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1. INTRODUCTION

Spectral data are characterized by a large number of interrelated measurements, in-
tensities and absorptions, which are regularly recorded across a range of wavelengths. They
are recorded by means of modern instruments and are often used as predictors in regression
problems. In near infra-red (NIR) spectroscopy, in the food industry, for instance, samples
of meat are analyzed for their fat content, and their NIR spectra are then used to predict
fat concentration. Similar applications may be found in agriculture for the determination of
properties of grains, in oil industry, in the analysis of pharmaceuticals, etc.

Using the spectral measurements as predictors in a regression problem limits traditional
regression methods and implies the use of high-dimensional regression techniques. Partial
least squares (PLS) regression has been for a long time implemented to deal with such regres-
sion problems, see [1]. PLS methods are based on reducing the dimension of the regression
problem to a small-m number of factors rather than a large-p number of variables. This is
achieved using information on the response variable, making PLS regression models excellent
for prediction purposes.

More than twenty years have passed since the first smooth PLS regression has been
presented in [2]. The authors have been motivated by non-parametric regression techniques
in [3], and established the link between PLS regression and functional data analysis. This link
resulted in numerous publications on PLS regression for functional data; see [4, 5, 6, 7, 8, 9].
The increasing interest in using functional data techniques for spectral applications stems
from the fact that spectral data are indeed functional. NIR spectra, for example, are discrete
instances of the chemical spectrum of a sample on a range of different wavelengths. This
is illustrated in Figure 1 for 60 gasoline samples for which their spectral measurements are
recorded at every two nanometers (nm) from 900 to 1700 nm. They are discrete values of
continuous functions which are also smooth. Following [2] the extracted factor loadings should
resemble to the spectra, and therefore should exhibit some degree of smoothness; the same
holds for the regression solution. The gasoline samples data together with other two spectral
data sets will be used in the examples that follow.

Figure 1: Gasoline data: Spectral data for 60 gasoline samples measured from 900 to 1700
nanometers (nm). The spectral data are registered every two nanometers.
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We revisit smooth PLS regression after a short overview on PLS regression given in
Section 2. Two smooth PLS regression using wavelets are presented in Section 3 and Section 4.
Their theoretical properties are investigated in Section 5; proofs are given in the Appendix.
In Section 6 three well-known NIR data sets are revisited in order to illustrate smooth PLS
regression. Focus is mainly given on NIR applications. Nevertheless, the presented smooth
PLS regression alternative naturally applies to other spectral data, as well. Conclusions are
given in Section 7.

Throughout the paper bold face lower and upper case letters are used for vectors and
matrices, respectively. The number of samples will be denoted by n while the number of
predictors by p. The subscript m is used to denote the dimension of the PLS regression
models, while the hat suffix is used for least squares fitted vectors. Further notations are
introduced when needed.

2. PLS REGRESSION

Working within a linear model framework for regression problems the following linear
model is assumed:
(2.1) yi = µ+ x′iβ + εi , i = 1, ..., n ,
where yi is the observed response for sample i, xi are p-vectors of explanatory variables,
β is the unknown p-vector of regression parameters, and εi the error term of the regression
model. Without loss of generality we assume data to be centred to zero and therefore we
freely assume µ = 0. Using matrix notation: X = (x1, ...,xp) stands for the data matrix with
predictors in its columns, y is the response vector, and β ∈ Rp is the unknown regression
coefficient vector commonly estimated using least squares.

When the number of predictors (p) is large relative to the sample size (n) and/or the
predictors are correlated, the least squares solution, when it exists, is highly variable due to
rank deficiency of the data matrix X. When n < p the least squares solution doesn’t even
exist. In such cases, PLS regression offers an alternative by solving the regression problem
after reducing its dimension; from hundreds of correlated predictors xj , j = 1, ..., p, to a small
set of orthogonal components tm with m << p. These are linear combination of the original
predictors, and are used in the final regression on the response. PLS regression, therefore,
iteratively approximates the least squares solution from a sequence of subspaces indexed by
m ≤ p. Using m orthogonal components in the final model, PLS regression lets for bias to
decrease variance, and allows for a low mean square error for the final regression solution.

