
comparison to that of the parent random variable. Using (2.1) in (3.1), the Rényi entropy of
the n-th upper k-record can be expressed as

Hα
(
Un(k)

)
=

1
1− α

ln

∞∫
0

kαn

Γα(n)
[
− ln F̄ (x)

]α(n−1)[
F̄ (x)

]α(k−1)
fα(x)dx.(5.1)
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A simple estimator for the Rényi entropy of the n-th upper k-records value based on a random
sample of size n is given by

Ĥα

(
Un(k)

)
=

1
1− α

ln

∞∫
0

kαn

Γα(n)

[
− ln ˆ̄F (x)

]α(n−1)[ ˆ̄F (x)
]α(k−1)

f̂α(x)dx,(5.2)

where f̂(x) = 1
nbn

n∑
j=1

K
(x−Xj

bn

)
, denotes the kernel density estimator with the bandwidth bn.

Also K(·) is a kernel function satisfying the condition
∫∞
−∞K(x)dx = 1 and is usually a

symmetric pdf. Also, ˆ̄F (x) = 1
n

n∑
i=1

I(Xi ≥ x) is the empirical survival function and I(Xi ≥ x)

is the indicator function.

In the following illustration, we use a real life data set to compute Rényi entropy of the
n-th upper k-record value and make a comparison with that of classical records and parent
random variable.

Dataset 1: Let the random variable X represents the brain weight (in grams) of
237 adults discussed in Gladstone [17]. The brain weight of an adult is not so easy to obtain
and hence for more reliable inferences on the random variable X, the distribution of X should
possess less uncertainty. The study focus on the uncertainty contained in the distribution of
the random variable X. Initial study on distribution of X suggests the normal distribution
with location parameter µ = 1282.87 and scale parameter σ = 120.86 is a good fit for the
data set with Kolmogrove-Smirnov (K-S) statistic = 0.03914 and p-value = 0.9755. Since
the normal distribution is a good fit for the proposed data, a Gaussian kernel can be chosen
for estimation procedure using the given data set. The fit of normal distribution to data is
depicted in Figure 3.
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(a) Histogram and normal curve.
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(b) Normal and empirical CDF.

Figure 3: Modelling brain weight data using normal distribution.

To estimate Rényi entropy of the n-th upper k-record value the Gaussian kernel with
bn = 120 is applied in (5.2). The closeness of the estimators of Rényi entropy based on n-th
upper k-record value and the parent random variable with the theoretical value of Rényi
entropy which has been obtained by assuming normal distribution for the random variable
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with parameter values µ= 1282.87 and σ = 120.86 (ML estimates) for different choices of α
are presented in Table 2.

Table 2: Comparison of theoretical values and estimates of Rényi entropy
based on X and Un(k) where k = 1, 2, 5, 7, 9 and 10.

α Hα(X) Ĥα(X) Ĥα

�
Un(1)

�
Ĥα

�
Un(2)

�
Ĥα

�
Un(5)

�
Ĥα

�
Un(7)

�
Ĥα

�
Un(9)

�
Ĥα

�
Un(10)

�

0.10 6.9885 8.9341 7.2943 6.4240 6.3835 6.2870 5.9981 5.8530
0.30 6.5692 9.5116 8.8650 8.7573 8.7103 8.6019 8.1354 7.5349
0.50 6.4024 11.1967 10.3061 10.2393 9.7591 9.6735 9.6341 9.5618
0.70 6.2846 20.6588 13.7849 13.7476 12.6784 12.6646 12.6296 12.5986
1.15 6.1556 17.3662 12.4395 12.3814 12.3616 12.2889 11.8381 11.7295
1.40 6.1147 10.8954 10.0227 9.2979 9.2531 9.1823 9.1673 9.1643
1.75 6.0823 3.7508 7.7072 7.5870 7.8013 7.8826 7.5907 7.6997
2.00 6.0558 3.1864 6.8005 6.7703 6.7178 6.7033 6.5973 6.5817
2.25 6.0336 2.2530 6.4741 6.1328 6.0768 6.0333 5.9477 5.8533
2.50 6.0147 1.6343 5.0568 4.9876 4.7800 4.6415 4.5031 4.4339
3.25 5.9839 0.8677 3.9306 3.8767 3.7152 3.6076 3.4999 3.4460
3.50 5.9598 0.4133 3.3674 3.3213 3.1828 3.0906 2.9983 2.9521

From Table 2, we can observe that the estimates of Rényi entropy based on n-th upper
k-record value is closer to its theoretical value than the estimate of Rényi entropy based
parent random variable. Also, when k = 1, k-records becomes classical records. In terms of
uncertainty, we have compared three different estimates (based on parent random variable,
classical records and k-records) for Rényi entropy which can be obtained from a random
sample. Hence, from Table 2, one may conclude that there are situations where construction
of k-records or classical records from random sample gives closer estimate than the estimate
obtained based on random variable. Moreover, the k-records or classical records are ordered
random variables which carry an additional information about their ranks when compared to
the parent random variable.

