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1. INTRODUCTION

Longitudinal surveys are designed to measure a sample of respondents repeatedly over
time, and have been extensively applied in various fields such as clinical studies, biological
research and social sciences. Longitudinal surveys are prevalence in studying human’s be-
haviors, health, and mortality because they provide efficient means to estimate the change
in the population, evaluate interventions, test causal hypotheses, and reduce the cost of data
collection [35]. Since longitudinal surveys are conducted at different points of time, the serial
observations obtained from a given unit usually show time dependence. Therefore, a time
series model can be employed to analyze longitudinal survey data [12].

Informative sampling, which refers to sampling design in which the sampling probabili-
ties are correlated with the response variable (conditional on covariates), is often encountered
in longitudinal surveys, see, e.g., Fuller [15]. However, studies ignoring informative sampling
can lead to seriously biased results (Pfeffermann [27], [26]; Eideh and Nathan [12]; Eideh [9];
Sverchkov and Pfeffermann [33]). To handle informative sampling, Pfeffermann et al. [25]
derived the sample distribution from the population distribution and the sampling probabil-
ities under informative sampling, which can permit the use of classical inference methods.
Chambers and Skinner [7], and Pfeffermann and Sverchkov [24] discussed the sample likeli-
hood approach, the pseudo-likelihood approach and the estimating equations approach for
fitting generalized linear models under informative sampling, based on the sample distribu-
tion of Pfeffermann et al. [25]. In fact, the sample likelihood approach has been explored in
many different directions including small area estimation (Pfeffermann and Sverchkov [22];
Eideh and Nathan [11]; Verret et al. [37]), general linear modelling (Chambers and Skinner
[7]; Pfeffermann and Sverchkov [22]; Eideh [9]), and multi-level model analysis (Pfeffermann
et al. [23]; Cai [6]). Recently, Bonnery et al. [4] established the asymptotic properties of the
sample likelihood approach under informative sampling. Other proposed methods include
the inverse probability weighting method (Boudreau and Lawless [5]; Kim and Skinner [17])
and calibration adjustments (Moser et al. [20]). However, most of the above studies explored
the informative sampling problem in the non-longitudinal survey context. Informative sam-
pling in longitudinal surveys was considered in Eideh and Nathan [12], [13], and Eideh [9].
Eideh and Nathan [12], [13] discussed the sample likelihood and pseudo-likelihood methods
in fitting time series models for longitudinal survey data under informative sampling. Eideh
[9] explored further the sample likelihood, pseudo-likelihood likelihood and estimating equa-
tions methods in fitting general linear model for longitudinal survey data under informative
sampling.

In addition to informative sampling, another major issue in longitudinal surveys is the
missing data problem. Following Little and Rubin [18], the mechanisms of missing data can
be classified into three types: missing completely at random (MCAR), missing at random
(MAR), and not missing at random (NMAR). In particular, missing completely at random
and missing at random are called ignorable missingness, whereas not missing at random is
called nonignorable missingness. Under nonignorable missingness, the missing probability
depends on the response variable, and thus will lead to unreliable estimation results (Eideh
[9]; Schlomer et al. [30]; Taisir and Islam [34]). A solution to this problem is the modeling
of nonignorable missing data, which has been applied to general linear models (Bahari et

al. [2]), generalized linear mixed models (Stubbendick and Ibrahim [32]; Sabry et al. [29];
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Almohisen et al. [1]), quantile regression models (Yuan and Yin [38]), latent random effects
models (Tseng et al. [36]; Bhuyan [3]), and Markov chain models (Cole et al. [8]; Taisir and
Islam [34]).

When informative sampling and nonignorable missingness occur in longitudinal surveys
simultaneously, the joint treatment of the two problems becomes a key issue. Pfeffermann
[21] proposed a unified approach to handle the two problems by combining the observed data
model with the missing data model and the target population model based on the Bayes the-
orem. Sverchkov and Pfeffermann [33] extended the approach in Pfeffermann and Sverchkov
[22] in small area estimation under informative sampling to the case that both informative
sampling and nonignorable missingness exist. However, these approaches only considered
data measured at a certain time point and are not applicable to longitudinal data. Eideh and
Nathan [10], and Farahania et al. [14] considered methods to handle informative sampling
and nonignorable missingness simultaneously in longitudinal data analysis. However, their
discussions focus mainly on general regression models.

In this paper, we study time series modeling for longitudinal survey data under informa-
tive sampling and nonignorable missingness. Treating informative sampling and nonignorable
missingness simultaneously becomes especially challenging in time series models due to the
serial correlation of the response variable at various time points. We consider models to ex-
plore the effect of each of informative sampling and nonignorable missingness. For informative
sampling, a variety of models, including exponential, probit, and logistic models are consid-
ered to capture the dependence between the selection probability and the response variable.
For nonignorable missingness, we consider a logistic model to relate the response probability
to the response variables. Based on these models, we derive a sample likelihood for param-
eter estimation under informative sampling and nonignorable missingness. To compute the
sample likelihood function efficiently, an approximation to the integrals in the sample like-
lihood based on series expansions is proposed. Simulation studies and real data application
are provided to illustrate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 describes time series
models and parameter estimation methods for longitudinal survey data. Section 3 discusses
informative sampling and nonignorable missingness in longitudinal surveys. In Section 4, the
sample likelihood is derived for conducting time series analysis in longitudinal survey data
under informative sampling and nonignorable missingness. Simulations studies and real data
analysis are performed in Sections 5 and 6, respectively.

2. TIME SERIES MODEL FOR LONGITUDINAL SURVEY DATA

Let U = {1, ...,N} be the index set of a finite population U of size N. Let yi,t (i =1, ...,N,
t = 1, ..., T ) be the value of a response variable y of unit i at time t, and xi be the val-
ues of the covariates of unit i, which are always observed and remain constant over time.
A random sample S of size n is then selected from the finite population at time 1 (t = 1) and
measured independently from time 1 to time T . Suppose that yi,t is correlated with the past
values yi,t′ , 1 ≤ t′ < t ≤ T , for each T . A time series model can then be fitted to analyze this
longitudinal survey data. Typically, time series models with short-range dependence are often
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applied in decision-making and policymaking [12]. For simplicity, we consider the first-order
autoregressive (AR(1)) model

(2.1) yi,t − µ = φ(yi,t−1 − µ) + εi,t , i = 1, ..., N, t = 1, ..., T ,

where µ is the mean level of the data, the errors εi,t
iid∼ N(0, σ2), and |φ| < 1. The model

parameter θ = (µ, φ, σ) is of our interest. Note that unit i in the AR(1) model will fall into
the set {1, ..., n} when the sample data is used to estimate the model parameters.