The restriction of orthogonal components may be relaxed in order to get PLS regres-
sion on orthogonal loadings. This has given rise to two different implementations of PLS
regression, see [10] and [11]. The two algorithms are equivalent for prediction purposes; for a
proof see [12]. Both PLS regression algorithms deflate data at each iteration, and X-residuals
and y-residuals are used instead of X and y when m > 1. These are least squares residuals
and will be denoted hereafter by Em and fm, respectively, while we let E0 = X and f0 = y.
An important simplification when the response is a vector is the following: deflating y is
not necessary; see [1]. More efficient computational algorithms for PLS regression without
X-data deflation have been proposed in [13] and [14]. We provide in Algorithm 1 a sketch of
the PLS regression on orthogonal loadings; see [11]. This implementation will be used in the
PLS regression calculations throughout the rest of the paper.
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Algorithm 1 – Partial least squares regression on orthogonal loadings. |
Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y .

For m = 1, 2, ..., k ≤ p

1. Compute pm according to: pm = E′
m−1fm−1 .

2. Derive tm = Em−1 pm/p
′
m pm and store in Tm = (t1, ..., tm).

3. Em = Em−1 − tm p′m .
4. fm = y −

∑m
a=1 ta q̂ma where

q̂m = (q̂m1, ..., q̂ma, ..., q̂mm)′ = (T ′
m Tm)−1 T ′

m y .

Output: Give the resulting sequence of the fitted vectors ŷm = Tm q̂m .

The PLS regression coefficient vector β̂pls

m is determined by the matrix Pm containing
in its columns the orthogonal loading vectors p1, ...,pm. It is derived according to:

(2.2) β̂pls

m = Pm q̂m ,

where q̂m is defined in Algorithm 1. Similar to principal components; see [15] the dimension
reduction process of PLS implies a change of basis from the p-dimensional unit basis to a
subspace of reduced dimension m < p. For principal components this corresponds to the
subspace generated by a small set of selected eigenvectors. For PLS regression the new basis
corresponds to the Krylov subspace of dimension up to m, defined as follows:

Definition 2.1. For matrix A = X ′X and vector b = X ′y the Krylov subspace of
dimension m≤ p is given by:

(2.3) Km(b,A) = span(b,A1b, ...,Am−1b) .

The loading vectors in Pm (see Algorithm 1) span the Krylov subspace Km(b,A). The
same holds for the PLS regression solution; see [12]. The PLS regression coefficient based on
m components is given as the solution to:

(2.4) β̂pls

m = argminβ

{
(y − ŷ)′ (y − ŷ)

}
where ŷ = Xβ, β ∈ Km(b,A) .

Krylov spaces are location and scale invariant (see [16], chapter 12) and they further
benefit from the following property:

Remark 2.1. For an orthogonal basis change in Km(b,A) induced by an orthogonal
matrix Q we get an orthogonal similarity transformation of A, that is:

(2.5) Km(Q b, QAQ′) = QKm(b,A) , for m ≤ p .

The last property becomes even more interesting given that the Discrete Wavelet Trans-
form (DWT), to be used in the following section, is such an orthogonal matrix.
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3. SMOOTH PLS REGRESSION ON WAVELET TRANSFORMED DATA

Spectral data are discrete values of continuous functions. Wavelets are used to approx-
imate such functional data by means of the so-called mother and father wavelet, at different
scales ` and locations k according to:

(3.1) f(x) =
∑
k∈Z

c`0,k φ`0,k(x) +
∑

`0≤`, k∈Z

d`,k ψ`,k(x) ,

where c`,k and d`,k are the scaling and detail wavelet coefficients, respectively. The father
wavelet coefficient at scale zero (`0) reflects the global average of the spectrum, and when
the data are centered it is equal to zero. The wavelet transform can be expressed as a matrix
multiplication using the Discrete Wavelet Transform (DWT) matrix; see [17], Chapter 12 as
well as [18], paragraph 4.3. This allows changing coordinates system from the original to
the wavelet domain forwards and backwards. The operation is fast ([19]) and safe given that
DWT is orthogonal. Each row spectrum xi is mapped into a vector of wavelet coefficients x̃i

by means of matrix multiplication according to: x̃i =Wxi, where W is the DWT orthogonal
matrix of dimension p×p. Note that for a spectral data matrix X the DWT is given by
postmultiplying the spectral data by W ′, to get:

(3.2) X̃ = XW ′.

