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1. INTRODUCTION

The count data sets arise in different fields such as yearly number destructive earth-
quakes, monthly traffic accidents and hourly bacterial growth and among others. These
kind of data sets are modeled with discrete probability distributions. Poisson and negative-
binomial distributions are the most popular distributions and are widely used to model these
kind data sets. In recent years, researchers have shown great interest to introduce new dis-
crete distributions by discretizing a continuous failure time model. Let the continuous random
variable X has the survival function (sf) S (x) = Pr (X > x). The probability mass function
(pmf) dealing with the continuous random variable X is given by

Pr (X = x) = S (x)− S (x + 1) , x = 0, 1, 2, ...

Many researchers have introduced sophisticated discrete distributions by applying the dis-
cretization method to the continuous failure time models. For instance, discrete Lindley
distribution by Gómez-Déniz and Caldeŕın-Ojeda (2011) [12], discrete Rayleigh distribution
by Roy (2004) [28], discrete inverse Rayleigh distribution by Hussain and Ahmad (2014)
[13], discrete Pareto distribution by Buddana and Kozubowski (2014) [6], discrete Weibull
distribution by Nakagawa and Osaki (1975) [21], discrete Lomax distribution by Para and
Jan (2016a) [24], discrete generalized Weibull distribution by Para and Jan (2017) [26] and
exponentiated discrete Lindley by El-Morshedy et al. (2019) [10], discrete flexible one param-
eter distribution by Eliwa and El-Morshedy (2020) [7] and discrete gompertz-G by Eliwa et

al. (2020a) [8] and among others. The discrete analogue of the Burr-Hatke distribution was
introduced by El-Morshedy et al. (2020) [11] with its regression model and residual analysis.
More recently, Eliwa et al. (2020b) [9] introduced the discrete analogue of the three-parameter
Lindley distribution and demonstrated its performance in modeling the time series of counts.

In this paper, we introduce a new one-parameter discrete distribution by applying
the discretization method to the Bilal distribution, proposed by Abd-Elrahman (2013) [4].
The arising distribution is called as the discrete Bilal (DBL) distribution. The DBL dis-
tribution has simple probability mass and cumulative distribution functions and statistical
properties such as mean, mode, skewness, kurtosis measures, mean deviation and also stress-
strength reliability are obtained in explicit forms. The DBL distribution provides an op-
portunity to model different types of the count data sets such over and under-dispersed.
We illustrate the importance of DBL distribution in first-order integer-valued autoregressive
(INAR(1)) process by applying the DBL distribution as an innovation process of INAR(1)
process, introduced by McKenzie (1985) [20] and Al-Osh and Alzaid (1987) [1]. INAR(1) pro-
cess is widely used to model time series of counts. Several researchers have done important
studies on the INAR(1) processes with more flexible innovation distributions. For instance,
Jazi et al. (2012) [14] introduced the INAR(1) process with geometric innovations (INAR(1)G)
to model the over-dispersed time series of counts. Similarly, Ĺıvio et al. (2018) [19] intro-
duced the INAR(1) process with Poisson-Lindley innovations (INAR(1)PL) for over-dispersed
time series of counts. More recently, Altun (2020a) [2] introduced a new generalization of
the geometric and demonstrated its performance in INAR(1) process. More recently, Altun
(2020b) [3] introduced a mixed Poisson distribution and defined a new INAR(1) process for
over-dispersed time series of counts.



Discrete Bilal distribution 503

The remaining parts of the presented study is organized as follows. The statistical
properties of the DBL distribution are obtained in Section 2. The parameter estimation of
the DBL distribution is discussed in Section 3. The INAR(1) process with DBL innova-
tions is introduced in Section 4 with its parameter estimation. In Section 5, we discuss the
finite-sample performance of the parameter estimation methods via two simulation studies.
In Section 6, three data sets are analyzed with DBL and other competitive models to prove
the importance of the DBL distribution practically. Section 7 deals with the concluding
remarks of the study.

2. THE DISCRETE-BILAL DISTRIBUTION

Recently, Abd-Elrahman (2013) [4] proposed a new flexible model, called Bilal (BL)
distribution. The cumulative distribution function (cdf) of the BL distribution is

(2.1) Π(x;β) = 1−
(
3− 2e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0.

The sf and probability density function (pdf) of (2.1) are given, respectively, by

(2.2) S(x;β) =
(
3− 2e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0,

(2.3) π(x;β) =
6
β

(
1− e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0.

Now, we introduce a DBL distribution by discretizing the sf of the BL distribution. Let the
parameter p = e

− 1
β , the cdf of DBL distribution is given by

(2.4) F (x; p) := F (X ≤ x) = 1−
(
3− 2px+1

)
p2(x+1), x = 0, 1, 2, 3, ...

The corresponding sf and pmf to (2.4) are given, respectively, by

(2.5) S(x; p) =
(
3− 2px+1

)
p2(x+1),

and

(2.6) f(x; p) := P (X = x) = 2(p3 − 1)p3x − 3(p2 − 1)p2x, x = 0, 1, 2, 3, ...

The pmf in (2.6) is log-concave for all values of p, where

(2.7)
f(x + 1; p)

f(x; p)
=

2px+6 − 2px+3 − 3p4 + 3p2

2px+3 − 3p2 − 2px + 3

is a decreasing function in x for all value of p. The possible pmf shapes of the DBL distribution
are displayed in Figure 1. These figures show that the DBL distribution has right-skewed
shapes and it has long right-tails.
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Figure 1: The pmf plots of the DBL distribution.