Usually, the maximum likelihood estimation approach is employed to obtain the model
parameter estimators. Let yi = (yi,1, ..., yi,T )′ be the vector of T measurements on unit i

(i = 1, ..., N). Then, the density function of yi can be expressed as f(yi; θ) = f(yi,1; θ) ·
·
∏T

t=2 f(yi,t|yi,t−1; θ). For the AR(1) model, we have yi,1 ∼ N(µ, σ2/(1 − φ2)) and
f(yi,t|yi,t−1; θ) = (2πσ2)−1/2 exp{−[yi,t − φ(yi,t−1 − µ)− µ]2/(2σ2)}. Thus, the log-likelihood
function of θ can be written as

log L(θ) =
n∑

i=1

log f(yi,1; θ) +
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .(2.2)

It follows that the maximum likelihood estimator of θ can be obtained by maximizing the
log-likelihood function in (2.2).

3. INFORMATIVE SAMPLING AND NONIGNORABLE MISSINGNESS
IN LONGITUDINAL SURVEYS

3.1. Informative sampling

Analytic inference from longitudinal survey data usually fails to account for the complex
sampling design, such as informative sampling. A sampling design is called informative
when the sample selection probabilities are related to the response variable y, even after
conditioning on the covariates. In practice, selection probabilities may be correlated with
the response variable, the covariates and possibly, design variables used for sampling. For
simplicity, we consider the case that selection probabilities depend only on the response
variable.

Let Ii be the sample indicator variable, taking values of 1 if unit i ∈ U is selected
to the sample S and 0 if otherwise. The selection probabilities can then be denoted by
πi = P (Ii = 1|yi). Let fs(yi) and fp(yi) denote the sample density and the population density
of yi, respectively. In fact, the density functions f(yi,1; θ) and f(yi,t|yi,t−1; θ) in Section 2
are the population densities, which can also be denoted by fp(yi,1; θ) and fp(yi,t|yi,t−1; θ),
respectively. Following Pfeffermann et al. [25] as well as Sikov and Stern [31], the sample
density fs(yi) is given by

fs(yi) = f(yi|Ii = 1) =
f(yi, Ii = 1)
P (Ii = 1)

(3.1)

=
P (Ii = 1|yi)fp(yi)

P (Ii = 1)
=

Ep(πi|yi)fp(yi)
Ep(πi)

,
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where πi = P (Ii = 1|yi), Ep(πi|yi) =
∫

P (Ii = 1|yi, πi)fp(πi|yi)dπi = P (Ii = 1|yi), and Ep(πi)
=

∫
P (Ii = 1|yi)fp(yi)dyi = P (Ii = 1). Under informative sampling, the selection probability

πi = P (Ii = 1|yi) depends on yi. Hence, Ep(πi|yi) 6= Ep(πi) and P (Ii = 1|yi) 6= P (Ii = 1),
yielding fs(yi) 6= fp(yi) in general. That is, the sample distribution is different from the
population distribution. However, the sample distribution is viewed as the same as the
population distribution in many analysis under informative sampling, which have resulted in
false inferences (Pfeffermann [27], [26]).

In order to access the sample density, Ep(πi|yi) = P (Ii =1|yi) can be modeled to explore
the relationship between the selection probabilities πi and the response variable values yi.
Pfeffermann et al. [25] and Eideh and Nathan [12] considered

(3.2) Exponential model : Ep(πi|yi) = exp(a0 + a1yi) ,

where a0 and a1 are unknown model parameters. Besides, the probit model and logistic
model, which are less common in longitudinal surveys under informative sampling, can also
be explored to explain the informative sampling mechanism:

(3.3) Probit model : Ep(πi|yi) = Φ(b0 + b1yi) ,

(3.4) Logistic model : Ep(πi|yi) =
exp(c0 + c1yi)

1 + exp(c0 + c1yi)
,

where b0, b1, c0, c1 are unknown model parameters.

3.2. Nonignorable missingness

Missing data is another problem which often arises in longitudinal surveys. Here, we
assume that there exists nonignorable missingness in longitudinal surveys. In particular,
the values yi,1 at time 1 are complete and some of yi,2, ..., yi,T suffer from missingness for
i = 1, ..., n. Denote the response indicator variable by

δi,t =

{
1 if yi,t is observed ,

0 otherwise .
(3.5)

The nonignorable missingness implies that missingness depends on the response variable.
In other words, the response probability is related to the response variable. Under the AR(1)
model, we model the response mechanism using a logistic model

P (δi,t = 1|xi, yi,t−1, yi,t) =: π(xi, yi,t−1, yi,t; η)(3.6)

=
exp(η1xi + η2yi,t−1 + η3yi,t)

1 + exp(η1xi + η2yi,t−1 + η3yi,t)
,

where η = (η1, η2, η3) is the unknown parameter. Equation (3.6) asserts that the response
probability P (δi,t = 1|xi, yi,t−1, yi,t) at time t depends not only on the value yi,t at time t

and the covariate xi, but also on its past value yi,t−1. Clearly, the response mechanism
is nonignorable missingness. Note that (3.6) extends the nonignorable response mechanism
in Qin et al. [28] by incorporating the effect of past observations into the response probability.
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For notational simplicity, only one covariate x is considered in the response model.
The extension to multiple covariates x1, ..., xp in the response model is straightforward.