PLS regression on transformed data has been presented in [5]. It is run on the wavelet domain
instead of the original spectra. The regression solution is then approximated on the wavelet
domain as:

(3.3) ̂̃
βpls

m,` = argmin
eβ

{
(y − ŷ)′ (y − ŷ)

}
where ŷ = X̃ β̃, β̃ ∈ Km(b̃, Ã) ,

with Ã = W` AW ′
` and b̃ = W` b. The matrix W` denotes the truncated DWT matrix of

dimension 2`×p. The use of the subscript ` for the coefficient vector in the transformed
coordinates is used to highlight the wavelet truncation. Mother wavelet coefficients associated
to the finest scales and very often the noisy part of the spectrum are truncated to zero. The
final regression solution is recovered in original coordinates by means of the inverse DWT,
denoted hereafter as iDWT. Using matrix multiplication this is the transpose of the DWT
matrix. The PLS regression solution is smooth and given according to:

(3.4) β̂spls.1

m = W ′
`
̂̃
βpls

m,` .

The authors in [5] used the term ‘wavelet compressed data’ to describe their algorithm
motivated by the wavelet’s outstanding performance to retain spectral information in a few
wavelet coefficients. They truncated wavelet coefficients based on their variance spectrum,
retaining most often the largest ones. Our motivation is smoothness. We truncate to zero
wavelet coefficients associated to the finest resolution level scales. Other truncation strategies
could be based upon other rules such as the universal threshold or using adaptive thresholding
rules at each different resolution level; see [20], [21] and the references therein.

The smooth PLS regression algorithm based on wavelet transformed data is imple-
mented using the orthogonal loadings PLS regression algorithm. It is similar to Algorithm 1,
and therefore will not be given here. It uses all vectors and matrices z transformed in the
wavelet domain and denoted z̃. For instance, the loading vector pm is replaced by p̃m.
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The same holds for all data and residual data matrices, for the score vectors, and for the
coefficient vectors q and β. Expression (3.4) is used in the end to recover the final regression
solution back in the original coordinates system. The choice of ` is an additional argument
in the algorithm’s input.

4. PLS REGRESSION ON SMOOTH LOADINGS

Transforming data to the wavelet domain is not the only one way to obtain a smooth
PLS regression solution. Smoothness may be embedded directly on the loadings. This is
done here by means of a PLS regression algorithm on smooth loadings. Wavelets are used
on the loading vectors and data aren’t transformed. At each iteration m the loading vector
is reconstructed using a subset of the wavelet coefficients. The resulting loading vectors are
both orthogonal and smooth. They are orthogonal due to the PLS algorithm, and smooth
due to wavelet truncation. In terms of matrix multiplication we truncate the DWT matrix W
to its first ` rows, that is, W` which correspond to the coarsest scales. The resulting recon-
structed smooth loading vector is given as: p?

m = W ′
` p̈m, with

(4.1) p̈m =
∑

ř, ǩ∈Z

dř,ǩ ψř,ǩ(pm) ,

being the approximated loading vector using all the detail wavelet coefficients for scales up to ř
and their associated locations ǩ. The smooth loadings (p?

1, ...,p
?
m) are stored in the matrix P ?

m.
Similarly the regression coefficients q̂?

ma are stored in the vector q̂?
m = (q̂?

m1, ..., q̂
?
ma, ..., q̂

?
mm)′.

The final regression solution is given according to Expression (2.2) with matrix P ?
m taking

over Pm. The algorithm for PLS regression on smooth loadings is sketched in Algorithm 2.

Algorithm 2 – PLS regression on smooth loadings. |
Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y .

Select ` such that 2` < p and compute W`.

For m = 1, 2, ..., k ≤ p

1. Compute p?
m according to: p?

m = W ′
` p̈m ,

where p̈m as in Expression (4.1) with pm = E
′
m−1fm−1 .

2. Derive t?
m = Em−1 p?

m/p
? ′
m p?

m and store in T ?
m = (t?

