REVSTAT - Statistical Journal
Volume 20, Number 4, July 2022, 449-462

https://doi.org/10.57805/revstat.v20i4.381

On Uniform and a-Monotone Discrete Distributions

Authors:  M.C. JONES
— Department of Mathematics and Statistics, The Open University,
UK.
m.c.jones@open.ac.uk

Received: October 2019 Revised: August 2020 Accepted: September 2020

Abstract:

e In this partly expository article, I am concerned with some simple yet fundamental aspects of
discrete distributions that are either uniform or have a-monotone probability mass functions. In the
univariate case, building on work of F.W. Steutel published in 1988, I look at Khintchine’s theorem
for discrete monotone distributions in terms of mixtures of discrete uniform distributions, along
with similar results for discrete a-monotone distributions. In the multivariate case, I develop a new
general family of multivariate discrete distributions with uniform marginal distributions associated
with copulas and consider families of multivariate discrete distributions with a-monotone marginals
associated with these.

Keywords:

o Khintchine’s theorem; multivariate geometric distribution; multivariate discrete uniform distribu-
tion; multivariate Poisson distribution.

AMS Subject Classification:

e Primary 62E10, Secondary 62HO05.


https://doi.org/10.57805/revstat.v20i4.381
https://orcid.org/0000-0001-0914-0675
mailto:m.c.jones@open.ac.uk

450 M.C. Jones

1. INTRODUCTION

In this partly expository article, I am concerned with some simple yet fundamental
aspects of distributions on Ny =0,1,..., whose probability mass functions (p.m.f.’s) p are
uniform or more generally monotone nonincreasing or even more generally a-monotone (see
below), together with certain extensions of these distributions to Ng = Ng x --- X Ny, especially
Ng, and subsets thereof. As a prime example of a univariate distribution with a non-uniform
monotone nonincreasing p.m.f. — a ‘monotone p.m.f.” for short — think of the geometric
distribution; the Poisson distribution turns out to be an example of an a-monotone distribu-
tion.

The main topics to be considered in this article, by section, are:

§2. Khintchine’s theorem for monotone distributions on Ny, re-interpreted in terms of
mixtures of discrete uniform distributions, and a consequent variance inequality
for univariate discrete monotone distributions.

83. A general family of multivariate discrete distributions with uniform marginal dis-
tributions associated in an attractive yet novel way with copulas;

84. Univariate a-monotone distributions on Ny which, for 0 < a < 1, are a ‘stronger’
subset of monotone distributions, and which are of interest for o« > 1 also, when
they can be non-monotone and include many familiar distributions. Originally
introduced by Steutel (1988) [21], I pursue further interpretation and properties.

85. Families of multivariate discrete distributions with a-monotone marginals associ-
ated with the distributions of Sections 3 and 4. Their correlation structures are
explicit and relatively straightforward.

Potential Bayesian applications of Khintchine’s theorem for discrete distributions (§2)
are to the provision of monotone prior distributions for discrete-valued parameters and of
nonparametric priors for a-monotone discrete distributions (similar to e.g. Brunner & Lo,
1989 [5], in the continuous case). Families of multivariate discrete distributions with sep-
aration between marginal and dependence parameters (§3 and especially §5) can, as in the
continuous case, form good test-beds for simulation studies; in particular, as a referee suggests,
the opportunity arises to simulate correlated discrete variables with a given correlation matrix
and univariate margins. Distributions with monotone and especially a-monotone marginals
can be used as models for appropriate data too, of course. I look briefly at alternative
multivariate geometric and Poisson distributions to those in e.g. Davy & Rayner (1996) [7]
and Bermudez & Karlis (2011) [3], respectively, while alternatives to existing multivariate
binomial (e.g. Westfall & Young, 1989 [23]) and multivariate negative binomial (e.g. Shi &
Valdez, 2014 [20]) distributions are also readily available but not developed explicitly.