If we ignore the informative sampling and nonignorable missingness, using the complete
case (CC) analysis (Farahania et al. [14]), the log-likelihood function of θ in the AR(1) model
based on the observed data is rewritten as

log L(θ) =
n∑

i=1

log f(yi,1; θ) +
T∑

t=2

n∑
i=1

δi,t−1δi,t log f(yi,t|yi,t−1; θ)(3.7)

=
n∑

i=1

{
−1

2
log

(
2πσ2

1− φ2

)
− (1− φ2)(yi,1 − µ)2

2σ2

}

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
−1

2
log(2πσ2)− 1

2σ2
[yi,t − φ(yi,t−1 − µ)− µ]2

}
.

Then, we can get the maximum likelihood estimator θ̂ of θ via maximizing the log-likelihood
function in (3.7). However, the obtained estimator θ̂ is obviously biased because it ignores
the informative sampling and nonignorable missingness (Pfeffermann et al. [25]; Little and
Rubin [18]; Farahania et al. [14]). In fact, the observed sample distribution is different from
the population distribution under both informative sampling and nonignorable missingness,
which cannot guarantee that the log-likelihood function in (3.7) gives the correct estimates.

4. SAMPLE LIKELIHOOD AND ESTIMATION UNDER INFORMATIVE
SAMPLING AND NONIGNORABLE MISSINGNESS

4.1. Sample likelihood under informative sampling

The sample distribution differs from the population distribution under informative sam-
pling. Therefore, the sample likelihood will be different from the general likelihood under
noninformative sampling. Because the sample is only selected from the finite population at
time 1 in longitudinal surveys, the sample distribution at time 1 can be obtained by replacing
yi in (3.1) with yi,1 in longitudinal surveys. In what follows, the sample density function
fs(yi) of yi in longitudinal surveys under informative sampling can be expressed as

fs(yi) = fs(yi,1; θ)
T∏

t=2

fp(yi,t|yi,t−1; θ)(4.1)

=
Ep(πi|yi,1)fp(yi,1; θ)

Ep(πi)

T∏
t=2

fp(yi,t|yi,t−1; θ) .

Then, the log-likelihood function becomes

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi)(4.2)

+
n∑

i=1

log f(yi,1; θ) +
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .
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4.2. Sample likelihood under informative sampling and nonignorable missingness

When nonignorable missingness also exists in longitudinal surveys under informative

sampling,
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) in (4.2) needs to be modified since f(yi,t|yi,t−1; θ) is not

available when yi,t or yi,t−1 is missing. Taking the response mechanism (3.6) into account,
we propose to replace f(yi,t|yi,t−1; θ) by the conditional densities based on the observed re-
sponse, namely f(yi,t|xi, δi,t−1 = 0, δi,t = 1) or f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1), depending
on whether yi,t−1 is missing or not. It follows that the log-likelihood function under informa-
tive sampling and nonignorable missingness can be rewritten as

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi) +
n∑

i=1

log f(yi,1; θ)(4.3)

+
n∑

i=1

T∑
t=2

δi,t−1δi,t log f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)

+
n∑

i=1

T∑
t=2

(1− δi,t−1)δi,t log f(yi,t|xi, δi,t−1 = 0, δi,t = 1) .

Next, we derive the expressions for f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) and f(yi,t|xi,

δi,t−1 = 0, δi,t = 1) in the following lemma. The proof is given in the Appendix.

Lemma 4.1. The conditional density f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) satisfies

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

,(4.4)

and f(yi,t|xi, δi,t−1 = 0, δi,t = 1) satisfies

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)(4.5)

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)
.

Substituting (4.4) and (4.5) into (4.3) yields the following log-likelihood function under
informative sampling and nonignorable missingness

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi) +
n∑

i=1

log f(yi,1; θ)(4.6)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.
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Using (3.2), (3.3) and (3.4), the log-likelihood functions under nonignorabe missingness and
the three informative sampling models can be expressed as

Exponential model:

log L(θ, η, a1)(4.7)

= a1

n∑
i=1

yi,1 − n[a1µ + σ2a2
1/(2(1− φ2))] +

n∑
i=1

log f(yi,1; θ)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

,

Probit model:

log L(θ, η, b0, b1)(4.8)

=
n∑

i=1

log Φ(b0 + b1yi,1)−
n∑

i=1

log
∫

Φ(b0 + b1yi,1)f(yi,1)dyi,1 +
n∑

i=1

log f(yi,1; θ)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

,

Logistic model:

log L(θ, η, c0, c1)(4.9)

= −
n∑

i=1

log[1 + exp(−c0 − c1yi,1)]−
n∑

i=1

log
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

+
n∑

i=1

log f(yi,1; θ) +
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.

Therefore, the maximum likelihood estimators of θ, η, a1, b0, b1, c0, and c1 can be
obtained by maximizing the log-likelihood functions in (4.7), (4.8) or (4.9).
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4.3. Computations of the likelihood function

Note that computing the log-likelihood functions in (4.7), (4.8) and (4.9) involves the
density f(xi, δi,t−1 = 0, δi,t = 1), as well as the integrals

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt,∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1,
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t) ·
· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 and

∫
Φ(b0 + b1yi,1)f(yi,1)dyi,1. In this section we discuss

effective computations for these quantities.

First, f(xi, δi,t−1 = 0, δi,t = 1) can be approximated by the empirical distribution

f(xi, δi,t−1 = 0, δi,t = 1) ≈
∑

i,δi,t=1;
δi,t−1=0

(1− δi,t−1)δi,t

/
n .

Next, the following lemma provides a series expansion for the integral
∫

π(xi, yi,t−1, yt; η) ·
· f(yt|yi,t−1; θ)dyt. The proof is provided in the Appendix.

Lemma 4.2. The integral
∫

π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt satisfies

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0 ,

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0 ,

1
1 + c

, β = 0 ,

(4.10)

where c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], µ̃ = µ + φ(yi,t−1 − µ), β = −η3σ, γ = − log c/β

and Φ is the distribution function of standard normal distribution.

In practice, the infinite series in (4.10) has to be approximated by a finite truncated
sum. Simulation studies show that the truncation of summing up to k = 10 gives a good
approximation to the infinite series in most cases.