1, ..., t
?
m).

3. Em = Em−1 − t?
m p? ′

m .
4. fm = y −

∑m
a=1 t?

a q̂
?
ma where

q̂?
m = (q̂?

m1, ..., q̂
?
ma, ..., q̂

?
mm)′ = (T ? ′

m T ?
m)−1 T ? ′

m y .

Output: Give the resulting sequence of the fitted vectors ŷ spls

m = X β̂spls.2

m ,
where β̂spls.2

m = P ?
m q̂?

m for P ?
m = (p?

1, ...,p
?
m).

The PLS regression on smooth loadings algorithm is computationally much faster than
the algorithm for smooth PLS regression on wavelet transformed data. In the former algo-
rithm the data are not transformed and only a few matrix-vector multiplications are required.
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In Algorithm 2 the wavelet expansion and truncation is done once for each loading vector.
Normally the number of the extracted loadings is much smaller than the number of data
samples. Moreover, the regression solution resulting from Algorithm 2 is on the original coor-
dinates system and there is no need to be transformed back from the wavelet to the original
domain. It turns out that the relation between the two algorithms is far more interesting
from a theoretical point of view. This is further explored in the following section.

5. THEORETICAL ASPECTS OF SMOOTH PLS REGRESSION

The relation between the two smooth PLS regression algorithms is explored here from a
theoretical viewpoint. The loading and regression vectors resulting from the two smooth PLS
regression implementations are investigated. Results are given in the following propositions,
while the proofs are provided separately in the Appendix.

Proposition 5.1. The regression loadings p̃m and p̈m are identical.

Proposition 5.2. The smooth PLS regression loadings p?
m computed in Algorithm 2

are orthogonal.

Proposition 5.3. The two smooth PLS regression algorithms generate the same se-

quence of approximate regression solutions, that is:

(5.1) β̂spls.1

m,` = β̂spls.2

m,` = β̂spls

m,` .

Proposition 5.4. Both algorithms approximate the solution of the linear system of

equations

(5.2) M Aβ?
m = M b , with M = W ′

`W` for m ≤ p and 2` ≤ p ,

iteratively through Krylov subspace approximations.

As a direct consequence of Proposition 5.4 we state the following proposition.

Proposition 5.5. For m ≤ p and increasing wavelet scale ` such that 2` → p the

sequence of smooth PLS regression solutions generates the same subspaces and converges to

the sequence of ordinary PLS regression solutions, that is:

β̂spls

m,` → β̂pls

m .

For both ordinary and smooth PLS regression the reduction of the dimension of the
regression problem from large-p to small-m is almost identical. This is stated in the propo-
sition below by employing the term of equivalence. The proof for Proposition 5.6 is given in
the Appendix.

Proposition 5.6. Ordinary and smooth PLS regression models are equivalent in

reducing the dimension of the regression problem.
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Proper model selection is crucial for smooth PLS regression as it is for ordinary PLS
regression. Prior to applying and assessing smooth PLS regression one needs to identify
the dimension of the regression model, that is, the number of PLS regression components
to be retained. This is done in the following section by means of cross validation prior to
investigating smooth PLS regression on three well known NIR data sets.

6. EXPERIENCE WITH NIR DATA

Three well-known data from NIR spectroscopy are used here to assess smooth PLS
regression. These are the diesel, the gasoline, and the biscuit data sets. All of them are
available through the internet. The diesel data has been downloaded from the Eigenvector
Research site at http://www.eigenvector.com/data/SWRI/, while the gasoline and the biscuit
data have been downloaded from the R packages pls ([22]) and ppls ([23]) through the
R website at http://www.r-project.org/. All three NIR data sets have been extensively used
in the literature; see for instance [2], [24], [7], [8], and [9].

The diesel and the gasoline data sets quantify the cetane and the octane number of
381 diesel and 60 gasoline samples, respectively. The cetane number for diesel samples is the
equivalent of the octane number for gasoline samples. The biscuit data measure fat concentra-
tion of 71 cookies. The data include information on 72 biscuit samples, yet, observation 23 is
removed as a reported outlier. One can find more information on these three NIR data sets in
the references given above. All three data sets use spectra for predictors. The NIR for the ana-
lyzed samples are registered over a broad range of wavelengths, measured in nanometers (nm).
We retained in the analysis the appropriate wavelength ranges in order to build spectra of
appropriate length (equal to a power of 2). For all three data sets the length of the spectra
equals 256 = 28.