All mathematical manipulations made in this article have the major benefit of being
simple and direct. As I go along, it will often be useful to point out analogies and connec-
tions with results for continuous data which have uniform or a-monotone probability density
functions (p.d.f.’s) f on RT, and their multivariate extensions.
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2. DISCRETE KHINTCHINE’S THEOREM

Let f be a monotone p.d.f. on R*. Then, the renowned Khintchine’s Theorem (Khint-
chine, 1938 [16], Feller, 1971 [9]) says that X ~ f can be written as a uniform scale mixture, ei-
ther as X = UY, where U and Y are independent, U ~ Uniform(0, 1) and Y ~ G for some cu-
mulative distribution function (c.d.f.) G on R*, or equivalently as X|Y = y ~ Uniform(0,y),
Y ~ G. 1If f is differentiable, then typically G has a p.d.f. g such that g(z) = —zf'(x).
(The distribution of Y is not absolutely continuous if f has support (0,b) say, when b < oo
and f(b) > 0; see Section 4.)

Implicit in Steutel’s (1988) [21] paper on “discrete a-monotonicity” — of which, more
in Section 4 — is a corresponding result to Khintchine’s theorem in the discrete case. (See
also the earlier work of Medgyessy, 1972 [17].) It is framed in terms of binomial thinning,
as first proposed by Steutel and van Harn (1979) [22]. For values of 6 € [0, 1], the random
variable N, ¢ is the binomially thinned version of the count m € Ny if

where the sum is understood to be zero if m =0. Here, By, ..., By, are independent Bernoulli(6)
random variables. (Note that if @ =1, N,;, 9 = m and if 6 = 0, N,,, 9 = 0.) A useful equivalent
way of expressing N, 9 = 0 om is as

Nyp = 0 om ~ Binomial(m, 0)

where Binomial(0, §) is understood to be the degenerate distribution at zero.

The above is binomial thinning for fixed # and m, extensions to which are to mix over
distributions for their random variable versions, © and/or M. So, consider the distribution of
N =00M ~ ponNywhere©® ~ hon (0,1), independently of M ~ g on Ny. This distribution
can be expressed as

N|M = m ~ BinMix(m), M ~gq,

with the binomial mixture distribution ‘BinMix’ defined as follows: N,,, = © om ~ BinMix(m)
if

(2.1) Npn|© = 6 ~ Binomial(m, 6), O ~ h.

Steutel’s (1988) [21] observation is that taking © ~ Uniform(0, 1) is equivalent to p
being a monotone p.m.f. on Ny. I now note that in that case, where h(0) = I(0 < 0 < 1) and
I(-) denotes the indicator function,

N, = © o m ~ Uniform{0, ..., m},

that is, the binomial mixture distribution reduces to the uniform distribution on {0, ...,m}.
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To see this, note that, for each z € {0, ..., m},

Lim m 1
05 (1 —0)" " do = B 1 — 1) = ——
e

(here, B(,-) is the beta function). This is, of course, a very special case of the beta-binomial
distribution (see Johnson, Kemp and Kotz, 2005 [13], Section 6.9.2).

The discrete analogue of Khintchine’s theorem can therefore be given most simply —
and not unexpectedly given its continuous analogue — as a discrete uniform mixture, as in
Result 2.1:

Result 2.1. A p.m.f. p on Ny is monotone if and only if N ~ p can be written as
N|M = m ~ Uniform{0, ..., m}, M ~ g,

where q is any p.m.f. on Ny. In fact, the p.m.f.s p and q are related by

(2:2) po= 32 L gam) = (4 1) {plm) — plm + 1)}

m=n

Also, the corresponding c.d.f.s P and Q are related by

Q(n)=P(n)—(n+1)p(n+1).

Example 2.1.

(a) Let N ~ Geometric(p), 0 < p < 1, which has strictly decreasing p.m.f. In this
case,
g(m) = (m +1)p*(1 = p)™,
that is, M ~ NegativeBinomial(2, p), which is the distribution of the sum of two
independent Geometric(p) random variables.

(b) Let N ~ Poisson(u) with 0 < p < 1. Then, p is monotone on Ny, and Result 2.1
applies with
q(m) = (m+1—p)p(m).
One of a number of ways of interpreting ¢ is that it is the distribution of My + B
where B ~ Bernoulli(i), independent of My ~ Poisson(pu).

