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1. INTRODUCTION

Let ξ1, ξ2, . . . , ξn be n independent random variables concentrated on Z+ = {0, 1, 2, ...}
and

(1.1) Wn :=
n∑

i=1

ξi,

their convolution of n independent random variables. The distribution of Wn has received
special attention in the literature due to its applicability in many settings such as rare events,
the waiting time distributions, wireless communications, counts in nuclear decay, and business
situations, among many others. For large values of n, it is in practice hard to obtain the exact
distribution of Wn in general, in fact, it becomes intractable if the underlying distribution
is complicated such as hyper-geometric and logarithmic series distribution, among many
others. It is therefore of interest to approximate the distribution of such Wn with some well-
known and easy to use distributions. Approximations to Wn have been studied by several
authors such as, saddle point approximation (Lugannani and Rice [22] and Murakami [24]),
compound Poisson approximation (Barbour et al. [4], Serfozo [28], and Roos [25]), Poisson
approximation (Barbour et al. [7]), the centred Poisson approximation (Čekanavičius and
Vaitkus [8]), compound negative binomial approximation (Vellaisamy and Upadhye [33]),
and negative binomial approximation (Vellaisamy et al. [32] and Kumar and Upadhye [17]).
In this article, we consider Poisson and Poisson convoluted geometric approximation to Wn.
Let X and Y follow Poisson and geometric distribution with parameter λ and p = 1− q with
probability mass function (PMF)

P (X = k) =
e−λλk

k!
and P (Y = k) = qkp, k = 0, 1, 2, . . . ,(1.2)

respectively. Also, assume X and Y are independent. We use Stein’s method to obtain
bounds for the approximation of the law of Wn with that of X and X + Y . Stein’s method
(Stein [29]) requires identification of a Stein operator and there are several approaches to
obtain Stein operators (see Reinert [26]) such as density approach (Stein [29], Stein et al.

[30], Ley and Swan [19, 20]), generator approach (Barbour [2] and Götze [12]), orthogonal
polynomial approach (Diaconis and Zabell [10]), and probability generating function (PGF)
approach (Upadhye et al. [31]). We use the PGF approach to obtain Stein operators.

This article is organized as follows. In Section 2, we introduce some notations to
simplify the presentation of the article. Also, we discuss some known results of Stein’s method.
In Section 3, Stein operators for Wn and X +Y are obtained as a perturbation of the Poisson
operator. In Section 4, the error bounds for X and X + Y approximation to Wn are derived
in total variation distance. In Section 5, we demonstrate the relevance of our results through
an application to the waiting time distribution of 2-runs. In Section 6, we point out some
relevant remarks.
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2. NOTATIONS AND PRELIMINARIES

Recall that Wn =
∑n

i=1 ξi, where ξ1, ξ2, ..., ξn are n independent random variables con-
centrated on Z+. Throughout, we assume that ψξi

, the PGF of ξi, satisfies

(2.1)
ψ′ξi

(w)
ψξi

(w)
=

∞∑
j=0

gi,j+1w
j =: φξi

(w),

at all w ∈ Z+. Note that this assumption is satisfied for the series (2.1) converges absolutely.
Also, one can show that the hyper-geometric and logarithmic series distribution do not satisfy
(2.1). See Yakshyavichus [34], and Kumar and Upadhye [17] for more details. Note that

1. If ξi ∼ Po(λi) =⇒ gi,j+1 =
{
λi, for j = 0,
0, for j ≥ 1.

2. If ξi ∼ Ge(pi) =⇒ gi,j+1 = qj+1
i .

3. If ξi ∼ Bi(n, pi) =⇒ gi,j+1 = n(−1)j (pi/(1− pi))
j+1.

Next, let µ and σ2 be the mean and variance of Wn, respectively. Also, let µ2 and µ3

denote the second and third factorial cumulant moments of Wn, respectively. Then, it can
be easily verified that

µ =
n∑

i=1

φξi
(1) =

n∑
i=1

∞∑
j=0

gi,j+1, σ
2 =

n∑
i=1

[φξi
(1) + φ′ξi

(1)] =
n∑

i=1

∞∑
j=0

(j + 1)gi,j+1,(2.2)

µ2 =
n∑

i=1

φ′ξi
(1) =

n∑
i=1

∞∑
j=0

jgi,j+1, and µ3 =
n∑

i=1

φ′′ξi
(1) =

n∑
i=1

∞∑
j=0

j(j − 1)gi,j+1.