The hazard rate function (hrf) is

(2.8) h(x; p) =
2(p3 − 1)px − 3(p2 − 1)

3− 2px
, x ∈ N0,

where h(x; p) = fx(x;p)
R(x−1;p) . The reversed hazard rate function (rhrf) is

(2.9) r(x; p) =
2(p3 − 1)p3x − 3(p2 − 1)p2x

1− (3− 2px+1) p2(x+1)
, x ∈ N0,

where r(x; p) = fx(x;p)
F (x;p) . Figure 2 shows the hrf and rhrf plots for different values of the

parameter p.

It is clear that the hrf of the DBL distribution increases up to time t where 0 < t < x <∞,
whereas the hrf is constant after time t. Regarding to the rhrf, it is seen that it always
decreases for all x.

Suppose X1 and X2 are two independent random variables following the DBL distribu-
tion with the parameters p1 and p2, respectively. Let W = min(X1, X2) be a random variable
which has a hrf

hW (x; p1, p2) =
P (min(X1, X2) ≥ x)− P (min(X1, X2) ≥ x + 1)

P (min(X1, X2) ≥ x)

=
2(p3

1 − 1)px
1 − 3(p2

1 − 1)
3− 2px

1

+
2(p3

2 − 1)px
2 − 3(p2

2 − 1)
3− 2px

2

−
{
2(p3

1 − 1)px
1 − 3(p2

1 − 1)
}{

2(p3
2 − 1)px

2 − 3(p2
2 − 1)

}
(3− 2px

1) (3− 2px
2)

.(2.10)

The extra term h1(x; p1)h2(x; p2) arises because in the discrete case P (X1 = x,X2 = x) 6= 0,
where h1(x; p1) and h2(x; p2) are the hrfs of X1 and X2, respectively. The rest of this section
contains the statistical properties of the DBL distribution.
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Figure 2: The hrf and rhrf of the DBL distribution.

2.1. Mode

The mode of the DBL distribution is obtained by solving (2.11):

(2.11) 6(p3 − 1)p3x ln(p)− 6(p2 − 1)p2x ln(p) = 0.

By solving (2.11), we have

(2.12) Mode(X) =
ln(p + 1)− ln(p2 + p + 1)

ln(p)
.

As seen from (2.12), mode of the DBL distribution is an increasing function of the parameter p.

2.2. Moments, skewness and kurtosis

The probability generating function (pgf) of the DBL distribution is obtained as follows:

GX(s) =
∞∑

x=0

sxfx(x; p)

= 2
∞∑

x=0

(p3 − 1)
(
p3s
)x − 3

∞∑
x=0

(p2 − 1)
(
p2s
)x

=
2(p3 − 1)
1− p3s

− 3(p2 − 1)
1− p2s

,(2.13)



506 E. Altun, M. El-Morshedy and M. S. Eliwa

where
∑∞

x=0 aqx = a
1−q . Replacing s with es, the moment generating function (mgf) of the

DBL distribution is

(2.14) MX(s) =
2(p3 − 1)
1− p3es

− 3(p2 − 1)
1− p2es

.

Using the mgf, given in (2.14), we obtain the mean, variance, skewness and kurtosis of the
DBL distribution, given, respectively, by

E(X) =
p2(p2 + p + 3)

(p2 + p + 1)(1− p2)
,(2.15)

Var(X) =
p2(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)2(p2 − 1)2
,(2.16)

Sk(X) = −3p8 + 7p7 − 3p6 + 6p5 + 44p4 + 6p3 − 3p2 + 7p + 3
p(3p4 + 4p3 − p2 + 4p + 3)3/2

,(2.17)

and

Ku(X) =

3p12 + 10p11 + 19p10 + 72p9 + 224p8 + 206p7+
+ 21p6 + 206p5 + 224p4 + 72p3 + 19p2 + 10p + 3

[p(3p4 + 4p3 − p2 + 4p + 3)]2
.(2.18)

The behavior of the mean, variance, skewness and kurtosis are displayed in Figures 3.
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Figure 3: The mean, variance, skewness and kurtosis values of the DBL distribution.
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According to results in Figure 3, the following observations are obtained:

1. The mean and variance increase as p → 1;

2. The skewness and kurtosis decrease as p → 1;

3. The proposed distribution is suitable model for the positively skewed count data sets;

4. The proposed distribution is leptokurtic since its kurtosis is always greater than 3.

2.3. Dispersion index and coefficient of variation

The dispersion index (DI) is calculated as variance to mean ratio. When DI is greater
than 1, the distribution is over-dispersed, opposite case shows the under-dispersion. When
DI is equal to 1, the distribution is equi-dispersed. The coefficient of variation (CV) is also
very similar measure to DI. It is calculated as a ratio of the standard deviation to the mean.
The DI and CV measures of the DBL distribution are given, respectively, by

DI(X) =
(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)(p2 + p + 3)(1− p2)
,(2.19)

CV(X) =

√
3p4 + 4p3 − p2 + 4p + 3

p(p2 + p + 3)
.(2.20)

Figure 4 shows the DI and CV plots of the DBL distribution for various values of the model
parameter. It is observed that DI can be either smaller or larger than one.
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Figure 4: The DI and CV plots of the DBL distribution.
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2.4. Mean deviation

The mean deviation (MD) about the mean measures the amount of scatter in a popu-
lation. For a random variable X having a DBL distribution, the MD is defined as

MD(X) =
∞∑

x=0

|x− E(X)| f(x; p)

=
E(X)∑
x=0

(E(X)− x)f(x; p) +
∞∑

x=E(X)+1

(x− E(X))f(x; p)

= 2E(X)F (E(X); p) − 2
E(X)∑
x=0

xf(x; p)

= −2

p8+2p7+p6−2p5−4p4−2p3+p2+2p+1



−6p
p4+p3−6p2−3p−3
(p2+p+1)(p2−1) + 4p

p4+p3−9p2−4p−4
(p2+p+1)(p2−1)

+2p
2p4+2p3−9p2−5p−5

(p2+p+1)(p2−1) + 6p
2(2p4+2p3−3p2−3p−3)

(p2+p+1)(p2−1)

−4p
4p4+4p3−9p2−7p−7

(p2+p+1)(p2−1) + 6p
5p4+5p3−6p2−7p−7

(p2+p+1)(p2−1)

−2p
5p4+5p3−9p2−8p−8

(p2+p+1)(p2−1) + 3p
2(3p4+3p3−3p2−4p−4)

(p2+p+1)(p2−1)

−6p
2(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1) − 2p
3(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1)

−3p
−2(3p2+p+1)

(p2+p+1)(p2−1) + 2p
−3(3p2+p+1)

(p2+p+1)(p2−1)


.