Based on Lemma 4.2, the following corollary gives a similar series expansion for the
integral

∫
[1+exp(−c0−c1yi,1)]−1f(yi,1)dyi,1 in (4.9). The proof is presented in the Appendix.
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Corollary 4.1. The integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 satisfies∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0 ,

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0 ,

1
1 + c

, β = 0 ,

(4.11)

where c = exp(−c0 − c1µ), β = −c1σ/
√

1− φ2, γ = − log c/β and Φ is the distribution func-

tion of standard normal distribution.

Lastly, for the double integral
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t) ·
· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1, the series expansion approach is not applicable. Thus,
it is necessary to consider other numerical methods for computing the double integral. Here,
we adopt the Gauss-Hermite quadrature (Liu and Pierce [19]) to approximate it. Sim-
ilarly, the Gauss-Hermite quadrature can also be employed to approximate the integral∫

Φ(b0 + b1yi,1)f(yi,1)dyi,1 in (4.8). In R, the function gauss.quad under the package statmod
can be employed. Simulations show that the choice of 9 nodes gives satisfactory performance.
In summary, the computation of maximum likelihood function based on Lemma 4.2, Corol-
lary 4.1 and the Gauss-Hermite quadrature has higher efficiency than that based on direct
integration.

5. SIMULATION STUDIES

To evaluate the performance of the estimators obtained by dealing with informative
sampling and nonignorable missingness in longitudinal surveys, we conduct a simulation study
to compare the estimators under informative sampling and/or nonignorable missingness. In
the simulation, N = 1000 univariate normal values of yi,1 are independently generated from
y1 ∼ N(µ, σ2/(1− φ2)) for the first time period (t = 1), where µ = 0.8, φ = 0.3 and σ = 0.5.
Then, we generate N = 1000 population values of yi,t (i = 1, ..., N) at time t = 2, ..., T with
T = 10, 20 and 40 from the AR(1) model, yi,t − µ = φ(yi,t−1 − µ) + εi,t, where εi,t ∼ N(0, 1)
is independent error term. The AR(1) model parameters µ, φ and σ are of our interest.

For the sample selection, samples of size n = 10, 20 and 40 are selected from the pop-
ulation via probability proportional to size (PPS) systematic sampling with size variable z.
The size variable z values are generated in the following ways, which produce various sampling
methods:
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(1) Exponential sampling: zi = exp(0.9 + 0.3yi,1 + µi), µi ∼ U(0, 1).

(2) Probit sampling: zi = Φ(0.72 + 0.09yi,1 + µi), µi ∼ U(0, 2).

(3) Logistic sampling: zi = [1 + exp(0.6− 0.5yi,1 − µi)]−1, µi ∼ U(0, 5).

(4) Noninformative sampling: zi = exp(1.5µi), µi ∼ U(0, 4).

Note that exponential sampling, probit sampling and logistic sampling are informative.

Under the above sampling approaches, selection probabilities are defined as πi = nzi

/ N∑
i=0

zi.

For the missingness mechanism, the population value of the covariate is generated from
xi ∼ N(0, 1), i = 1, ..., N . We assume that the covariate xi and the response variable yi,1

at time t = 1 are always observed, but yi,t at time t = 2, ..., T may subject to missingness.
The response or missing indicator δi,t of yi,t are independently generated from a Bernoulli
distribution with the response probabilities πit(η) = P (δi,t = 1|xi, yi,t−1, yi,t; η) specified by
πit(η) = [1 + exp(−η1xi − η2yi,t−1 − η3yi,t)]−1, where η1 = 0.2, η2 = 0.4, η3 = −0.5. The aver-
age response rates under exponential sampling, probit sampling, logistic sampling and non-
informative sampling are about 50% for the above nonignorable missing mechanism.

For samples under exponential sampling, probit sampling and logistic sampling, we
compute the model parameter estimates by maximizing the sample likelihood under informa-
tive sampling and nonignorable missingness. For the sample under noninformative sampling,
the model parameter estimators is obtained by maximizing the following log-likelihood func-
tion.

log L =
n∑

i=1

log f(yi,1; θ)(5.1)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log π(xi, yi,t−1, yi,t; η) + log f(yi,t|yi,t−1; θ)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

·
{

log
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.

For comparison, we also compute the naive estimators, which ignore informative sampling
and nonignorable missingness, and are obtained by maximizing the log-likelihood function
(3.7). Moreover, the estimators obtained by ignoring informative sampling or nonignorable
missingness under exponential sampling, probit sampling and logistic sampling are computed.
The estimation procedure is repeated B = 500 times. For each estimator, the Monte Carlo
biases (Bias), standard deviations (SD) under various n and T are presented. Besides, we
also compute the estimation error ‖θ̂ − θ‖2 of the parameter θ = (µ, φ, σ), denoted by ER,
and the standard deviation of ER to further measure the performance of θ. The results are
provided in Tables 1, 2 and 3.
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Table 1: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 10 and T = 10.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0103 0.1129 −0.0001 0.0735 0.0186 0.0732 −0.0947 0.1712
bφ −0.0241 0.2032 −0.0093 0.1196 −0.0096 0.1139 −0.0256 0.2003

Exponential bσ −0.0232 0.0648 −0.0032 0.0507 −0.0003 0.0521 −0.0355 0.0638
bη1 −0.0135 0.0592 −0.0103 0.0636

Missing bη2 0.0425 0.0548 0.0461 0.0527
46.28% bη3 0.0206 0.0526 0.0131 0.0559

ba1 0.0203 0.0657 0.4578 1.0580

ER (SD) 0.2134 (0.1176) 0.1147 (0.0958) 0.1147 (0.0912) 0.2529 (0.1425)

bµ −0.7105 14.8879 0.0011 0.0743 0.0035 0.0777 −0.0919 0.2255
bφ −0.0420 0.4807 −0.0163 0.1061 −0.0170 0.1226 −0.0029 0.2371

Probit bσ −0.0184 0.1993 −0.0043 0.0500 −0.0051 0.0505 −0.0190 0.0725
bη1 −0.0092 0.0504 −0.0061 0.0616