The data have been centered prior to regression analysis by subtracting column means.
They have been randomly split on 10 folds, and a 10-fold cross validation (see [25], Chapter 7)
has been used in order to assess the number of PLS components. The NIR data (D) have
been split into 10 mutually exclusive groups, forming a training set Dtrain (used for model
construction) and a test set Dtest = D? (used for model validation), where Dtrain ∩ Dtest = ∅
and Dtrain ∪ Dtest = D. The cross validated mean squared prediction error MSEPcv for a
regression model based on m components, has been computed according to:

(6.1) MSEPcv
m = EK

[
Ek

(
L
(
y?, ŷ? (−k)

m

))]
,

where the superscript ? is used to indicate the observations in D?, and k = 1, ...,K the part
of the K = 10 groups of data which are left out. The notation EK highlights average over
the K different splits, while Ek indicates average over the number of observations inside the
kth test set. The suffix (−k) indicates that the fits are given by the investigated regression model
on the data set excluding the kth part. Using the same splits we did the same for the smooth
PLS regression using wavelet approximation including wavelet scales up to ` = 6 and ` = 7.
The results for the model selection study are reported in Table 1.

http://www.eigenvector.com/data/SWRI/
http://www.r-project.org/
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Table 1: NIR data: 10-fold cross-validation estimates for the prediction
loss of the PLS and the smooth PLS regression models (sPLS`)
including 1 to 10 components for ` = 7 and ` = 6, respectively.

Data
Set

Regression
Model

Components

1 2 3 4 5 6 7 8 9 10

PLS 3.09 2.84 2.64 2.27 2.09 2.26 1.99 2.09 2.17 2.15
diesel sPLS7 2.60 2.44 2.02 2.35 2.12 2.39 2.20 2.04 2.05 2.07

sPLS6 2.04 2.03 1.98 1.98 1.77 1.75 1.53 1.53 1.55 1.55

PLS 0.79 0.29 0.23 0.25 0.25 0.26 0.30 0.28 0.27 0.24
gasoline sPLS7 0.83 0.23 0.11 0.15 0.14 0.13 0.15 0.19 0.15 0.13

sPLS6 0.79 0.21 0.11 0.11 0.12 0.10 0.13 0.17 0.18 0.17

PLS 1.25 1.33 0.79 0.42 0.25 0.30 0.28 0.30 0.28 0.27
biscuit sPLS7 1.86 1.80 1.34 0.92 0.637 0.45 0.39 0.37 0.37 0.35

sPLS6 1.07 1.12 0.58 0.43 0.40 0.28 0.23 0.27 0.25 0.24

The PLS regression model selection results in Table 1 are similar to the ones already
known from the existing literature. Furthermore, the model selection results for the smooth PLS
regression are almost identical to the PLS regression results. As expected, the minimum pre-
diction loss for smooth PLS regression is reached after retaining almost the same number of
components as for ordinary PLS regression. The estimated out-of-sample prediction error for
smooth PLS regression is sometimes even reduced compared to ordinary PLS regression predic-
tion error. Notably for the gasoline data the prediction performance for smooth PLS improves
substantially compared to ordinary PLS regression. Yet, this is not the case for the biscuit data.

Figure 2: Diesel data. Regression coefficient for a regression model including 7 components.
Response is the cetane number of the diesel samples and predictors are the NIR spectra
over the wavelength region from 848 to 1358 nanometers (nm). Black points and black
thin line correspond to the PLS regression coefficient. The smooth PLS regression
coefficients with `= 7 and `= 6 are plotted in green and blue dashed lines, respectively.
Selected wavelength regions (A and B) are magnified in the lower left and right panels.
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Figures 2, 3, and 4 illustrate the regression solutions for PLS and smooth PLS re-
gression. Black solid lines and points are used to depict the PLS regression solution, while
dashed lines are used for smooth PLS regression results. For illustration purposes selected
wavelength regions are magnified and plotted in the lower left and right panels. These allow
better inspecting the smoothness induced by the use of the smooth PLS regression.