For more details, see Vellaisamy et al. [32], and Kumar and Upadhye [17].
Next, let H := {f |f : Z+ → R is bounded} and

(2.3) HX̄ := {h ∈ H|h(0) = 0, and h(j) = 0 for j /∈ Supp(X̄)}

for a random variable X̄ and Supp(X̄) denotes the support of random variable X̄.
Now, we discuss Stein’s method which can be carried out in the following three steps.
We first identify a suitable operator AX̄ for a random variable X̄ (known as Stein

operator) such that
E(AX̄h(X̄)) = 0, for h ∈ H.

In the second step, we find a solution to the Stein equation

(2.4) AX̄h(j) = f(j)− Ef(X̄), j ∈ Z+ and f ∈ HX̄

and obtain the bound for ‖∆h‖, where ‖∆h‖ = supj∈Z+
|∆h(j)| and ∆h(j) = h(j + 1)− h(j)

denotes the first forward difference operator.
Finally, substitute a random variable Ȳ for j in (2.4) and taking expectation and

supremum, the expression leads to

(2.5) dTV (X̄, Ȳ ) := sup
f∈H

∣∣Ef(X̄)− Ef(Ȳ )
∣∣ = sup

f∈H

∣∣E[AX̄h(Ȳ )]
∣∣,
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where H = {1A | A ⊆ Z+} and 1A is the indicator function of A. Equivalently, (2.5) can be
represented as

dTV (X̄, Ȳ ) =
1
2

∞∑
j=0

|P (X̄ = j)− P (Ȳ = j)|.

For more details, we refer the reader to Barbour et al. [7], Chen et al. [9], Goldstein and
Reinert [11], and Ross [27]. For recent developments, see Barbour and Chen [3], Ley et al. [21],
Upadhye et al. [31], and references therein.

Next, it is known that a Stein operator for X ∼ Po(λ), the Poisson random variable
with parameter λ, is given by

(2.6) AXh(j) = λh(j + 1)− jh(j), for j ∈ Z+ and h ∈ H.

Also, from Section 5 of Barbour and Eagleson [6], the bound for the solution to the stein
equation (say hf ) is given by

(2.7) ‖∆hf‖ ≤
1

max(1, λ)
, for f ∈ H, h ∈ H.

In terms of ‖f‖, we have the following bound

(2.8) ‖∆hf‖ ≤
2‖f‖

max(1, λ)
, for f ∈ H, h ∈ H.

See Section 3 of Upadhye et al. [31] for more details. Note that the condition h(0) = 0 in
(2.3) is used while obtaining the bound (2.7), see Barbour and Eagleson [6] for more details.
Next, suppose we have three random variables X1, X2, and X3 defined on some common
probability space. Define U = AX2 −AX1 then the upper bound for dTV (X2, X3) can be
obtained by the following lemma which is given by Upadhye et al. [31].

Lemma 2.1 (Lemma 3.1, Upadhye et al. [31]). Let X1 be a random variable with

support S, Stein operator AX1 , and h0 be the solution to Stein equation (2.4) satisfying

‖∆h0‖ ≤ w1‖f‖min(1, α−1),

where w1, α > 0. Also, let X2 be a random variable whose Stein operator can be written as

AX2 = AX1 + U1 and X3 be a random variable such that, for h ∈ HX1 ∩HX2 ,

‖U1h‖ ≤ w2‖∆h‖ and |EAX2h(X3)| ≤ ε‖∆h‖,

where w1w2 < α. Then

dTV (X2, X3) ≤
α

2(α− w1w2)
(
εw1 min(1, α−1) + 2P (X2 ∈ Sc) + 2P (X3 ∈ Sc)

)
,

where Sc denote the complement of set S.