Missing bη2 0.0337 0.0462 0.0475 0.0645
46.76% bη3 0.0179 0.0452 0.0260 0.0509

bb0 0.0210 0.0517 8.3838 135.7257
bb1 0.0176 0.0485 5.4545 114.8679

ER (SD) 0.9055 (14.8865) 0.1061 (0.0910) 0.1175 (0.1007) 0.2855 (0.1988)

bµ −0.0412 0.1105 −0.0021 0.0492 0.0032 0.0764 −0.0625 0.1091
bφ −0.0361 0.2065 0.0113 0.0460 −0.0150 0.1152 0.0188 0.0801

Logistic bσ −0.0300 0.0612 0.0015 0.0425 −0.0033 0.0510 −0.0118 0.0555
bη1 −0.0055 0.0323 −0.0048 0.0600

Missing bη2 0.0134 0.0252 0.0454 0.0536
46.55% bη3 0.0061 0.0217 0.0228 0.0561

bc0 0.0190 0.0241 0.0478 0.0497
bc1 0.0289 0.0223 0.0656 0.0569

ER (SD) 0.2183 (0.1213) 0.0631 (0.0499) 0.1145 (0.0938) 0.1335 (0.0892)

bµ −0.0404 0.1103 0.0032 0.0779

Noninform bφ −0.0411 0.2348 −0.0230 0.1312
bσ −0.0258 0.0660 −0.0029 0.0516

Missing bη1 −0.0052 0.0645
46.29% bη2 0.0516 0.0721

bη3 0.0213 0.0680

ER (SD) 0.2327 (0.1463) 0.1249 (0.1042)

From Table 1, it can be seen that the proposed method that deals with informative sam-
pling and nonignorable missingness simultaneously generally has smaller biases in comparison
with the others under the four sampling mechanisms. As expected, the parameter estima-
tion error of the proposed method is the smallest among all methods under various sampling
schemes, followed by the estimators handling nonignorable missingness but ignoring infor-
mative sampling, whereas the estimation errors of the naive estimators and the estimators
dealing with informative sampling but ignoring nonignorable missingness are relatively large
among the four methods under exponential sampling, probit sampling and logistic sampling.
Moreover, it is obvious that the proposed estimators of the parameters µ, φ, σ in AR(1) model
have smaller biases than the naive estimators when the sampling design is noninformative.
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All of these indicate that the proposed method has a good performance in handling nonig-
norable missingness. Besides, the proposed method generally yields the smallest standard
deviations of the four methods for the estimation of the parameters µ, φ, σ under different
sampling approaches. Similar results can be found in Table 2 and 3 which focus on different
sample sizes. From Tables 1, 2 and 3, it can be seen as well that the estimation error of
the proposed method decreases with the increase in the sample size n and the time period T

for the four sampling schemes. It is noteworthy that the differences between the estima-
tion errors of the proposed estimators and the estimators ignoring informative sampling
but handling nonignorable missingness become smaller under various sampling schemes as
n and T increase. This is reasonable because the sampling at time 1 may have a smaller
effect on the estimation of the AR(1) model parameters as the time period T becomes larger.
In conclusion, the proposed method performs best in the estimation of parameters.

Table 2: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 20 and T = 20.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0374 0.0625 0.0043 0.0439 0.0140 0.0395 −0.0904 0.0735
bφ −0.0069 0.0976 −0.0139 0.0710 −0.0115 0.0671 −0.0077 0.0963

Exponential bσ −0.0053 0.0332 0.0039 0.0269 0.0048 0.0261 −0.0113 0.0331
bη1 −0.0322 0.0507 −0.0319 0.0507

Missing bη2 0.0533 0.1096 0.0541 0.0399
49.36% bη3 0.0117 0.1068 0.0162 0.0381

ba1 0.0263 0.0452 0.3980 0.5521

ER (SD) 0.1148 (0.0529) 0.0669 (0.0585) 0.0701 (0.0467) 0.1419 (0.0629)

bµ −0.0612 0.0629 0.0008 0.0381 0.0004 0.0400 −0.0880 0.0806
bφ −0.0020 0.0977 −0.0116 0.0621 −0.0063 0.0658 0.0061 0.1022

Probit bσ −0.0082 0.0341 0.0037 0.0262 0.0035 0.0273 −0.0052 0.0365
bη1 −0.0337 0.0508 −0.0308 0.0543

Missing bη2 0.0422 0.0319 0.0553 0.0406
49.40% bη3 0.0157 0.0335 0.0232 0.0386

bb0 0.0218 0.0311 −1.4934 14.4169
bb1 0.0197 0.0358 10.9502 95.3024

ER (SD) 0.1233 (0.0571) 0.0636 (0.0457) 0.0675 (0.0465) 0.1472 (0.0662)

bµ −0.0570 0.0617 −0.0010 0.0288 0.0036 0.0395 −0.0661 0.0638
bφ −0.0035 0.1012 0.0095 0.0331 −0.0083 0.0688 0.0170 0.0585

Logistic bσ −0.0074 0.0329 0.0056 0.0209 0.0031 0.0251 0.0001 0.0301
bη1 −0.0190 0.0322 −0.0285 0.0489

Missing bη2 0.0178 0.0198 0.0555 0.0426
49.27% bη3 0.0095 0.0215 0.0199 0.0366

bc0 0.0193 0.0191 0.0438 0.0394
bc1 0.0308 0.0191 0.0601 0.0382

ER (SD) 0.1222 (0.0592) 0.0433 (0.0246) 0.0677 (0.0491) 0.0984 (0.0579)

bµ −0.0699 0.0622 0.0014 0.0423

Noninform bφ 0.0012 0.0985 0.0002 0.0641
bσ −0.0093 0.0331 0.0020 0.0258

Missing bη1 −0.0391 0.0540
49.39% bη2 0.0575 0.0398

bη3 0.0216 0.0393

ER (SD) 0.1253 (0.0625) 0.0681 (0.0438)
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Table 3: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 40 and T = 40.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0614 0.0342 0.0014 0.0297 0.0078 0.0282 −0.0890 0.0377
bφ 0.0012 0.0504 −0.0097 0.0677 −0.0090 0.0613 0.0023 0.0504