Figure 3: Gasoline data. Regression coefficient vector for a regression model including 3 components.
Response is the octane number of 60 gasoline samples and predictors are the NIR spectra
over the wavelength region from 1098 to 1608 nanometers (nm) in steps of two. Black
points and black thin line correspond to the PLS regression coefficient. The smooth PLS
regression coefficients with ` = 7 and ` = 6 are plotted in green and blue dashed lines,
respectively. Selected wavelength regions (A and B) are magnified in the lower left and
right panels.

For the diesel and the gasoline data set in Figures 2 and 3 the smooth PLS regression
solution efficiently smooths the PLS regression coefficient vector especially for ` = 6, see the
light gray (blue) dashed line. The lower panel plots help discriminating between the three
solutions. The smooth PLS regression coefficient is less efficient in smoothing the final solution
for the biscuit data; see Figure 4. The ordinary PLS regression solution for this data set was
already rather smooth.

Finally it is worth noting that smooth PLS regression may improve the prediction
performance notably when the PLS regression solution is noisy. Smoothing reduces the
prediction error in the diesel and the gasoline data. In contrast this is not the case in the
biscuit data where PLS regression is already smooth.
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Figure 4: Biscuit data. Regression coefficient vector for a regression model including 5 components.
Response is the fat concentration of biscuit samples and predictors are the NIR spectra over
the wavelength region from 1100 to 2498 nanometers (nm). Black points and black thin
line correspond to the PLS regression coefficient. The smooth PLS regression coefficients
with ` = 7 and ` = 6 are plotted in green and blue dashed lines, respectively. Selected
wavelength regions (A and B) are magnified in the lower left and right panels.
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7. CONCLUSIONS

Most spectral data used in chemometrics are high dimensional and very often functional.
PLS regression methods are well suited for high dimensional data. Wavelets are well suited
for functional data. We explored the combination of these two in order to build smooth
alternatives for PLS regression. The rationale behind smooth PLS regression stemmed from
the fact that PLS regression coefficients are low dimensional approximations for the regression
solution and should exhibit some degree of smoothness.

We showed that PLS regression can be effectively combined to wavelets for functional
data analysis and provide smooth regression solutions to high dimensional regression prob-
lems. Wavelet expansion and truncation allowed us building two equivalent smooth PLS
regression algorithms. The two algorithmic implementations for smooth PLS regression have
been proven to be equivalent and to produce the same sequence of approximate solutions.
These are regression solutions approximated through Krylov subspaces of dimension m ≤ p.
They are, therefore, PLS regression solutions. Working in the framework of spectral data
we focused on near infra-red experiments which have been used to illustrate the potential of
smooth PLS regression using wavelets. Three well known NIR data sets from the literature
have been used to confirm that smooth PLS regression is a valuable alternative to ordinary
PLS regression for smoothing the final regression solution while maintaining good prediction
performance and dimension reduction.

The two presented smooth PLS regression algorithms have been implemented based on
the PLS regression algorithm on orthogonal loadings. It is straightforward to implement both
using the PLS regression algorithm on orthogonal scores; the results will be identical. The
implementation of the proposed methods is straightforward. We used the S-PLUS wavelet
package S+WAVELETS in our implementation; see [17]. Similar computer packages for wavelet
analysis exist in R, as well; see for instance the wavethresh package in R (see [22]). Existing
computational tools give all that is required for further smooth PLS regression developments.
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A. APPENDIX

Prior to the proof of the propositions in Section 5 we state two lemmas required for
the development of the proofs. The proof for Lemma A.1 is a direct consequence of wavelet
properties and is omited; the interest reader can see [18], paragraph 4.3.1. The proof for
Lemma A.2 is provided below using mathematical induction. Finally the notation 2` → p

is used to denote the increasing order approximation of X by allowing finner scales to be
included in the rows of matrix W`.

Lemma A.1. For the truncated matrix W` of dimension 2` < p we have:

1. All cross-product matrices W ′
`W` with 2` < p are block-diagonal, with

W ′
`W` → Ip as 2`→ p ,

where Ip is used to denote the identity matrix of order p.