Finally, from Corollary 1.6 of Mattner and Roos [23], we have

(2.9) dTV (Wn,Wn + 1) ≤
√

2
π

(
1
4

+
n∑

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2

.

For more details about these results, we refer the reader to Barbour et al. [5], Upadhye et al.

[31], Vellaisamy et al. [32], Kumar and Upadhye [17], and references therein.
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3. STEIN OPERATOR FOR THE CONVOLUTION OF
RANDOM VARIABLES

In this section, we derive Stein operators for Wn and X+Y as a perturbation of Poisson
operator which are used to obtain the main results in Section 4.

Proposition 3.1. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and Wn =

∑n
i=1 ξi. Then, a Stein operator for Wn is

AWnh(j) = µh(j + 1)− jh(j) +
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l),

where µ is defined in (2.2).

Proof: It can be easily verified that the PGF of Wn, denoted by ψWn , is

ψWn(w) =
n∏

i=1

ψξi
(w)

as ξ1, ξ2, . . . , ξn are independent random variables. Differentiating with respect to w, we have

ψ
′
Wn

(w) = ψWn(w)
n∑

i=1

φξi
(w)

=
n∑

i=1

ψWn(w)
∞∑

j=0

gi,j+1w
j ,

where φξi
(·) is defined in (2.1). Using definition of the PGF, the above expression can be

expressed as

∞∑
j=0

(j + 1)γj+1w
j =

n∑
i=1

∞∑
k=0

γkw
k
∞∑

j=0

gi,j+1w
j =

∞∑
j=0

(
n∑

i=1

j∑
k=0

γkgi,j−k+1

)
wj ,

where γj = P (Wn = j). Comparing the coefficients of wj , we get

n∑
i=1

j∑
k=0

γkgi,j−k+1 − (j + 1)γj+1 = 0.

Let h ∈ HWn as defined in (2.3), then

∞∑
j=0

h(j + 1)

[
n∑

i=1

j∑
k=0

γkgi,j−k+1 − (j + 1)γj+1

]
= 0.

Therefore,
∞∑

j=0

[
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j)

]
γj = 0.
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Hence, a Stein operator for Wn is given by

(3.1) AWnh(j) =
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j).

It is well known that

(3.2) h(j + k + 1) =
k∑

l=1

∆h(j + l) + h(j + 1).

Using (3.2) in (3.1), the proof follows.

Proposition 3.2. Let X ∼ Po(λ) and Y ∼ Ge(p) as defined in (1.2). Also, assume

X and Y are independent random variables. Then a Stein operator for X + Y is given by

ĀX+Y h(j) =
(
λ+

q

p

)
h(j + 1)− jh(j) +

∞∑
k=0

k∑
l=1

qk+1∆h(j + l).

Proof: It is known that the PGF of X and Y are

ψX(w) = e−λ(1−w) and ψY (w) =
p

1− qw
,

respectively. Then, the PGF of Z = X + Y is given by

ψZ(w) = ψX(w).ψY (w).

Differentiating with respect to w, we get

ψ′Z(w) =
(
λ+

q

1− qw

)
ψZ(w) =

(
λ+ q

∞∑
j=0

qjwj
)
ψZ(w), |w| < q−1.

Let γ̄j = P (Z = j) be the PMF of Z. Then, using definition of the PGF, we have

∞∑
j=0

(j + 1)γ̄j+1w
j = λ

∞∑
j=0

γ̄jw
j +

∞∑
j=0

qj+1wj
∞∑

k=0

γ̄kw
k.

This implies

∞∑
j=0

(j + 1)γ̄j+1w
j − λ

∞∑
j=0

γ̄jw
j −

∞∑
j=0

(
j∑

k=0

γ̄kq
j−k+1

)
wj = 0.

Collecting the coefficients of wj , we get

(j + 1)γ̄j+1 − λγ̄j −
j∑

k=0

γ̄kq
j−k+1 = 0.