Exponential bσ −0.0040 0.0194 0.0039 0.0160 0.0051 0.0175 −0.0066 0.0190
bη1 −0.0746 0.0666 −0.0745 0.0660

Missing bη2 0.0891 0.1987 0.1009 0.1384
50.69% bη3 −0.0025 0.1928 −0.0081 0.1423

ba1 0.0344 0.0425 0.3001 0.3354

ER (SD) 0.0828 (0.0318) 0.0462 (0.0608) 0.0485 (0.0517) 0.1048 (0.0360)

bµ −0.0742 0.0316 0.00081 0.0224 0.0027 0.0346 −0.0904 0.0390
bφ 0.0002 0.0474 −0.0085 0.0373 −0.0107 0.0813 0.0045 0.0503

Probit bσ −0.0051 0.0180 0.0043 0.0151 0.0052 0.0206 −0.0038 0.0189
bη1 −0.0788 0.0548 −0.0769 0.0784

Missing bη2 0.0663 0.0372 0.1129 0.2268
50.67% bη3 0.0098 0.0325 −0.0103 0.2049

bb0 0.0301 0.0282 −0.7884 7.4087
bb1 0.0261 0.0303 5.5026 38.9418

ER (SD) 0.0905 (0.0302) 0.0394 (0.0256) 0.0501 (0.0765) 0.1059 (0.0372)

bµ −0.0716 0.0344 −0.0029 0.0190 0.0029 0.0332 −0.0693 0.0358
bφ 0.0061 0.0496 0.0094 0.0298 −0.0073 0.0741 0.0191 0.0392

Logistic bσ −0.0040 0.0166 0.0070 0.0112 0.0062 0.0173 −0.0004 0.0160
bη1 −0.0389 0.0391 −0.0704 0.0632

Missing bη2 0.0278 0.0179 0.1123 0.2690
50.58% bη3 0.0080 0.0243 −0.0142 0.2514

bc0 0.0245 0.0175 0.0494 0.0320
bc1 0.0357 0.0170 0.0524 0.0323

ER (SD) 0.0892 (0.0337) 0.0340 (0.0190) 0.0481 (0.0684) 0.0830 (0.0368)

bµ −0.0754 0.0347 0.0013 0.0256

Noninform bφ 0.0004 0.0477 −0.0079 0.0465
bσ −0.0043 0.0169 0.0049 0.0160

Missing bη1 −0.0725 0.0551
50.56% bη2 0.0939 0.0724

bη3 0.0049 0.0746

ER (SD) 0.0915 (0.0331) 0.0451 (0.0335)

6. REAL DATA ANALYSIS

The longitudinal data examined in this section comes from AIDS Clinical Trial Group
193A Study (Henry et al. [16]). It concerns AIDS patients with advanced immune suppression
which is measured with CD4 counts. A total of 1309 patients were randomized to one of
the four treatment groups including (1) 600mg zidovudine alternating monthly with 400mg
didanosine, (2) 600mg zidovudine plus 2.25mg of zalcitabine, (3) 600mg zidovudine plus
400mg of didanosine, and (4) 600mg zidovudine plus 400mg of didanosine plus 400mg of
nevirapine. The numbers of patients in the four treatment groups are n = 325, 324, 330 and
330, respectively. Treatments started at the time of week 0 (baseline), and were measured
before the treatments and every 8 weeks. That is, data is collected on the 0, 8, 16, 24,
32, 40th weeks. Here, we denote the six follow-up time points by t = 1, 2, 3, 4, 5, 6. The
measured outcome variable log(CD4 count + 1) is of our interest, whose values in six time
intervals (0, 4], (4, 12], (12, 20], (20, 28], (28, 36], (36, 40] are viewed as yt for t = 1, 2, 3, 4, 5, 6.
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Note that the last record of the variable log(CD4 count + 1) in the interval is adopted as yt

if there are more than one values of log(CD4 count + 1) in a time interval. The covariates
related to the response variable include Age (years) and Gender (Male=1, Female=0). Details
on the data set can be found at https://content.sph.harvard.edu/fitzmaur/ala/cd4.txt .

In the longitudinal survey, the covariates are completely observed, whereas the response
variable yt (CD4 counts) is subject to missingness due to skipping visits or dropouts. In fact,
a low CD4 count implies that HIV has damaged a patient’s immune system to an extent that
they are at risk of serious illnesses or even deaths. Thus, a lower CD4 count increases the
chance of dropouts due to serious illnesses or deaths. As the patients’ dropouts are related to
the CD4 count, the missing process is potentially nonignorable. The missing rates under the
four treatments are approximately 37.79%, 37.19%, 37.93% and 35.86%, respectively. Let δi,t

be the indicator variable for yi,t. Define

δi,t =

{
1 if yi,t is observed ,

0 otherwise ,
(6.1)

for i = 1, 2, ..., n and t = 1, 2, 3, 4, 5, 6. We are interested in estimating the response probability
P (δi,t = 1|xi, yi,t−1, yi,t). We fit the response model using the age variable x1 and the gender
variable x2 in the following logistic model:

(6.2) P (δi,t = 1|xi1, xi2, yi,t−1, yi,t) =
exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)

1 + exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)
,

where η1, η2, η3, η4 are the unknown parameters. This missing mechanism is obviously non-
ignorable. For comparison, we also consider the following working model for the response
probability under ignorable missing mechanism:

(6.3) P (δi,t = 1|xi1, xi2) =
exp(η′1xi1 + η′2xi2)

1 + exp(η′1xi1 + η′2xi2)
,

where η′1 and η′2 are the unknown parameters. The response probability in equation (6.3)
only depends on the covariates x1 and x2, implying that the missing mechanism is ignorable.

Assume that the sampling design is exponential sampling, probit sampling and logistic
sampling, respectively. For comparison, we consider two models, the AR(1) model (2.1) and
the following mean model.

(6.4) yi,t = µ + εi,t , i = 1, ..., n, t = 1, ..., 6 ,

where εi,t ∼ N(0, σ2). In fact, the mean model has no time dependence and been considered
by Zhao et al. [39]. The estimates of model parameters µ, φ, σ under different missing models,
sampling schemes and treatments, together with the mean squares of the model residuals
(MSE), are presented in Tables 4 and 5.