(c) Now let M ~ Poisson(A), A > 0. Then, N has the strictly decreasing p.m.f.

. 1
= AR O RS
where T'(+;-) is the incomplete gamma function ratio. From (2.3) below, E(N) =
A/2 and V(N) = A(6 + \)/12, so p is overdispersed as well as decreasing.

(d) The distribution of part (c) is a special case of taking g(m) = (m+1)r(m+1)/p,
where 7 is an arbitrary p.m.f. on Ny with finite mean p,. Then, p(n) = R(n)/p,
where R(n) = P(R > n) and R ~ r, so p is clearly monotone.

(e) There is no distribution satisfying p = ¢. If there were, p must satisfy p(m + 1)/
p(m) =m/(m+1), m =0,1,..., and this was shown by Leo Katz in the 1940s not
to correspond to a valid distribution (see Johnson et al., 2005 [13], Section 2.3.1).
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Either directly or as a consequence of more general results for mixed binomial thinning,
it is easy to show that

(2.3) E(N)=E(M)/2, V(N) = [4V(M) + 2E(M) + {E(M)}?] /12.

Since V(M) > 0 and E(M) = 2E(N), the following variance-mean inequality arises.

Result 2.2. If N follows a monotone p.m.f. on Ny, then
V(N) = E(N) {1+ E(N)}/3,
and any monotone distribution is overdispersed if E(N) > 2.
This inequality and observation arose in Jones and Marchand (2019) [15] from a different

perspective. The inequality is the discrete analogue of the inequality V(X) > {E(X)}?/3 of
Johnson and Rogers (1951) [14] in the continuous monotone case.

3. MULTIVARIATE DISCRETE UNIFORM DISTRIBUTIONS

Write ¢ and C for the p.d.f. and c.d.f. of an absolutely continuous copula on (0,1)%
(e.g. Nelsen, 2006 [18], Joe, 1997 [11], 2014 [12]). This section and the next can be seen as an
investigation of a role for such multivariate continuous uniform distributions in providing the
dependence properties of certain multivariate discrete distributions, starting in this section
with multivariate discrete distributions with discrete uniform marginal distributions, referred
to from here on as multivariate discrete uniform distributions. Note that this is quite different
from the use of a copula in conjunction with the discontinuous c.d.f.’s and quantile functions
of discrete marginals, a common practice but with a number of “dangers and limitations”, as
discussed by Genest and Neslehova (2007) [10]. That said, a multivariate discrete uniform
distribution does not fulfil the same role for multivariate discrete distributions as a copula does
for multivariate continuous distributions because univariate discrete c.d.f.’s, when considered
as functions of their random variable, are not distributed as discrete uniforms i.e., if X has
distribution F', and F is discrete, then F'(X) is not uniform. In contrast, F'(X) is (continuous)
uniform when F' is continuous.

The fact that a binomial distribution mixed over a continuous uniform distribution for
its probability parameter is itself a discrete uniform distribution suggests that a multivariate
discrete uniform distribution can be defined as the distribution of (Ny, ..., Ng) on {0, ...,m1} X
- x {0, ..., mgq} such that

N;|©; = 0; ~ Binomial(m;,6;) independently for i=1,...,d,
0@ ={01,...,04} ~ c(b1,...,04).

The joint p.m.f. of (Ny,..., Ng) is

pU(nh -y g | may, --'amd)

(3.1) = {ﬁl (7:)} /01---/01 {iﬁle;‘iu—ei)mi—”i}c(el,...,ed) - dfy .



454 M.C. Jones
Its univariate marginal distributions are discrete uniform by construction because those of
the copula are continuous uniform.

Moments of this construction are readily available and, in particular, correlations are
determined by those of the copula as follows. Since Cov(N;, N;|0@ = §(9)) = 0, it is the case
that

(3.2)  Cov(Ni, Nj) = Cov{E(N;|0W = ¢D) E(N;|0@ =0 D)} = mm;Cov(©;,0;).