The MD increases with p → 1.

2.5. Stress-strength reliability

Stress-strength reliability (SSR) analysis is widely used in reliability engineering.
Assume that both stress and strength are in the positive domain. Let Xstress ∼ DBL(p)
and Xstrength ∼ DBL(q). Then, the expected SSR can be expressed in a closed form as

(2.21) SSR := P [Xstress ≤ Xstrength] =
∞∑

x=0

fXstress(x; p)RXstrength
(x; q).

Using (2.5) and (2.6), we get

(2.22) SSR =
4q3(p3 − 1)
p3q3 − 1

+
6q2(1− p3)
p3q2 − 1

+
6q3(1− p2)
p2q3 − 1

+
9q2(p2 − 1)
p2q2 − 1

.

Figure 5 shows the SSR for various values of the parameters p and q. According to Figure 5,
we concluded that:

(i) The SSR increases for q → 1 with fixed value of p ;

(ii) The SSR decreases for p → 1 with fixed value of q.
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Figure 5: The SSR utilizing the DBL distribution.

2.6. Order statistics

Let x1:n, x2:n, ..., xn:n be the order statistics of a random sample from the DBL distri-
bution. The cdf of i-th order statistics for an integer value of x is given by

Fi:n(x; p) =
n∑

k=i

(
n
k

)
[Fi(x; p]k [1− Fi(x; p)]n−k

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) [Fi(x; p)]k+j

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) Fi(x; p, k + j),(2.23)

where Υ(n,k)
(m) := (−1)j

(
n
k

)(
n−k

j

)
and Fi(x; p, k + j) =

[
1−

(
3− 2px+1

)
p2(x+1)

]k+j

represents the cdf of the exponentiated DBL distribution with power parameter k + j.
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The corresponding pmf to (2.23) is given by

fi:n(x; p) = Fi:n(x; p)− Fi:n(x− 1; p)

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) fi(x; p, k + j),(2.24)

where fi(x; p, k + j) represents the pmf of the exponentiated DBL distribution with power
parameter k + j. Thus, the b-th moments of Xi:n can be written as

(2.25) E(Xb
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

Υ(n,k)
(m) xbfi(x; p, k + j).

3. ESTIMATION METHODS

We use two estimation methods to estimate the unknown parameter of the DBL distri-
bution. These methods are maximum likelihood estimation (MLE) and method of moments
(MM).

3.1. Maximum likelihood estimation

Let X1, X2, ..., Xn be random variables from the DBL distribution. The log-likelihood
function (L) of the DBL distribution is

(3.1) L(x; p) = n ln(p− 1) + 2 ln p

n∑
i=1

xi +
n∑

i=1

ln
[
2pxi

(
p2 + p + 1

)
− 3p− 3

]
.

By differentiating (3.1) with respect to the parameter p, we have the following equation:

(3.2)
n

p− 1
+

2
p

n∑
i=1

xi +
n∑

i=1

2pxi (2p + 1) + 2xip
xi−1

(
p2 + p + 1

)
− 3

2pxi (p2 + p + 1)− 3p− 3
= 0.

The solution of the above equation gives MLE of the parameter p. However, it is not possible
to obtain the exact form of the MLE of the parameter p since the equation has non-linear
functions. For this reason, it has to be solved numerically. The other possible way to obtain
the MLE of the parameter p is to direct minimization of the negative log-likelihood function.
To do this, we use the constrOptim function of R software.

3.2. Moment estimation

The MM estimator of the parameter p is obtained by solving

(3.3)
p2(p2 + p + 3)

(p2 + p + 1)(p2 − 1)
− x̄ = 0,

where x̄ =
n∑

i=1
xi/n. We use nleqslv to solve (3.3).
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4. INAR(1) PROCESS WITH DBL INNOVATIONS

Time series of counts arise in different fields such as econometrics, actuarial and medical
sciences. For instance, yearly incidents of terrorism, daily number of doctor visits, yearly
number of traffic accidents and among others. McKenzie (1985) [20] and Al-Osh and Alzaid
(1987) [1] introduced the INAR(1) process with Poisson innovations to analyze these kind of
data sets. It is said that {Xt}t∈Z follows a stable INAR(1) process if

(4.1) Xt = α ◦Xt−1 + εt, t ∈ Z,

where 0 ≤ α < 1. The innovation process, {εt}t∈Z, constitutes a sequence of the independent
and identically distributed (iid) discrete random variables. The mean and variance of the
innovation process are E (εt) = µε and Var (εt) = σ2

ε , respectively. This model was shortly
denoted as INAR(1)P process. Note that the innovations, {εt}t∈Z, are independent from
Xt−k, k ≥ 1. The binomial thinning operator, ◦, is defined by

(4.2) α ◦Xt−1 :=
Xt−1∑
j=1

Wj ,

where {Wj}j≥1 is a sequence of iid Bernoulli random variables with probabilities Pr (Wj = 1) =
1− Pr (Wj = 0) = α. The one-step transition probability of the INAR(1) process is