2. All cross-product matrices W`W ′
` with 2`≤ p satisfy:

W`W ′
` = Ip .

Lemma A.2. For all m ≤ p, EmW ′
` = Ẽ

(`)
m .

Proof of Lemma A.2: We use mathematical induction. For m= 1 the lemma holds
given:

E0W ′
` = XW ′

` = X̃(`) = Ẽ
(`)
0 .

Let it be true for m− 1, that is assume that:

Em−1W ′
` = Ẽ

(`)
m−1 .

We will prove that this also holds for m, that is:

(A.1) EmW ′
` = Ẽ(`)

m .

We develop seperately both sides of Expression (A.1). For the left hand side of Expression
(A.1) we have:

EmW ′
` =

(
Em−1 − t?

mp? ′
m

)
W ′

`

=
(
Em−1 −Em−1 p?

mp? ′
m

)
W ′

`

=
(
Em−1 −Em−1W ′

` p̈m p̈′mW`

)
W ′

`

= Em−1W ′
` −Em−1W ′

` p̈m p̈′mW`W ′
`

= Em−1W ′
` −Em−1W ′

` p̈m p̈′m

= Em−1W ′
`

(
I − p̈m p̈′m

)
.

For the right hand side of Equation (A.1) we have:

Ẽ(`)
m = Ẽ

(`)
m−1− t̃m p̃′m

= Ẽ
(`)
m−1− Ẽ

(`)
m−1 p̃m p̃′m

= Ẽ
(`)
m−1

(
I − p̃m p̃′m

)
.
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Furthermore, given Expression (4.1) we have:

p̈m p̈′m = W` pmp′mW ′
` = p̃m p̃′m ,

which completes the proof.

Proof of Proposition 5.1: Recall that for univariate PLS regression there is no need
to deflate the response vector y. The loading vector p̈m in Expression (4.1) can be written
in matrix form as W` pm; it then follows:

p̈m = W` pm = W`E
′
m−1y =

(
Em−1W ′

`

)′
y = Ẽ

(`) ′
m−1 y = p̃m .

Proof of Proposition 5.2: Using Proposition 5.1 and noting that the loading vec-
tors p̃ are orthogonal by construction (they are the ordinary PLS regression loadings in the
wavelet domain), it follows that:

p? ′
i p?

j = p̈′iW`W ′
` p̈j = p̃′iW`W ′

` p̃j = p̃′i p̃j = 0 , for i 6= j and i, j ≤ p .

Therefore the smooth PLS regression loadings p? are orthogonal.

Proof of Proposition 5.3: The smooth regression coefficients β̂spls.1

m and β̂spls.2

m are
identical, as:

β̂spls.2

m = P ?
m q̂?

m

= W ′
` P̈m q̂?

m

= W ′
` P̃m

̂̃qm

= W ′
`
̂̃
βpls

m,` = β̂spls.1

m .

Note that ̂̃qm = q̂?
m. This is justified by the fact that both are implied by the loading’s matrix

P̈m and P̃m, respectively. These are, yet, identical as shown in Proposition 5.1.

Proof of Proposition 5.4: The link between PLS regression and conjugate gradi-
ents for solving large linear system of equations is well-known; see for instance [26]. The
solution to the system of equations is approximated through Krylov subspaces. The sys-
tem in (5.2) is pre-multipled by a non-singular matrix M. This is sometimes referred to
in numerical analysis as a preconditioned system. While preconditioning mainly focuses on
improvement in the convergence of iterative solution methods, such as the Krylov methods,
here it is used to induce smoothness. This is done by using M =W ′

`W`. The two smooth PLS
regression algorithms are two facets of preconditioning the conjugate gradients. While the
former operates on transformed coordinates (Ã and b̃), the latter (Algorithm 2) iterates start-
ing from directions determined by matrix M. The equivalence between these two algorithms
is sketched below:

M Aβ?
m = M b ,

W ′
`W` Aβ?

m = W ′
`W` b ,

W` AW ′
` β̃m = W` b ,

Ã β̃m = b̃ , for m ≤ p .
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The final solution β̃ can be transformed back in the original coordinates according to:

β?
m = W ′

` β̃m ,

in exactly the same manner that the loading vectors p̃ can be also transformed back in
original coordinates as:

p?
m = W ′

` p̃m .