Also, since V(N;) = m;(m; +2)/12, V(N;) = mj(m; + 2)/12, it is the case that

(3.3)  Corr(N;,Nj) = mim; Corr(6, ©,)/12 = i e Corr(0;, ©;).
\/mi(mi+2)mj(mj+2)/12 m; + 2 mj+2

So, while the correlation of IV; and IV; has the same sign as that of ©; and ©j, it reduces to
one-third that of the copula in the binary case, and increases, tending to a factor of 1, as the
marginal supports grow larger. Note that Corr(©;,©0;) is Spearman’s rho.

The existence of this simple relationship between discrete and continuous uniform cor-
relations is a reason for preferring the current construction to discretisations of the copula,
although the two can be very similar, as the following simple example shows.

Example 3.1. Consider the bivariate Farlie-Gumbel-Morgenstern (FGM) copula
given by
C(u,v) = ’LL’U{l + d)(l - u)(l - U)}) C(U, U) =1+ ¢(1 - 2“)(1 - 21})7
on 0 < u,v <1 with —1 < ¢ < 1. Entering this into (3.1) when d = 2 gives

1 (2n1 — ml)(2n2 — THQ)
mHﬂW@+D%+¢ (1 + 2)(ms + 2) }

its correlation, from (3.3) and e.g. Example 2.4 of Joe (1997) [11], is

)

pram(ni, ng) = (

mi my ¢
my + 2 m2+23'

A natural discretisation of any C' in the bivariate case is

1 1
Pl = € (ML ) o )

ml—{—l’mg—{—l m1+1’m2—{—1
_c n1+1’ 79 _C n1 7nz-i—l
mi+1 mo+1 mi1+1 " mo+1
which turns out in the FGM case to equate to

/ B 1 (2n1 —m1)(2n2 —ma) |
(3.4) Prau(ni, n2) = (m1 + 1)(ma + 1) {1 ¢ (m1 + 1)(m2 + 1) } ’

this differs just a little from prgas. The correlation associated with this model, calculated
directly from (3.4), is similar to that of prgas, but a little larger; it is

mi (m1 + 2) mQ(mg + 2) ?
(m1 + 1)2 (m2 + 1)2 3
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Formula (3.1) is a particular way of constructing multivariate distributions with uniform
univariate marginals. If a multivariate discrete uniform distribution is specified by other
means, there is not necessarily a copula leading to it via construction (3.1). Even when
there is, as with copula discretisation, there is not generally a unique copula leading to that
distribution. The following simple, if extreme, example makes this clear.

Example 3.2. Let d =2 and m; = mg = 1. In this case, the elements of the joint
p.m.f. of (N1, N3) depend only on p(0,0) < 1/2, since pr7(0,1) = {1—2py(0,0)}/2, pry(1,0) =
{1-2py(0,0)}/2 and py(1,1) = py(0,0). Write E¢ for expectation under the copula. Then,
from (3.1), we have

pu(0,0) = Ec{(1 —01)(1 — O2)} =Ec(0:02),
pu(0,1) = Ec{(1 - ©1)02} = § — Ec(0103),
pu(1,0) = Ec{01(1 —09)} =1 —Ec(0102),
pu(l,1) = Ec(0102).

Therefore, any copula with Ec(0102) = py(0,0) will give rise to this bivariate binary uniform
distribution. (In fact, the uniform marginals of the copula are not required for this argument:
the copula can be replaced by any distribution on (0,1) x (0,1) with marginal means equal
to 1/2 and E(©102) = py(0,0).) However, the product moment requirement translates to
Corr(01,02) = 12py(0,0) — 3, which restricts the existence of such a mixing distribution to
when 1/6 < p7(0,0) < 1/3.

4. DISCRETE o-MONOTONICITY

I now return to the univariate domain. To set the scene, I first describe the situation in
the continuous case. There, a-monotonicity was introduced by Olshen and Savage (1970) [19]
(see also Dharmadhikari and Joag-Dev, 1988 [8], and Bertin, Cuculescu and Theodorescu,
1997 [4]): the distribution of a continuous random variable X is said to be a-monotone if
and only if the distribution of X is monotone, o > 0. Then, X can be written in the form
X = A,Y say, where A, ~ Beta(a, 1), independently of Y ~ g on R, in a similar manner
to Khintchine’s theorem; equivalently, X = UYY where U ~ Uniform(0,1). Clearly a =1
corresponds to ordinary monotonicity. By construction, if a distribution is cig-monotone say,
then is it also a-monotone for all & > «g. In particular, a-monotone distributions with a < 1
are also ordinary monotone.