Let h ∈ HZ as defined in (2.3), then

∞∑
j=0

h(j + 1)
[
λγ̄j − (j + 1)γ̄j+1 +

j∑
k=0

γ̄kq
j−k+1

]
= 0.
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Further simplification leads to
∞∑

j=0

[
λh(j + 1)− jh(j) +

∞∑
k=0

qk+1h(j + k + 1)
]
γ̄j = 0.

Therefore,

ĀX+Y h(j) = λh(j + 1)− jh(j) +
∞∑

k=0

qk+1h(j + k + 1).

Using (3.2), the proof follows.

4. APPROXIMATION RESULTS

In this section, we derive an error bound for the Poisson and Poisson convoluted
geometric approximation to Wn. The following theorem gives the bound for Poisson, with
parameter µ, approximation.

Theorem 4.1. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and Wn =

∑n
i=1 ξi. Then

dTV (Wn, X) ≤ |µ2|
max(1, µ)

,

where X ∼ Po(µ).

Proof: From Proposition 3.1, a Stein operator for Wn is given by

AWnh(j) = µh(j + 1)− jh(j) +
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)

= AXh(j) + UWnh(j),

where AX is a Stein operator forX as discussed in (2.6). Observe that AWn is a Stein operator
for Wn which can be seen as a perturbation of Poisson operator. Now, for h ∈ HX ∩HWn ,
taking expectation of perturbed operator UWn with respect to Wn and using (2.7), the result
follows.

Next, we derive Z = X + Y approximation to Wn, where X ∼ Po(λ) and Y ∼ Ge(p),
by matching first two moments, that is, E(Z) = E(Wn) and Var(Z) = Var(Wn) which give
the following choice of parameters

λ = µ−
√
σ2 − µ and p =

1

1 +
√
σ2 − µ

.(4.1)

Theorem 4.2. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and the mean and variance of Wn =

∑n
i=1 ξi satisfying (4.1). Also, assume that σ2 > µ and

λ > 2(q/p)2. Then

dTV (Wn, Z) ≤
λ
√

2
π

∣∣∣µ3 − 2 (q/p)3
∣∣∣ (1

4 +
∑n

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2(
λ− 2(q/p)2

)
max(1, λ)

,

where Z = X + Y , X ∼ Po(λ) and Y ∼ Ge(p).
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Remark 4.1. Note that, in Theorem 4.2, the choice of parameters are valid as

µ = λ+
q

p
>
q

p
=
√
σ2 − µ and p =

1

1 +
√
σ2 − µ

≤ 1,

since σ2 > µ.

Proof of Theorem 4.2: From (3.1), the Stein operator for Wn is given by

AWnh(j) =
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j).

Using (3.2), with
∑n

i=1

∑∞
k=0 gi,k+1 = E(Wn) = E(Z) = λ+ q/p, we get

AWnh(j) =
(
λ+

q

p

)
h(j + 1)− jh(j) +

∞∑
k=0

k∑
l=1

qk+1∆h(j + l)

+
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)−
∞∑

k=0

k∑
l=1

qk+1∆h(j + l)

= AZh(j) + ŪWnh(j).

This is a Stein operator for Wn which can be seen as perturbation of Z = X + Y operator,
obtained in Proposition 3.2. Now, consider

(4.2) ŪWnh(j) =
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)−
∞∑

k=0

k∑
l=1

qk+1∆h(j + l).

We know that

∆h(j + l) =
l−1∑
m=1

∆2h(j +m) + ∆h(j + 1).

Substituting in (4.2) and using Var(Z) = Var(Wn) with
∑n

i=1

∑∞
k=0 gi,k+1 = E(Wn) = E(Z) =

λ+ q/p, we have

ŪWnh(j) =
n∑

i=1

∞∑
k=0

k∑
l=1

l−1∑
m=1

gi,k+1∆2h(j +m)−
∞∑

k=0

k∑
l=1

l−1∑
m=1

qk+1∆2h(j +m).