(4.3) Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=1

Pr (Bα
l = i) Pr (εt = k − i) , k, l ≥ 0,

where Bα
n ∼ Binomial(α, n) and α ∈ [0, 1). According to the works of Al-Osh and Alzaid

(1987) [1] and McKenzie (1985) [20], we introduce a new INAR(1) model with a more flexible
innovation distribution. We assume that the innovations follow a DBL distribution with
parameter p. We call this process as INAR(1)DBL. Since the dispersion of the DBL can
be under or over the value 1, the INAR(1)DBL can be used to model both under-dispersed
and over-dispersed time series of counts. Using (4.3), the one-step transition probability of
INAR(1)DBL process is given by

γi,j = Pr (Xt = k|Xt−1 = l)

=
min(k,l)∑

i=1

(
l
i

)
αi(1− α)l−i

[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
.(4.4)

The equation in (4.4) represents the one-step transition probability of the process from state
l to state k. The marginal probability function of the INAR(1)DBL process is

γj = Pr (Xt = k)

=
∞∑
l=0

γij Pr (Xt−1 = l)

=
∞∑
l=0

min(k,l)∑
i=1

(
l
i

)
αi(1− α)l−i

[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
γi,(4.5)
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where k = 0, 1, 2, ..., (see Jazi et al., 2012 [14]). Following the results given in Al-Osh and
Alzaid (1987) [1], we obtain the mean, variance and DI of the INAR(1)DBL process and
given, respectively, by

µX =
p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2) (1− α)

,(4.6)

σ2
X =

α

α2 − 1

(
3p2

(
p2 − 1

)
(p2 − 1)2

−
2p2

(
p2 − 1

)
(p3 − 1)2

)
−

p2
(
3p4 + 4p3 − p2 + 4p + 3

)
(α2 − 1) (p4 + p3 − p− 1)2

,(4.7)

DIX =
(

α− 3 p4 + 4 p3 − p2 + 4 p + 3
p6 + 2 p5 + 4 p4 + 2 p3 − 2 p2 − 4 p− 3

)
(α + 1)−1 .(4.8)

According to Al-Osh and Alzaid (1987) [1], the conditional expectation and variance of
INAR(1)DBL process are given, respectively, by

E (Xt|Xt−1) = αXt−1 +
p2(p2 + p + 3)

(p2 + p + 1)(1− p2)
,(4.9)

Var (Xt|Xt−1) = α (1− α) Xt−1 +
p2(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)2(p2 − 1)2
.(4.10)

4.1. Estimation of INAR(1)DBL process

Bourguignon et al. (2019) [5] and Ĺıvio et al. (2018) [19] used three estimation methods
to obtain the parameters of INAR(1) process defined under different innovation distributions.
These methods are conditional least squares (CLS), Yule-Walker (YW) and the conditional
maximum likelihood (CML) estimation methods. They compared the finite sample per-
formance of these estimation methods for different sample sizes and parameter settings and
concluded that CML estimation method provides better results than CLS and YW estimation
methods. Here, we use these three estimation methods to obtain the unknown parameters
of the INAR(1)DBL process. However, there are no explicit forms for the CLS and YW
estimators of the INAR(1)DBL process because of the non-linearity of the equations.

Conditional maximum likelihood

The conditional log-likelihood function of the INAR(1)DBL process is

` (ΘΘΘ) =
T∑

t=2

ln [Pr (Xt = k|Xt−1 = l)]

=
T∑

t=2

ln

 min(xt,xt−1)∑
i=0

(
xt−1

i

)
αi(1− α)xt−1−i

×
{
2
(
p3 − 1

)
p3(xt−i) − 3

(
p2 − 1

)
p2(xt−i)

}
 ,(4.11)

where Θ = (αcml, pcml) is the unknown parameter vector. The CML estimator of Θ, say Θ̂
can be obtained by maximizing the equation (4.11). It is well-known that the maximization
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of (4.11) is equivalent to minimization of the negative of (4.11). Minimization of the negative
of (4.11) could be done by using different software such as R, MATLAB, C++ or S-Plus. Here,
we prefer constrOptim function of R software to minimize the negative of (4.11). Note that
the CML estimators are asymptotically normal and consistent under the regularity conditions
(Bourguignon et al., 2019 [5]).

Yule-Walker

The YW estimators are obtained by simultaneous solution of the equations for the
theoretical and empirical moments of the INAR(1)DBL process. The autocorrelation function
(ACF) of the INAR(1) process at lag h is ρX (h) = αh, and ρX (1) = α for h = 1. Therefore,
the YW estimator of the parameter α is

(4.12) α̂Y W =

T∑
t=2

(
Xt − X̄

) (
Xt−1 − X̄

)
T∑

t=1

(
Xt − X̄

)2 .

The YW estimator of the parameter p, say p̂Y W , can be obtained by solving

(4.13)
p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2) (1− α̂Y W )

= X̄,

where X̄ =
T∑

t=1
Xt

/
T . However, it is not possible to obtain the explicit forms of the YW

estimators of the parameter p. Therefore, (4.13) has to solved numerically by using the
software such as R or MATLAB. We use the uniroot function of the R software to obtain p̂Y W .