Providing an alternative view of an equivalent formulation of Abouammoh (1987/1988)
[1], Steutel (1988) [21] first put forward discrete a-monotonicity in the following manner:
for a > 0, N ~ p is discrete a-monotone if N=A,o0M,=U*0M,, where A,~ Beta(a, 1),
U ~ Uniform(0, 1) and either of these is independent of M, ~ g, on Ny. The distribution of N
can now be recognized, from Section 2, as being that of

(4.1) N|M, = mq ~ BetaBinomial(mg, «, 1), M, ~ qa,
where the BetaBinomial(m,, v, 1) distribution has p.m.f.

amy! T'(z + «)

(4.2) pep1(7) = z!T(my + o+ 1)
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for x € {0, ...,ms}. This is because now h(f) = af#*1I1(0 < 6 < 1) in (2.1) so that the bino-
mial mixture distribution becomes

1
a/ (ma>9”“‘1(1 — gy df = 0‘<ma>3(w +a,me — 2 +1) = ppp1(2)-
0

T T

(4.1) and (4.2) lead directly to confirmation of Steutel’s (1988) [21] formula

I'(n+ «) i m! qo(m)
I'(

pn) =a n! m+a+1)

Steutel then observes that
(4.3) (n+a)p(n) — (n+ 1)p(n+ 1) = aga(n)

from which it can be concluded that discrete a-monotonicity corresponds to p having the
simple property that
(n+ a)p(n) > (n+ 1)p(n + 1).

Here, the inequality is strict except when g,(n) = 0. The corresponding c.d.f.s P and @, are
related by
aQa(n) = aP(n) - (n+ Lp(n + 1),

which can be readily checked to give rise to (4.3). Comments above on continuous a-monoto-
nicities for various values of « continue to hold in the discrete case.

It can be added that (4.3) can also be written

(4.4) q(n) = (1 —a)p(n) + aga(n)

where ¢ = ¢ is as at (2.2) in Result 2.1. To corroborate and interpret (4.4) in the case that
0 < a <1, an alternative way of expressing a-monotonicity arises from writing A, = UV
where U ~ Uniform(0,1) independently of some appropriate V; this is possible when 0 <
a <1 because then Beta(a, 1) is monotone (nonincreasing). Moreover, Beta(a, 1) is then a
distribution on a finite interval with non-zero density at its upper endpoint. As signposted
at the start of Section 2, the density of V is not —z f’(z) if f has support (0,b) and f(b) > 0;
in fact,

- Y with probability 1 — «,
b with probability «,

where Y ~ —xf'(z)/{1 — f(b)} on (0,b). When b=1 and h(z) = az*"! so that h(1) = a,
it turns out that —xh/(x)/{1 — h(1)} = h(z). In the case of discrete a-monotonicity with
0 < a<1,it follows that N = A,o M = (UV)oM =U o (VoM) so that N = U o Ny where
U ~ Uniform(0, 1) and

N N with probability 1 — «,
0 Y
M with probability «,

which is immediately seen to be equivalent to (4.4).

By any of a number of routes, it can be shown that, for a-monotone distributions for
any o > 0,

aE(M,)

o [(a+1)2V(M,) + (o + 1)E(M,) + {E(Ma)}?]
a+1 '

E(N) = (a+1)%(a+2)

, V(N) =
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Since V(M,) >0 and E(M,) = (a+ 1)E(N)/a, the following variance-mean inequality
ensues.

Result 4.1. If N follows an a-monotone p.m.f. on Ny for all & > ayn;n say, then

E(N){amin + E(N)}  E(N){a+E(N)}

V(N) = amin(amin + 2) - Oé(Oé + 2)

The ‘outside’ inequality is essentially Theorem 3.1 of Abouammoh, Ali and Mashhour
(1994) [2] with a = 0 and Corollary 5.3.21 of Bertin et al. (1997) [4]. An a-monotone distri-
bution is thereby guaranteed to be overdispersed if E(N) > umin(@min + 1). Of course, the
outside inequality in Result 4.1 reduces to Result 2.2 when o = 1.