Now, taking expectation with respect to Wn, we get

E
[
ŪWnh(Wn)

]
=

∞∑
j=0

[ n∑
i=1

∞∑
k=0

k∑
l=1

l−1∑
m=1

gi,k+1∆2h(j +m)

−
∞∑

k=0

k∑
l=1

l−1∑
m=1

qk+1∆2h(j +m)
]
P [Wn = j].

Therefore,

∣∣E[ŪWnh(Wn)
]∣∣ ≤ 2dTV (Wn,Wn + 1)‖∆h‖

∣∣∣∣∣
n∑

i=1

∞∑
k=0

k(k − 1)
2

gi,k+1 −
∞∑

k=0

k(k − 1)
2

qk+1

∣∣∣∣∣.
≤ dTV (Wn,Wn + 1)‖∆h‖

∣∣∣∣∣µ3 − 2
q3

p3

∣∣∣∣∣.
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Using (2.9), we have

∣∣∣E[UWnh(Wn)
]∣∣∣ ≤ ‖∆h‖

√
2
π

(
1
4

+
n∑

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2∣∣∣∣∣µ3 − 2
q3

p3

∣∣∣∣∣.(4.3)

From Proposition 3.2, we have

‖UX+Y h‖ ≤
q2

p2
‖∆h‖.(4.4)

Using (2.8), (4.3), and (4.4) with Lemma 2.1, the proof follows.

5. AN APPLICATION TO THE WAITING TIME DISTRIBUTION
OF 2-RUNS

The concept of runs and patterns is well-known in the literature due to its applicability
in many real-life applications such as reliability theory, machine maintenance, statistical
testing, and quality control, among many others. In this section, we consider the set up
discussed by Hirano [13] and generalized by Huang and Tsai [15] as follows:

Let N denote the number of two consecutive successes in n Bernoulli trials with success
probability p. Then, Huang and Tsai [15] (with k1 = 0 and k2 = 2 in their notation) have
shown that the waiting time for n-th occurrence of 2-runs can be written as the sum of n
independent and identical distributed (iid) random variables, say U1, U2, . . . , Un, concentrated
on {2, 3, . . . }. Here Ui is 2 plus the number of trials between the (j−1)-th and j-th occurrence
of 2-runs. The PGF of Ui is given by

ψU (t) =
p2t2

1− t+ p2t2
,

where U is the iid copy of Ui, i = 1, 2, . . . , n (see Hung and Tsai [15] for more details).
Now, let Vi = Ui − 2 concentrated on Z+. Then, Kumar and Upadhye [17] have given

the PGF of Vi and which is given by

ψVi(t) =
p2

1− t+ p2t2
=

∞∑
j=0

bj/2c∑
`=0

(
j − `

`

)
(−1)`p2(`+1)

 tj =
∞∑

j=0

gi,j+1t
j ,

where gi,j+1 =
∑bj/2c

`=0

(
j−`
`

)
(−1)`p2(`+1), for each i = 1, 2, . . . , n. For more details, we refer the

reader to Huang and Tsai [15], Kumar and Upadhye [17], and Balakrishnan and Koutras [1],
and references therein.

Now, let Wn̄ =
∑n̄

i=1 Vi then Wn̄ denotes the number of failures before n̄th occurrence
of 2-runs. Therefore, from Theorem 4.1, we have

dTV (Wn̄, Po(µ)) ≤ |µ2|
max(1, µ)

,

where µ = n̄
∑∞

j=0 gi,j+1 and µ2 = n̄
∑∞

j=0 jgi,j+1. In a similar manner, from Theorem 4.2,
we can also obtain the bound for the Poisson convoluted geometric approximation. For more
details, we refer the reader to Section 4 of Kumar and Upadhye [17].
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6. CONCLUDING REMARKS