Conditional least squares

The CLS estimators of the parameters α and p can be obtained by minimizing

(4.14) S (η) =
T∑

t=2

(Xt − E (Xt|Xt−1))
2,

where η = (αcls, pcls) and E (Xt|Xt−1) is given in (4.9). Replacing E (Xt|Xt−1) with (4.9)
in (4.14), we have

(4.15) S (η) =
T∑

t=2

(
Xt − αXt−1 −

p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2)

)2

.
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The derivatives of (4.15) with respect to the parameters α and p and equating them to zero,
we have

∂S (η)
∂p

=
T∑

t=2

−
12 p

(
Xt − α Xt−1 +

p2 (p2+p+3)
(p2−1) (p2+p+1)

) (
p4 + p3 + p2 + p + 1

)
(−p4 − p3 + p + 1)2

= 0,(4.16)

∂S (η)
∂α

=
T∑

t=2

−2 Xt−1

(
Xt − α Xt−1 +

p2
(
p2 + p + 3

)
(p2 − 1) (p2 + p + 1)

)
= 0.(4.17)

The simultaneous solutions of (4.16) and (4.17) give the CLS estimators of the parameter α

and p. However, since the mean of the DBL distribution has non-linear functions, it is not
possible to obtain the pcls in explicit form. However, when the parameter p is known, the
CLS estimator of the parameter α is

(4.18) α̂cls =
T∑

t=2

(Xt + 1)
(
p4 + p3

)
−Xt (p + 1) + 3p2

(p4 + p3 − p− 1) Xt−1
,

where p can be replaced with p̂cml (see, Bourguignon et al., 2019 [5]).

5. SIMULATION STUDIES

Here, two simulation studies are given to evaluate the parameter estimation perfor-
mance of proposed models.

5.1. Simulation of DBL model

The finite-sample performances of the MLE and MM methods are compared for small
and large sample sizes based on the simulation study. The below simulation steps are used
for this goal:

1. Generate N = 10,000 samples of size n = 20, 50, 100, 200 and 500 from DBL(0.1),
DBL(0.5) and DBL(0.7), respectively.

2. Using each generated sample, compute the MLE and MM estimator of the param-
eter p, say p̂j where j = 1, 2, ..., 10,000.

3. Compute the biases, mean-squared errors (MSEs) and mean relative errors (MREs)
using the following equations:

Bias(p) =
1
N

N∑
j=1

(p̂j − p) , MSE(p) =
1
N

N∑
j=1

(p̂j − p)2 and MRE =
1
N

N∑
j=1

p̂j

pj
.
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The simulation results are reported in Table 1. The following remarks are obtained
according to the results in Table 1:

1. The estimated biases always decrease and near the zero when n →∞.

2. The estimated MSEs decrease and near the zero when n →∞.

3. The estimated MREs are near the desired value, 1, especially for large sample sizes.

4. Both estimation methods work well for estimating the parameter p and produce
similar results.

Similar results can be obtained for different values of the parameter p.

Table 1: The simulation results of DBL distribution.

Parameter
Sample

size
Bias MSE MRE

MLE MM MLE MM MLE MM

20 −0.036585 −0.036506 0.006924 0.006926 0.634153 0.634937
50 −0.016756 −0.016717 0.003237 0.003238 0.832445 0.832833

p = 0.1 100 −0.006808 −0.006800 0.001424 0.001424 0.931918 0.932002
200 −0.002833 −0.002825 0.000523 0.000523 0.971665 0.971747
500 −0.002338 −0.002341 0.000196 0.000196 0.976622 0.976590

20 −0.008975 −0.008716 0.003892 0.003873 0.982050 0.982567
50 −0.002803 −0.002843 0.001605 0.001610 0.994394 0.994314

p = 0.5 100 −0.001900 −0.001884 0.000682 0.000682 0.996201 0.996231
200 −0.000803 −0.000765 0.000317 0.000317 0.998394 0.998470
500 −0.000145 −0.000146 0.000150 0.000151 0.999101 0.999089

20 −0.004901 −0.004959 0.001647 0.001647 0.992999 0.992915
50 −0.001908 −0.001971 0.000700 0.000702 0.997275 0.997184

p = 0.7 100 −0.000833 −0.000854 0.000330 0.000329 0.998810 0.998780
200 −0.000734 −0.000764 0.000170 0.000170 0.998952 0.998909
500 −0.000856 −0.000859 0.000075 0.000075 0.998777 0.998773

5.2. Simulation of INAR(1)DBL process

We carry out a simulation study to evaluate the asymptotic behaviours of the CML,
YW and CLS estimators of INAR(1)DBL process for small and sufficiently large sample
sizes. The number of simulation replications is N = 10,000 and three sample sizes are used:
n = 25, 50 and 100. Four parameter vectors are also used. These are (α = 0.3, p = 0.9),
(α = 0.5, p = 0.5), (α = 0.2, p = 0.3) and (α = 0.7, p = 0.6). The biases, MSEs and MREs
are used to evaluate the simulation results.

We expect that when the sample size is sufficiently large, the biases and MSEs near the
zero and MREs are near the one. The simulation results are summarized in Table 2. As seen
from the simulation results, the results of the CML and YW estimation methods are very
near each other. However, the CML estimation method approaches to the desired values of
the biases, MSEs and MREs more faster than those of the CLS and YW estimation methods.
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The performance of the CML method is better than the CLS and YW estimation methods
for both small and sufficiently large sample sizes. Therefore, we suggest to use the CML
estimation to obtain the unknown parameters of the INAR(1)DBL process.

Table 2: Simulation results of INAR(1)DBL process.

Sample
size

Parameters
CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

α = 0.3, p = 0.9

n = 25
α −0.0020 0.0092 0.9959 −0.1239 0.0469 0.7620 −0.1198 0.0494 0.7768
p −0.0055 0.0016 0.9931 0.0209 0.0028 1.0261 0.0187 0.0030 1.0234

n = 50
α −0.0032 0.0042 0.9936 −0.0686 0.0195 0.8629 −0.0685 0.0203 0.8631
p −0.0010 0.0007 0.9987 0.0140 0.0014 1.0175 0.0132 0.0016 1.0165

n = 100
α −0.0003 0.0023 0.9993 −0.0270 0.0088 0.9461 −0.0257 0.0090 0.9487
p −0.0016 0.0004 0.9980 0.0038 0.0008 1.0048 0.0035 0.0009 1.0043