Table 3: Average bias and MSE of the estimate of Rényi entropy
of the n-th upper k-record value for different choices of α.

n k
α = 0.25 α = 0.75 α = 1.50 α = 3.0

Bias MSE Bias MSE Bias MSE Bias MSE

20

1 1.14072 1.09495 1.12052 1.06003 1.11085 1.03190 1.09435 1.03083
3 1.07479 1.00485 1.07209 0.99914 1.06225 0.92091 1.05467 0.90367
6 1.00195 0.89941 0.99823 0.85221 0.96188 0.81123 0.94057 0.80224
8 0.92137 0.79354 0.91658 0.77677 0.91307 0.77391 0.89728 0.75497

10 0.85722 0.74954 0.83132 0.73397 0.81957 0.71637 0.80547 0.68588

60

1 0.93818 0.84330 0.90040 0.84103 0.88101 0.82568 0.87493 0.82497
3 0.85666 0.81577 0.83509 0.80718 0.82274 0.74541 0.79530 0.73895
6 0.79185 0.73802 0.78635 0.73201 0.78544 0.71686 0.76749 0.70849
8 0.76585 0.65507 0.75573 0.61861 0.72946 0.57439 0.70244 0.57347

10 0.68611 0.53900 0.67284 0.50139 0.66842 0.49361 0.65933 0.44052

100

1 0.76797 0.69524 0.76709 0.68935 0.75349 0.68063 0.75052 0.68010
3 0.74507 0.59512 0.73545 0.59152 0.72329 0.56915 0.71883 0.55927
6 0.71429 0.53813 0.70983 0.52673 0.69858 0.51378 0.65525 0.48069
8 0.64116 0.46515 0.63902 0.43912 0.62873 0.43155 0.61199 0.42260

10 0.58717 0.41116 0.57277 0.40205 0.57109 0.38755 0.56469 0.37685
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To study the effect of the estimator suggested for Rényi entropy of the n-th upper
k-record value denoted as Hα

(
Un(k)

)
, we have obtained average bias and mean square error

(MSE) of the estimator using bootstrapping procedure. The bias and MSE of the estimates
are evaluated from value of Rényi entropy of the n-th upper k-record obtained using the
parameter estimates µ = 1282.87 and scale parameter σ = 120.86 in (5.1) which we have
considered as the true value of Hα

(
Un(k)

)
. The average bias and MSE of Hα

(
Un(k)

)
based

on 100 bootstrap estimates from samples of sizes 20, 60 and 100 are presented in Table 3.
It can be observed that the average bias and MSE of the estimator of Rényi entropy of the
n-th upper k-record value diminishes as sample size becomes large.

6. CONCLUSION

The study explains the relevance of k-records in measuring uncertainty using Rényi
entropy after comparing it with Rényi entropy of classical records as well as with Rényi en-
tropy of original random variable. Fashandi and Ahmadi [15] have expressed Rényi entropy
for k-records arising from any continuous distribution in terms of Rényi entropy of k-records
arising from uniform distribution and we have used that representation to derive some im-
portant properties of Rényi entropy of k-records. The monotone behaviour of Rényi entropy
of k-records have been derived. We have shown that the Rényi entropy ordering of random
variables determines the Rényi entropy ordering of their respective k-record values. The
Renyi entropy ordering of k-records determines the Renyi entropy ordering of their respec-
tive linear transformations of k-records as well as their convex function of k-records. A lower
bound for the Rényi entropy of k-records have been obtained in this work. We have applied
Rényi entropy of k-records to characterize exponential distribution by maximization of Rényi
entropy based on certain information constraints. The study also establishes that the Rényi
divergence between the distribution of k-records and its parent distribution is distribution
free and the divergence increases with increase in n. A simple estimator for Rényi entropy of
k-records has been proposed and compared estimates of Renyi entropy of k-records, classical
records and parent random variable using a real life data set.
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tropies for finite mixtures of multivariate skew-normal distributions: application to swordfish
(xiphias gladius linnaeus), Entropy, 18(11), 382.

[10] Csiszár, I. (1995). Generalized cutoff rates and Rényi’s information measures, IEEE Trans-
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