Proof of Lemma 5.5: For M = Ip in the system of equations (5.2) the ordinary PLS
regression solution is recovered. This happens for increasing ` as 2`→ p. The PLS regression
solution is a Krylov solution, that is:

β̂pls

m ∈ Km(b,A) , for m ≤ p .

The smooth PLS regression solution given in Expression (3.4) as:

β̂spls

m = W ′
`
̂̃
βpls

m , for m ≤ p ,

is a Krylov solution. Combining Remark 2.1 and expression (2.5) to the orthogonality of the
DWT matrix W, as long as 2`→ p one gets:

β̂spls

m ∈ W ′
` Km(W` b,W` AW ′

` ) = W ′
`W` Km(b,A) u Km(b,A) , for m ≤ p .

Proof of Proposition 5.6: The dimension reduction performance of both ordinary
and smooth PLS regression is determined by the minimum number of iterations required to
achieve the best approximate solution to the system of equations in (5.2). This is strongly
dependent on the spectrum of A and MA for ordinary and smooth PLS regression, respec-
tively. Let S(A) be the spectrum of a symmetric matrix A as given by its eigen decomposition
A = V Λ V′ with Λ = diag(λ1, ..., λp) denoting the diagonal matrix of eigenvalues of A, and V
its orthonormal set of eigenvectors. Similarly, let S(MA) be the spectrum of the symmetric
matrix Ã. A sufficient condition for Proposition 5.6 to hold is given below:

Ordinary and smooth PLS regression are approximately equivalent in reducing the di-
mension of the regression problem whenever:

S(MA) ≈ S(A) .

Consider the eigen decomposition of matrix Ã as follows:

(
Ṽ̀ Ṽ¯̀

)
×

(
Λ̃` 0
0 Λ̃¯̀

)
×

(
Ṽ ′
`

Ṽ ′
¯̀

)
,

for Ṽ̀ = W` V̀ and Ṽ¯̀ = W¯̀V¯̀, where the subscript ` is used to denote the `-scales wavelet
approximation and ¯̀ used to denote the excluded wavelet scales. The expression above
simplifies to:

(A.2) Ẁ V̀ Λ̃`V
′

` W′
` + W̄̀ V̄̀ Λ̃¯̀V ′

¯̀ W′
¯̀ ,
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We discuss the two following cases:

1. When 2` = p, the second term in Expression (A.2) disappears and S(Ã) = S(A)
since W` is the identity matrix and V̀ = V . The two regression methods are then
identical in reducing the dimension of the regression problem.

2. When 2` < p the second term in Expression (A.2) is generally much smaller than
the first term, especially for collinear and functional data (such as the NIR data)
where PLS regression is used. The diagonal entries in Λ̃¯̀ are close to zero and the
second term in Expression (A.2) vanishes; hence the spectrum of A is approximated
by the first term and S(MA) ≈ S(A).
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[1] Höskuldsson, A. (1988). PLS regression methods, Journal of Chemometrics, 2, 211–228.

[2] Goutis, C. and Fearn, T. (1996). Partial least squares regression on smooth factors, Journal
of the American Statistical Association, 91(434), 627–632.

[3] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Chapman
and Hall, London.

[4] Durand, J.F. and Sabatier, R. (1997). Additive splines for partial least squares regression,
Journal of the American Statistical Association, 92(440), 1546–1554.

[5] Trygg, J. and Wold, S. (1998). PLS regression on wavelet compressed NIR spectra, Chemo-
metrics and Intelligent Laboratory Systems, 42(1), 209–220.

[6] Preda, C. and Saporta, G. (2005). PLS regression on a stochastic process, Computational
Statistics & Data Analysis, 48(1), 149–158.

[7] Reiss, P.T. and Ogden, R.T. (2007). Functional principal component regression and func-
tional partial least squares, Journal of the American Statistical Association, 102, 984–996.



Smooth PLS regression for spectral data 479
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