α = 0.5, p = 0.5

n = 25
α −0.0295 0.0257 0.9409 −0.1326 0.0533 0.7444 −0.1286 0.0579 0.7524
p 0.0002 0.0049 1.0003 0.0356 0.0079 1.0713 0.0333 0.0087 1.0665

n = 50
α −0.0122 0.0112 0.9756 −0.0623 0.0207 0.8754 −0.0616 0.0218 0.8768
p 0.0014 0.0024 1.0029 0.0196 0.0035 1.0392 0.0193 0.0039 1.0386

n = 100
α −0.0025 0.0054 0.9950 −0.0310 0.0095 0.9380 −0.0310 0.0100 0.9381
p −0.0010 0.0013 0.9979 0.0096 0.0020 1.0192 0.0098 0.0021 1.0197

α = 0.2, p = 0.3

n = 25
α −0.0285 0.0304 0.9661 −0.0910 0.0513 0.9550 −0.0814 0.0599 1.0285
p −0.0076 0.0046 0.9924 0.0033 0.0047 1.0111 −0.0007 0.0064 1.0053

n = 50
α −0.0276 0.0222 0.9762 −0.0502 0.0290 0.8860 −0.0493 0.0298 0.8980
p −0.0049 0.0023 0.9838 −0.0009 0.0023 0.9969 −0.0014 0.0024 0.9954

n = 100
α −0.0141 0.0116 0.9896 −0.0206 0.0135 0.9221 −0.0198 0.0134 0.9253
p −0.0017 0.0011 0.9944 −0.0006 0.0012 0.9980 −0.0007 0.0011 0.9976

α = 0.7, p = 0.6

n = 25
α −0.0134 0.0082 0.9808 −0.1689 0.0591 0.7590 −0.1657 0.0637 0.7649
p −0.0073 0.0047 0.9878 0.0667 0.0119 1.1112 0.0610 0.0141 1.1017

n = 50
α −0.0058 0.0036 0.9917 −0.0855 0.0216 0.8779 −0.0856 0.0227 0.8777
p −0.0014 0.0021 0.9977 0.0401 0.0063 1.0669 0.0396 0.0069 1.0660

n = 100
α −0.0051 0.0019 0.9928 −0.0433 0.0079 0.9381 −0.0434 0.0083 0.9380
p −0.0006 0.0011 0.9990 0.0208 0.0029 1.0346 0.0207 0.0031 1.0345

6. EMPIRICAL STUDIES

This section is devoted to illustrate the importance of the DBL distribution by analyzing
the three real data sets with proposed and competitive models. The performance of fitted
models are compared using goodness-of-fit criteria, Kolmogorov-Smirnov (K-S) test with its
corresponding p-value.
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6.1. Number of fires in Greece

The first data set deals with the number of fires in Greece for the period from
1 July 1998 to 31 August 1998. This data set was reported by Karlis and Xekalaki (2001) [16]
and also is given in the Appendix. The performance of the DBL distribution is compared
with competitive models listed in Table 3.

Table 3: The competitive models of the DBL distribution.

Distribution Abbreviation Author(s)

Geometric Geo —
Discrete Lindley DLi Gómez-Déniz and Caldeŕın-Ojeda (2011) [12]
Discrete Rayleigh DR Roy (2004) [28]
Discrete inverse Rayleigh DIR Hussain and Ahmad (2014) [13]
Discrete Pareto DPa Krishna and Pundir (2009) [17]
Poisson Poi Poisson (1837) [27]
Discrete generalized exponential type II DGE-II Nekoukhou et al. (2013) [22]
Discrete Weibull DW Nakagawa and Osaki (1975) [21]
Discrete inverse Weibull DIW Jazi et al. (2010) [15]
Discrete Burr type II DB-XII Para and Jan (2016a) [24]
Exponentiated discrete Lindley EDLi El-morshedy et al. (2019) [10]
Discrete log-logistic DLog-L Para and Jan (2016b) [25]
Exponentiated discrete Weibull EDW Nekoukhou and Bidram (2015) [23]

Tables 4 and 5 contain the MLEs of the parameters for each fitted distribution with
their standard errors (std-er). The asymptotic confidence intervals (CI) and the results of
the goodness-of-fit test are also reported in these tables.

Table 4: The MLEs, CIs, K-S and p-values of fitted models with one-parameter
for the number of fires in Greece.

Statistic
Model

DBL Geo DLi DR DIR DPa Poi

MLEp 0.867 0.844 0.741 0.980 0.018 0.546 5.398
Std-erp 0.008 0.013 0.014 0.023 0.007 0.029 0.209

95% CI
Lowerp 0.852 0.818 0.712 0.935 0.004 0.488 4.988
Upperp 0.883 0.869 0.769 1.00 0.033 0.605 5.809

K-S 0.096 0.164 0.097 0.183 0.429 0.355 0.854
p-value 0.202 0.003 0.198 < 0.001 0 < 0.001 0

According to Tables 4 and 5, two model provide the sufficient results for analyzing
the number of fires in Greece since the p-values of these models are greater than 0.05.
These are DBL and DLi distributions. However, DBL distribution has the smallest value of
K-S statistic and the largest p-value among all competitive models as well as DLi distribution.
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Table 5: The MLEs, CIs, K-S and p-values of fitted models with two and more parameters
for the number of fires in Greece.