As shown in Tables 4 and 5, Treatment 4 presents greater estimated values of µ than
other Treatments regardless of models, missing mechanisms or sampling approaches. Also,
the estimates of µ under Treatment 1 are the lowest among all treatments for all sampling
methods and two missing models. That is, patients under Treatment 4 are superior to those
under other Treatments in terms of the average number of CD4 counts, and the average
number of patients’ CD4 counts under Treatment 1 is relatively low. In fact, a high CD4
counts indicates a strong immune system, which suggests that the patient lives longer. This
may reduce the possibility to drop outs for patients, which in turn reduces the differences
between the parameter estimates under nonignorable missingness and ignorable missingness.

https://content.sph.harvard.edu/fitzmaur/ala/cd4.txt
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Table 4: Estimates for the AIDS clinical trial group 193A study data
under nonignorable missingness.

Sampling Estimate

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

Exponential

bµ 2.5268 2.7442 2.6766 2.7326 2.6609 2.7989 2.8167 2.8772
bφ 0.7124 0.6561 0.7228 0.7730
bσ 0.7076 0.9504 0.7618 1.0893 0.7739 1.1018 0.7203 1.1377

MSE 0.5539 0.6781 0.5848 0.8760 0.7674 1.0883 0.9008 1.3400

Probit

bµ 2.9169 2.7406 2.8934 2.8550 2.8528 2.9042 2.9490 3.1211
bφ 0.6963 0.7092 0.7470 0.7591
bσ 0.7202 0.9300 0.7641 1.0827 0.7526 1.1261 0.7392 1.1644

MSE 0.5265 0.6784 0.5761 0.8511 0.7504 1.0439 0.8805 1.2657

Logistic

bµ 2.6969 2.7452 2.9060 2.7831 2.8900 2.7952 2.9263 2.9543
bφ 0.6276 0.6951 0.7671 0.7809
bσ 0.7544 0.9577 0.7740 1.0982 0.7597 1.1136 0.7288 1.1028

MSE 0.5182 0.6780 0.5717 0.8621 0.7538 1.0903 0.8903 1.3036

Table 5: Estimates for the AIDS clinical trial group 193A study data
under ignorable missingness.

Sampling Estimate

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

Exponential

bµ 2.5349 2.6818 2.6518 2.7504 2.7867 2.9202 3.1894 3.0855
bφ 0.6718 0.6961 0.7288 0.7639
bσ 0.7002 0.9481 0.7563 1.0625 0.7701 1.1311 0.7490 1.1440

MSE 0.5428 0.6880 0.5938 0.8705 0.7523 1.0391 0.8573 1.2691

Probit

bµ 2.7210 2.7339 2.7974 2.7847 2.8407 2.8982 3.2598 3.1054
bφ 0.6775 0.6994 0.7286 0.7692
bσ 0.7065 0.9519 0.7614 1.0698 0.7728 1.1334 0.7365 1.1449

MSE 0.5289 0.6792 0.5806 0.8617 0.7461 1.0458 0.8535 1.2669

Logistic

bµ 2.8759 2.7102 2.8401 2.7172 2.7586 2.9382 2.8827 2.9391
bφ 0.6661 0.7182 0.7373 0.7777
bσ 0.7525 0.9815 0.7634 1.0796 0.7772 1.0921 0.7411 1.1267

MSE 0.5184 0.6825 0.5822 0.8812 0.7579 1.0343 0.8941 1.3098

This point is in line with the fact that the estimates of the key model parameter φ under
nonignorable missingness are very close to those under ignorable missingness in the same
Treatment 4 for various sampling approaches, whereas there is a clear difference between
the parameter estimates of φ under nonignorable missingness and ignorable missingness in
Treatment 1 for different sampling schemes. Moreover, the estimator of φ in the AR(1)
model under Treatment 4 is the largest among all treatments under each informative sampling
model for each missing mechanism, suggesting that the number of CD4 counts of Treatment
4 keeps decreasing more slowly in comparison with the others. Therefore, we conclude that
Treatment 4 has better effect on the AIDS disease than other treatments. Besides, in terms
of the variance estimators σ̂2 of residuals and MSE, the AR(1) model yields lower σ̂2 and
MSE than the mean model. Thus, it seems very reasonable to use the AR(1) model over the
mean model to analyze this data set.
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A. APPENDIX

Proof of Lemma 4.1: First, the conditional density f(yi,t|xi, yi,t−1, δi,t−1=1, δi,t =1)
can be obtained, similar to Pfeffermann et al. [25], as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)(A.1)

=
P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)f(yi,t|xi, yi,t−1, δi,t−1 = 1)∫
P (δi,t = 1|xi, yi,t−1, yt, δi,t−1 = 1)f(yt|xi, yi,t−1, δi,t−1 = 1)dyt

.

The term P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1) on the right side of (A.1) can be written as

P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)(A.2)

=
P (δi,t = 1|xi, yi,t−1, yi,t)P (δi,t−1 = 1|xi, yi,t−1, yi,t, δi,t = 1)

P (δi,t−1 = 1|xi, yi,t−1, yi,t)
= P (δi,t = 1|xi, yi,t−1, yi,t)

= π(xi, yi,t−1, yi,t) .

The term f(yi,t|xi, yi,t−1, δi,t−1 = 1) on the right side of (A.1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1) =
P (δi,t−1 = 1|xi, yi,t−1, yi,t)f(yi,t|yi,t−1)

P (δi,t−1 = 1|xi, yi,t−1)
,(A.3)

where f(yi,t|yi,t−1) = exp{−[yi,t − µ− φ(yi,t−1 − µ)]2/2σ2}/
√

2πσ.

Next, the two conditional probabilities of δi,t−1 in (A.3) can be expressed as

P (δi,t−1 = 1|xi, yi,t−1, yi,t)(A.4)

=
∫

P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2

=
∫

π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2 ,

and

P (δi,t−1 = 1|xi, yi,t−1)(A.5)

=
∫

P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2

=
∫

π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2 ,

respectively, where π(xi, yt−2, yi,t−1) is defined in (3.6).