Example 4.1.

(a) N ~ Geometric(p) is a-monotone for a« > 1 — p = aypin. Using (4.3), the corre-
sponding p.m.f. of M, is

qa(m) = {(m+1p— (1 —a)}p(l —p)"/a.

As noted in Example 2.1(a), M; ~ NegativeBinomial(2, p) while it can now also be
observed that Mj_, has the distribution of M; 4 1. The dispersion inequality for
a-monotone distributions confirms the overdispersion of the geometric distribution
forall 0 < p < 1.

(b) Let N ~ Poisson(u) with 0 < u < . Then, the Poisson p.m.f. p is a-monotone
on Ny, and formula (4.3) applies to give

ga(m) = (m+a — u)p(m)/a.

Now, ¢, is the distribution of My + B where B ~ Bernoulli(u/a), independent
of My ~ Poisson(p). In particular, g, is the length-biased form of the Poisson
distribution which is, in fact, the distribution of Mg+ 1. The dispersion inequality
is, of course, not satisfied for any p > 0.

(c) Both of the above examples together with binomial and negative binomial distri-
butions are covered by the Katz family, for which

(1+n)p(n+1)=(a+bn)p(n);

see Section 2.3.1 of Johnson et al. (2005) [13]. In general, a > 0 and b < 1, but
a-monotonicity restricts the range of a to 0 < a < a. For any Katz distribution,

Go(m) = {(a = a) + (1 = b)m}p(m)

reducing to g,(m) = (1 — b)mp(m)/a when a = a. Let K, be a random variable
following the Katz distribution with parameters @ and b. Then, the latter length-
biased distribution is also the distribution of K, 5+ 1. Since E(K, ) = a/(1—1b)
and V(K,p) = a/(1 —b)? the dispersion inequality yields overdispersion if
(a+1)(1—0b) < 1 while a Katz distribution is actually overdispersed for 0 < b < 1.
The general results reduce to those of part (a) when a =b =1 —p and part (b)
when a =y, b=0. They give results for the Binomial(k,p) distribution when
a=kp/(1-p), b=—p/(1 —p), and to the NegativeBinomial(k, p) distribution
when a = k(1 —p), b= (1 —p).
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5. MULTIVARIATE DISCRETE DISTRIBUTIONS WITH o-MONOTONE
UNIVARIATE MARGINALS

Combining Sections 2 and 3 further, it is natural to develop discrete distributions on Ng
with monotone univariate marginals as the distribution of N = (Ny, ..., Ny) where

N;|M; =m;,0; = 0; ~ Binomial(m;, ;) independently for i=1,...,d,
M@ = {Mi,.... Mg} ~ q(mi,...,myg),
0 ={04,...,04} ~ c(b1,...,0q),

where ¢ is now an arbitrary p.m.f. on N¢ and M (@) is independent of ©(@ . This is, of course,
equivalent to mixing the multivariate discrete uniform distribution of Section 3 over g:

N(d)’M(d) = {m17 eney md} ~ pU(nb ) nd‘mh ey md)7 M(d) ~ Q(mla A md)'
To additionally fold in the work of Section 4, to provide multivariate discrete distribu-
tions with a-monotone marginal distributions (more properly o9 -monotone marginal dis-

tributions where a(? = {a, ..., ag}), the key is to replace ©(@ by ol = {@}/al, ey @i/ad}.
Let the resulting random variable be No(éd). The joint p.m.f. of Néd) is

pp(n1,...,ng; a1, ...q) = i i alma, - ) {ﬁ <TZZ>}

mi=ni mg=ng i=1
(5.1) x// [T 60/ (1 — 6/ ymi=ni b c(6, ..., 0a) dby--dby.
0 70 =1
Its univariate marginal distributions have the aj-monotone, as-monotone, ..., agz-monotone

p.m.f.’s of Section 4 by construction. The form of (5.1) involves d infinite sums and integrals
but, as will be seen below, certain special cases simplify considerably. Moments remain readily
available and correlations are as follows. Using (2.3) and (3.2),