Statistic
Model

DGE-II DW DIW DB-XII EDLi DLog-L EDW

MLEp 0.822 0.879 0.079 0.761 0.766 4.226 0.860
Std-erp 0.019 0.023 0.022 0.043 0.021 0.389 0.099

95% CI
Lowerp 0.785 0.835 0.035 0.677 0.725 3.462 0.665
Upperp 0.859 0.924 0.123 0.845 0.808 4.989 1.055

MLEα 1.255 1.131 1.035 2.503 0.797 1.717 1.081
Std-erα 0.175 0.082 0.079 0.487 0.113 0.138 0.238

95% CI
Lowerα 0.912 0.969 0.881 1.548 0.575 1.446 0.615
Upperα 1.598 1.292 1.189 3.457 1.018 1.988 1.549

MLEθ — — — — — — 1.092
Std-erθ — — — — — — 0.448

95% CI
Lowerθ — — — — — — 0.214
Upperθ — — — — — — 1.969

K-S 0.130 0.123 0.208 0.299 0.124 0.149 0.125
p-value 0.031 0.047 < 0.001 < 0.001 0.046 0.009 0.042

Figures 6 and 7 show the estimated cdfs and probability-probability (PP) plots. These figures
support the results reported in Tables 4 and 5.
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Figure 6: The estimated CDFs of fitted models.

Figure 8 shows the log-likelihood profile of p̂ where L = −346.902. It is found that the
log-likelihood profile of p̂ is unimodal-shaped. Thus, this estimator is a unique and considered
the best for the used data set.

Table 6 shows the results of MM method for the DBL parameter. It is clear that MM
method works well for estimating the parameter p.
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Figure 7: The PP plots of fitted models.

Figure 8: The log-likelihood profile of p̂ for the number of fires in Greece data set.

Table 6: The estimated parameter of DBL distribution with MM method.

Method
Measure

bp K-S p-value

MM 0.868 0.095 0.220
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Using the MM estimator of the parameter of p, the statistical properties of DBL distri-
bution such as mean, mode, variance, DI, MD, CV, skewness and kurtosis values are listed
in Table 7.

Table 7: The statistical properties of DBL distribution for the number of fires in Greece.

Method
Measure

Mean Mode Variance DI MD CV Skewness Kurtosis

MM 5.3867 2.3936 18.1002 3.3601 3.2218 0.7897 1.4837 6.4127

6.2. Failure times

The data used represents the failure times for a sample of 15 electronic components in
an acceleration life test (see Lawless, 2003 [18]). The performance of the DBL distribution
is compared with discrete flexible model with one parameter (DFx-I), Geo, DR, DIR, DPa,
DGE-II, DIW, DLog-L, DB-XII and discrete Lomax (DLo) distributions. The results of the
fitted models with goodness-of-fit test are given in Tables 8 and 9.

Table 8: The MLEs, CIs, K-S and p-values of fitted models with one-parameter
for the failure times data.

Statistic
Model

DBL DFx-I Geo DR DIR DPa

MLEp 0.971 0.973 0.965 0.999 1.8×10−7 0.720
Std-erp 0.005 0.006 0.009 2.58×10−4 0.055 0.061

95% CI
Lowerp 0.960 0.961 0.948 0.998 0 0.600
Upperp 0.981 0.985 0.982 0.999 0.107 0.839

K-S 0.114 0.146 0.177 0.216 0.698 0.405
p-value 0.978 0.864 0.673 0.433 9.1×10−7 0.009

Table 9: The MLEs, CIs, K-S and p-values of fitted models with two-parameters
for the failure times data.

Statistic
Model

DGE-II DIW DLog-L DB-XII DLo

MLEp 0.956 2.2×10−4 21.463 0.975 0.012
Std-erp 0.013 7.75×10−4 5.387 0.051 0.039

95% CI
Lowerp 0.930 0 10.904 0.874 0
Upperp 0.981 0.001 32.021 1 0.088

MLEα 1.491 0.875 1.791 13.367 104.506
Std-erα 0.535 0.164 0.388 27.785 84.409

95% CI
Lowerα 0.441 0.554 1.031 0 0
Upperα 2.540 1.196 2.551 67.824 269.947

K-S 0.129 0.209 0.136 0.388 0.205
p-value 0.937 0.482 0.913 0.015 0.491
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It is found that the DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo distributions
work quite well besides the DBL distribution. But the DBL distribution is the best among
all tested models because it has the smallest value of K-S as well as it has the highest p-value.
Figures 9 and 10 show the estimated cdfs and PP plots for the failure times data.
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Figure 9: The estimated cdfs for the failure times data.
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Figure 10: The PP plots for the failure times data.
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It is clear that the DBL, DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo distributions
are suitable choices for this data set. However, the DBL distribution is the best choice since
it has lowest value of the K-S test statistic. Figure 11 shows the TTT plot and log-likelihood
profile of p̂, where L = −64.784.
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Figure 11: The TTT plot (left panel) and log-likelihood profile of p̂ (right panel)
for the failure times data.

Regarding Figure 11, it is clear that the shape of the hrf can be increasing and the
log-likelihood profile of p̂ is unimodal-shaped. Table 10 shows the estimation of the proposed
model using the MM for the failure times data.

Table 10: Estimation and goodness of fit test for the failure times data.

Method
Statistic

p K-S p-value

MM 0.971 0.109 0.994

According to the p-value of the K-S test, MM method works quite well besides the
MLE method for estimating the unknown parameter. But the MM is the best. Using the
MM estimator of the parameter p, some statistics of the DBL distribution are reported in
Table 11.

Table 11: Some descriptive statistics for data set II.

Method
Statistic

Mean Mode Variance DI MD CV Skewness Kurtosis

MM 27.816 13.284 417.044 14.992 15.533 0.734 1.493 6.442

The data herein is suffering from over dispersion phenomena as DI > 1. Furthermore, it is
moderately skewed right with leptokurtic.
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6.3. Burglary crimes

The performance of the INAR(1)DBL process is compared with the INAR(1)P,
INAR(1)PL and INAR(1)G processes. The one-step translation probabilities of the com-
petitive INAR(1) models are given below:

1. INAR(1)P

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=0

(
l
i

)
αi(1− α)l−i exp (−λ) λk−i

(k − i)!
, λ > 0.