1. Note that, if ξi ∼ Po(λi), i = 1, 2, . . . , n then dTV (Wn, X) = 0 in Theorem 4.1, as
expected.

2. If ξ1 ∼ Po(λ) and ξ2 ∼ Ge(p), for i = 1, 2, and W2 = ξ1 + ξ2 then dTV (W2, Z) = 0
in Theorem 4.2, as expected.

3. The bounds obtained in Theorems 4.1 and 4.2 are either comparable to or im-
provement over the existing bounds available in the literature. In particular, some
comparison can be seen as follows:

(a) If ξi ∼ Ber(pi), for i = 1, 2, . . . , n then, from Theorem 4.1, we have

dTV (Wn, Po(µ)) ≤ 1
max(1, µ)

n∑
i=1

p2
i ,

where µ =
∑n

i=1 pi. The above bound is same as given by Barbour et al. [7]
and is an improvement over the bound dTV (Wn, Po(µ)) ≤

∑n
i=1 p

2
i given by

Khintchine [16] and Le Cam [18].

(b) If ξi ∼ Ge(pi), i = 1, 2, . . . , n then, from Theorem 4.1, we have

dTV (Wn, X) ≤ 1
max(1, µ)

n∑
i=1

(
qi
pi

)2

.

This bound is an improvement over negative binomial approximation given
by Kumar and Upadhye [17] in Corollary 3.1.

(c) If ξi ∼ NB(αi, pi), i = 1, 2, . . . , n then, from Theorems 4.1, we have

dTV (Wn, Po(µ)) ≤ 1
max(1, µ)

n∑
i=1

αi

(
qi
pi

)2

,(6.1)

where µ =
∑n

i=1
αiqi

pi
. Vellaisamy and Upadhye [33] obtained bound for Sn =∑n

i=1 ξi and is given by

(6.2) dTV (Sn, Po(λ)) ≤ min
(

1,
1√
2λe

) n∑
i=1

αiq
2
i

pi
,

where λ =
∑n

i=1 αiqi = αq. Under identical set up with α = 5 and various
values of n and q, the numerical comparison of (6.1) and (6.2) as follows:

Table 1: Comparison of bounds.

n q From (6.1) From (6.2)

10
0.1

0.1111 0.3370
30 0.1111 1.0109
50 0.1111 1.6848

10
0.2

0.2500 1.0722
30 0.2500 3.2166
50 0.2500 5.3610
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Note that our bound (from (6.1)) is better than the bound given in (6.2).
In particular, graphically, the closeness of these two distributions can be seen
as follows:

Po(50/9)

NB(50,0.9)

2 4 6 8 10 12 14

0.05

0.10

0.15

Figure 1: n = 10, q = 0.1.
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Figure 2: n = 30, q = 0.1.
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Figure 3: n = 50, q = 0.1.
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Figure 4: n = 10, q = 0.2.
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Figure 5: n = 30, q = 0.2.
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Figure 6: n = 50, q = 0.2.

The above graphs are obtained by using the moment matching conditions.
Also, from the numerical table and graphs, observe that the distributions are
closer for sufficiently small values of q and large values of n, as expected.
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(d) From Theorem 1 of Hung and Giang [14], it is given that, for A ⊂ Z+,

sup
A

∣∣∣∣∣P (Wn ∈ A)−
∑
k∈A

λk
ne
−λn

k!

∣∣∣∣∣
≤

n∑
i=1

min
{
λ−1

n (1− e−λn)rn,i(1− pn,i), 1− pn,i

}
(1− pn,i)p−1

n,i ,(6.3)

where Wn =
∑n

i=1Xn,i, Xn,i ∼ NB(rn,i, pn,i) with λn = E(Wn). Note that
if min

{
λ−1

n (1− e−λn)rn,i(1− pn,i), 1− pn,i

}
= 1− pn,i, for all i = 1, 2, ..., n,

then

sup
A

∣∣∣∣∣P (Wn ∈ A)−
∑
k∈A

λk
ne
−λn

k!

∣∣∣∣∣ ≤
n∑

i=1

(1− pn,i)2p−1
n,i ,(6.4)

which is of order O(n). Clearly, for large values of n, Theorem 4.1 is an
improvement over (6.4).
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