(67 Qi
a; +1aj;+1

Cov(Ni, N;) = E(M; M) COV(@l/O‘i7 @;/aj) +

i

COV(]\IZ‘7 Mj)

(52) COH"(NZ‘,NJ')

E(M;M;) Corr(@il/ai, 9;/%) + Vai(a; + 2)a(a + 2) Cov(M;, M)
\/ [(i + 12 VM) + (s +1) B(M;) + {B(M:) 1] [0 +12 VM) + (05 +1) E(MV) +{E(L) 1]

In the following two subsections, I will take a brief look at two major particular cases of
this in terms of the form of distribution for M. These distributions and their properties are
analogues of those given in Section 3 of Bryson and Johnson (1982) [6] in the continuous
case when d = 2. They are theoretically interesting but for the most part may prove to have
limited practical applicability.
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5.1. When My, ..., M; are mutually independent

Let M; ~ g;, independently for ¢ = 1, ..., d. This allows the dependence structure of pp

to depend only on that of C' ameliorated by the value of a(®. The joint p.d.f. of Néd) is given

by the obvious small change to (5.1). The correlation of IV; and Nj, given by (5.2), reduces

to
B E(M;)
Corr(Ni, Nj) = \/(ai +1)2D(M;) + E(M;) + a; + 1
E(M]) 1/ay 1/a;
(5.3) X \/(aj D) + EQL) + oy +1 0O 05

where D(M) = V(M)/E(M) is the index of dispersion of M. Again, this has the same sign
as the correlation associated with the copula and is always a reduction of the absolute value
of the correlation compared with that of the copula, sometimes considerably so.

Example 5.1. This example concerns a family of multivariate distributions with geo-
metric marginal distributions. Following Example 2.1(a), let ¢;(m) = (m+1) p?(1 —p;)™ with
E(M;) =2(1 —p;)/pi and V(M;) = 2(1 — p;)/p?, i = 1,...,d. The corresponding multivariate
geometric distribution arises by taking a; = --- = ag = 1. Reduction of (5.1) in this case
requires simplification of terms of the form Yoo (m + 1)p?(1 — p)™(7')6™(1 — )™ which
is achieved by noting that, with 0 < ¢ = (1 —p)(1 —0) < 1,

Se(p)e - e (12

m=n

> n4j+1\ n+1
- (T - e

Jj=0

This results in the joint p.m.f.

PG(N1s s N P15 o D)

d )
9”1
7 1 1 - M g eeny
|:| n; + pz p / / L [ {1 — 1 _pz)(l — .)}nﬁ-?] 0(91 Gd) dfy---dby

with correlations

1
Corr(Ni, Nj) = 51/(1 = p)(1 = py) Corx(©;, 0).
The correlations associated with this family of multivariate geometric distributions are there-

fore limited to the range —1/3 < Corr(N;, N;) < 1/3, although the range of correlations de-
creases as the p;’s increase.

Example 5.2. In a similar manner to Example 5.1, this example concerns a family of
multivariate distributions with Poisson marginals. It arises by taking g;(m) = " 'e i/ (m—1)!,
m=1,2,...,and oj = pj, j = 1, ...,d (cf. Example 4.1(b)). In this case, simplification of (5.1)
requires simplification of sums of the form > o e #um (™) 0"/ 1 (1 — OY/mym="n /(m — 1)),
Now, with Q = u(1 — 0Y/#) > 0,

> Qm-n s = Qe
7;1 mm = (m — ) + n mz (Q +n)et

m=n
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The corresponding joint p.m.f. is

pP(nla <oy Mg Y1 - MUd

:H / /{HGW“’< 1/’“+”"> —“ﬂ/‘”}c(el,...,ed)del---ded.
i=1 nz Hi

Since E(M;) = p; + 1, V(M;) = p;, i = 1,...,d, the correlations associated with these distri-
butions are

1
V(i +2) (15 +2)

so that —1/2 < Corr(N;, Nj) < 1/2. In this case, the range of correlations decreases as the
mean parameters increase.