2. INAR(1)PL

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=0

(
l
i

)
αi(1− α)l−i θ

2 (k − i + θ + 2)

(θ + 1)k−i+3
, θ > 0,

3. INAR(1)G

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=1

(
l
i

)
αi(1− α)l−i

[
p(1− p)k−i

]
, 0 < p < 1.

The CML estimation method is used to obtain unknown parameters of INAR(1)DBL,
INAR(1)PL, INAR(1)G and INAR(1)P models. To decide the best model, two information
criteria are used: Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).
The smallest values of AIC and BIC and indicate the best fitted model on the data set.

The series of monthly counts of burglary crimes in the 22th police car beat in Pittsburgh
is used to compare the performance of INAR(1)DBL, INAR(1)PL, INAR(1)G and INAR(1)P
processes. The data set consists of 144 monthly observations between the date of January 1990
and December 2001 and is given in the Appendix. The data set can be also found in
http://www.forecastingprinciples.com/index.php/crimedata. The mean, variance and
DI values of the used data set are 6.111, 13.372 and 2.188, respectively. It is clear that
monthly counts of burglary crimes exhibit over-dispersion. So, the innovation distribution of
INAR(1) process should be able to model over-dispersion. Therefore, INAR(1) process with
DBL innovations could be a good choice to model these data set.

The autocorrelation function (ACF) and partial ACF plots of the used data set are
displayed in Figure 12. As seen from these plots, ACF has clear cut-off after the first lag.
Therefore, AR(1) process could be a good choice for analyzing these data set.

The estimated parameters of the fitted INAR(1) process and model selection criteria
are listed in Table 12. Since the INAR(1)DBL model has the smaller values of AIC and BIC
statistics than those of INAR(1)P, INAR(1)PL and INAR(1)G processes, the INAR(1)DBL
process provides better fits than other competitive INAR(1) processes. More importantly,
the obtained DI value of INAR(1)DBL process is very near the empirical one. It is obvious
that INAR(1)DBL astoundingly explains the characteristics of the data set.

http://www.forecastingprinciples.com/index.php/crimedata
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Figure 12: The plots of monthly counts of burglary crimes
and its corresponding ACF and PACF plots.

Table 12: The CML estimates of INAR(1)DBL and INAR(1)P process
and goodness-of-fit statistics.

Model Parameters Estimate Std-er AIC BIC µX σ2
X DI

INAR(1)DBL
α 0.3032 0.0467

733.1232 739.0628 6.1505 14.6336 2.3792
p 0.8402 0.0121

INAR(1)PL
α 0.3842 0.0365

739.8960 745.8356 6.1731 17.4559 2.8277
θ 0.4451 0.0147

INAR(1)G
α 0.4319 0.0376

747.7226 753.6622 6.1649 21.2445 3.4460
p 0.2221 0.0192

INAR(1)P
α 0.1952 0.0194

778.3730 784.3126 6.1381 6.1381 1
λ 4.9402 0.0537

Empirical 6.1111 13.3722 2.1882
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Additionally, the residual analysis is conducted to evaluate the accuracy of the fitted
INAR(1)DBL model for the data used. The Pearson residuals of the INAR(1)DBL process
are given by

(6.1) rt =
Xt − E (Xt|Xt−1)

Var(Xt|Xt−1)
1/2

where E (Xt|Xt−1) and Var (Xt|Xt−1) are defined in (4.9) and (4.10), respectively. When the
fitted INAR(1) process is valid for the modeled data, the Pearson residuals should have zero
mean and unit variance as well as uncorrelated. The Pearson residuals of the INAR(1)DBL
process are calculated by using (6.1). The mean and variance of these residuals are obtained
as 0.0005 and 0.9917, respectively. The obtained values of the mean and variance of the
Pearson residuals are very closed to the desired values. Moreover, the predicted values of the
burglary crimes and the ACF plot of the Pearson residuals are displayed in Figure 13 which
ensures that the residuals are uncorrelated.
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Figure 13: The predicted values of the burglary crimes (left)
and the ACF plot of the Pearson residuals (right).

7. CONCLUSIONS

A new one-parameter discrete model is introduced. The statistical properties of pro-
posed model are studied extensively. Two parameter estimation method are used. These are
the maximum likelihood and method of moments estimation methods. The relative efficiency
of parameter estimation methods are discussed via simulation study. Three applications to
three real data sets are given to convince the readers in favour of DBL model. Empirical
findings show that the DBL model is an attractive model and produce more reliable results
than other its counterparts. More importantly, INAR(1) process with DBL innovations pro-
duce better results than INAR(1)P model in case of over-dispersion. We hope that DBL
distribution gains much more attention and is applied to wider range of application fields.
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A. APPENDIX

The data set used in Section 6.1:

Number of fires: 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43
Observed values: 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

The data set used in Section 6.2:

1.0, 5.0, 6.0, 11.0, 12.0, 19.0, 20.0, 22.0, 23.0, 31.0, 37.0, 46.0, 54.0, 60.0, 66.0

The data set used in Section 6.3:

4 4 16 12 11 12 20 7 4 5 5 6 8 3 5 3 4 5 19 7
12 9 6 3 9 4 4 4 10 3 5 10 9 12 15 8 9 9 9 8
3 3 7 6 2 5 6 5 10 7 5 2 8 1 8 4 5 8 6 13
9 9 6 11 9 2 5 4 2 1 6 4 3 7 5 2 8 8 4 3
4 2 5 10 2 14 16 3 3 4 4 3 7 4 14 5 9 5 5 7
4 7 8 12 9 2 4 5 2 7 6 5 4 1 3 5 3 3 6 6

10 4 2 4 2 2 2 1 7 6 4 2 2 4 7 7 3 3 7 4
7 3 8 11
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