According to the AR(1) model, we can easily prove f(yt−2|yi,t−1, yi,t) = f(yt−2|yi,t−1).
Then, we have P (δi,t−1 = 1|xi, yi,t−1, yi,t) = P (δi,t−1 = 1|xi, yi,t−1). Moreover, f(yi,t|xi, yi,t−1,

δi,t−1 = 1) = f(yi,t|yi,t−1) holds. Thus, the conditional density in (A.1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

.(A.6)

Therefore, (4.4) in Lemma 4.1 holds.
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Now we derive the results for f(yi,t|xi, δi,t−1 = 0, δi,t = 1). Based on the definition of
the conditional density, we have

f(yi,t|xi, δi,t−1 = 0, δi,t = 1) =
f(xi, yi,t, δi,t−1 = 0, δi,t = 1)

f(xi, δi,t−1 = 0, δi,t = 1)
,(A.7)

where f(xi, yi,t, δi,t−1 = 0, δi,t = 1) can be given by

f(xi, yi,t, δi,t−1 = 0, δi,t = 1)(A.8)

=
∫∫

f(xi, yt−2, yt−1, yi,t)f(δi,t−1 = 0, δi,t = 1|xi, yt−2, yt−1, yi,t)dyt−2dyt−1

=
∫∫

f(xi, yt−2)f(yt−1|xi, yt−2)f(yi,t|xi, yt−2, yt−1)P (δi,t = 1|xi, yt−2, yt−1, yi,t)

·P (δi,t−1 = 0|xi, yt−2, yt−1, yi,t, δi,t = 1)dyt−2dyt−1

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1 .

Thus, we can obtain

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)(A.9)

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)
.

It follows that (4.5) in Lemma 4.1 holds.

Proof of Lemma 4.2: According to π(xi, yi,t−1, yi,t) = exp(η1xi + η2yi,t−1 + η3yi,t)/
[1 + exp(η1xi + η2yi,t−1 + η3yi,t)] = 1/[1 + exp(−η1xi − η2yi,t−1 − η3yi,t)] and f(yi,t|yi,t−1) =
(2πσ2)−1/2 exp{−[yi,t − φ(yi,t−1 − µ)− µ]2/(2σ2)}, we have

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.10)

=
1√
2πσ

∫
1

1 + exp[−(η1xi + η2yi,t−1 + η3yt)]
exp

{
− [yt − φ(yi,t−1 − µ)− µ]2

2σ2

}
dyt .

Let µ̃ = µ + φ(yi,t−1 − µ) and c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], we can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.11)

=
1√
2πσ

∫
1

1 + exp{−[η1xi + η2yi,t−1 + η3µ̃ + η3(yt − µ̃)]}
exp

[
−(yt − µ̃)2

2σ2

]
dyt

=
1√
2πσ

∫
1

1 + c · exp(−η3x)
exp

(
− x2

2σ2

)
dx

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
−y2

2

)
dy ,

where β = −η3σ.
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When β > 0 and 0 < c · exp(βy) < 1, we have y < γ = − log c/β. Further, we can write

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.12)

=
1√
2π

[∫ γ

−∞

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy +

∫ ∞

γ

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy

]

=
1√
2π

[∫ γ

−∞

∞∑
k=0

[−c · exp(βy)]k exp
(
−y2

2

)
dy

+
exp(β2/2)

c

∫ ∞

γ

∞∑
k=0

[−1/(c · exp(βy))]k exp
[
−(y + β)2

2

]
dy

]

=
1√
2π

[∫ γ

−∞

∞∑
k=0

(−c)k exp
(

β2k2

2

)
exp

[
−(y − βk)2

2

]
dy

+
1
c

∫ ∞

γ

∞∑
k=0

(
−1

c

)k

exp
[
β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy

]

=
∞∑

k=0

(−c)k exp(β2k2/2)Φ(γ − βk) +
1
c

∞∑
k=0

(−1
c
)k exp[β2(k + 1)2/2][1− Φ(γ + βk + β)] .

Similarly, when β < 0 and 0 < c · exp(βy) < 1, we have y > γ = − log c/β. Then we
can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.13)

=
1√
2π

[∫ γ

−∞

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy +

∫ ∞

γ

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy

]

=
1√
2π

[∫ ∞

γ

∞∑
k=0

(−c)k exp
(

β2k2

2

)
exp

[
−(y − βk)2

2

]
dy

+
1
c

∫ γ

−∞

∞∑
k=0

(
−1

c

)k

exp
[
β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy

]

=
∞∑

k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)] +
1
c

∞∑
k=0

(
−1

c

)k

exp[β2(k + 1)2/2]Φ(γ + βk + β) .

Specially, when β = 0, we get

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt =

1√
2π

∫
1

1 + c
exp

(
−y2

2

)
dy =

1
1 + c

.

Thus, Lemma 4.2 holds.
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Proof of Corollary 4.1: Note that the results in Lemma 4.2 can also be used to
compute the integral

∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 in (4.9). Similar to the proof of

Lemma 4.2, the integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 can be written as∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A.14)

=

√
1− φ2

√
2πσ

∫
1

1 + exp(−c0 − c1yi,1)
exp

{
−(1− φ2)(yi,1 − µ)2

2σ2

}
dyi,1 .

Let y =
√

1− φ2(yi,1 − µ)/σ, we have∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A.15)

=
1√
2π

∫
1

1 + exp[−c0 − c1(σy/
√

1− φ2 + µ)])
exp

(
−y2

2

)
dy

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
−y2

2

)
dy ,

where c = exp(−c0 − c1µ) and β = −c1σ/
√

1− φ2. Thus, we can compute the integral
∫

[1 +
exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 by replacing c = exp[−(η1xi + η2yi,t−1 + η3µ̃)] and β = −η3σ

in Lemma 4.2 with c = exp(−c0 − c1µ) and β = −c1σ/
√

1− φ2. It follows that Corollary 4.1
holds.
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