Corr(N;, Nj) = Corr(@l/“’ @1/’“)

5.2. When M, ..., M, are equal or most strongly dependent

Let My =---=My= M say, i = 1,...,d, with M ~ qg. This particular comonotonicity
also allows the dependence structure of pp to depend on that of C, but with an opportunity
for higher correlations. Let nyax = max(ni,...,ng). The joint p.d.f. of N(gd) is given by

pp(N1, s N Q1,4 ooy O0g)

= i qo(m) {ﬁl <ZL>} /01.--/01{111%[10?‘/%(1—9}/”)’”“z} (01, ...,04) dby---dby.

M=Na,max

Its correlations are, from (5.2),

pij = Corr(N;, Nj)

(5.4) (D) + E(M)} Corr(0]/™,0)') + /ai(ai + 2oy (a; + 2) D(M)

V(@i + 12DOM) +E(M) + 0i + 1] [(ag + 1)2D(M) + E(M) + 0 + 1]

which are all equal if ay = --- = ag4. If r;; denotes the correlation at (5.3) when both M; and
M; have the distribution of M, then

D(M) {COI‘T(@}/O%” @;/aj) + Vai(oi +2)aj(a) + 2)}

Pij = Tij +

V@i + D2DO) + EQ) + o + 1] [(0 + 1)2D(M) + E(M) + o + 1]

which is typically greater than r;;, certainly whenever a;(a; + 2)a;(a; +2) > 1.

Example 5.3. While in Sections 3 and 5.1 the independence copula with density
c(0y,...,04) = H?zl I(0 < 0; < 1) results in distributions with independent marginals, this is
not the case here because of the commonality of M. In fact, using the independence copula,
the joint p.m.f. of N(gd) depends only on ny.x and is given by

o)

I'(n; +
pr(ny, ...,ng; o, ..., aq) = Z ) (m1)* Hn jrl;iy)
’L (2
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reducing to

The corresponding correlations are, in general,

ai(a; + 2) aj(aj +2)

N;, N;) = D(M),
Corr (N, N;) \/(ai+1)2 D(M) + E(M) + a; + 1 \/(aj F1)2D(M) + E(M) + o +1 (M)
which are all positive. When a1 = --- = ag =1,

3D(M) 3
0 < Corr(N;, N;) = 2
< Con(Ne Ny) = I5an RN 12 © 1

Example 5.4. For a general copula, let us contrast the correlation structure as-
sociated with the specific multivariate geometric and Poisson distributions of Examples
5.1 and 5.2 when M, ..., M; are independent with the corresponding distributions when
My=---=M;=M.

(a) Let ag =+ =ag=1and M ~ NegativeBinomial(2, p). Then, the corresponding
family of multivariate distributions with Geometric(p) marginals has correlations

1 (3—2p)Corr(0;,0,
Corr(Ni, Ny) = 5 + (3 = 2p) grr( 9;)
In this case, 0 < Corr(NV;, Nj) < 1, contrasting with a range of (—1/3,1/3) in

Example 5.1. In fact, these correlations are always greater than those when p; =

pj = p in the independent M’s case because oo +2) =3 > 1. In the case of the
independence copula as in Example 5.3, Corr(N;, N;) = 1/2.

(b) Let aj=--=ag=p and M =M;+1 where M; ~ Poisson(u), as in Example 5.2.
Then, the corresponding family of multivariate Poisson distributions has correla-
tions

i\ (6% + 3+ 1) Cor(0]", 01F)
Corr(N;, Nj) = 5
pt1 (+1)*(n+2)

It is certainly the case that —1/2 < Corr(V;, Nj) < 1 (contrasting with (—1/2,1/2)
in Example 5.2) although slightly more negative correlation is possible for certain
very small p. The correlation is greater than that when p; = p; in Example 5.2
whenever Corr(@i/“, @Jl./“) > —pu(p +2). In the case of the independence copula,
0 < Corr(N;, Nj) = pi2/(p+1)? < 1.

Finally, if My, ..., My are not the same, then the strongest dependence is comonotonicity
or the Fréchet upper bound. The expression for pp does not simplify but the pair {N;, N;}
can be more highly correlated in comparison to Section 5.1.
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