REVSTAT – Statistical Journal Volume 20, Number 3, July 2022, 373–385 <https://doi.org/10.57805/revstat.v20i3.378>

Approximation Results for the Sums of Independent Random Variables

Author: PRATIMA EKNATH KADU

– Department of Maths & S[tats](https://orcid.org/0000-0002-7622-943X), K. J. Somaiya College of Arts and Commerce, Vidyavihar, Mumbai-400077, India [pratima.kadu](mailto:pratima.kadu@somaiya.edu)@somaiya.edu

Received: November 2019 Revised: June 2020 Accepted: July 2020

Abstract:

• In this article, we consider Poisson and Poisson convoluted geometric approximation to the sums of n independent random variables under moment conditions. We use Stein's method to derive the approximation results in total variation distance. The error bounds obtained are either comparable to or improvement over the existing bounds available in the literature. Also, we give an application to the waiting time distribution of 2-runs.

Keywords:

• Poisson and geometric distribution; perturbations; probability generating function; Stein operator; Stein's method.

AMS Subject Classification:

• Primary: 62E17, 62E20; Secondary: 60E05, 60F05.

1. INTRODUCTION

Let $\xi_1, \xi_2, \ldots, \xi_n$ be *n* independent random variables concentrated on $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$ and

(1.1)
$$
W_n := \sum_{i=1}^n \xi_i,
$$

their convolution of n independent random variables. The distribution of W_n has received special attention in the literature due to its applicability in many settings such as rare events, the waiting time distributions, wireless communications, counts in nuclear decay, and business situations, among many others. For large values of n , it is in practice hard to obtain the exact distribution of W_n in general, in fact, it becomes intractable if the underlying distribution is complicated such as hyper-geometric and logarithmic series distribution, among many others. It is therefore of interest to approximate the distribution of such W_n with some wellknown and easy to use distributions. Approximations to W_n have been studied by several authors such as, saddle point approximation (Lugannani and Rice [\[22\]](#page-12-0) and Murakami [\[24\]](#page-12-1)), compound Poisson approximation (Barbour et al. [\[4\]](#page-11-0), Serfozo [\[28\]](#page-12-2), and Roos [\[25\]](#page-12-3)), Poisson approximation (Barbour et al. [\[7\]](#page-11-1)), the centred Poisson approximation (Cekanavičius and Vaitkus [\[8\]](#page-11-2)), compound negative binomial approximation (Vellaisamy and Upadhye [\[33\]](#page-12-4)), and negative binomial approximation (Vellaisamy et al. [\[32\]](#page-12-5) and Kumar and Upadhye [\[17\]](#page-12-6)). In this article, we consider Poisson and Poisson convoluted geometric approximation to W_n . Let X and Y follow Poisson and geometric distribution with parameter λ and $p = 1 - q$ with probability mass function (PMF)

(1.2)
$$
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}
$$
 and $P(Y = k) = q^k p$, $k = 0, 1, 2, ...$

respectively. Also, assume X and Y are independent. We use Stein's method to obtain bounds for the approximation of the law of W_n with that of X and $X + Y$. Stein's method (Stein [\[29\]](#page-12-7)) requires identification of a Stein operator and there are several approaches to obtain Stein operators (see Reinert $[26]$) such as density approach (Stein [\[29\]](#page-12-7), Stein et al. [\[30\]](#page-12-9), Ley and Swan $[19, 20]$ $[19, 20]$ $[19, 20]$), generator approach (Barbour $[2]$ and Götze $[12]$), orthogonal polynomial approach (Diaconis and Zabell [\[10\]](#page-11-5)), and probability generating function (PGF) approach (Upadhye et al. [\[31\]](#page-12-12)). We use the PGF approach to obtain Stein operators.

This article is organized as follows. In Section [2,](#page-2-0) we introduce some notations to simplify the presentation of the article. Also, we discuss some known results of Stein's method. In Section [3,](#page-4-0) Stein operators for W_n and $X + Y$ are obtained as a perturbation of the Poisson operator. In Section [4,](#page-6-0) the error bounds for X and $X + Y$ approximation to W_n are derived in total variation distance. In Section [5,](#page-8-0) we demonstrate the relevance of our results through an application to the waiting time distribution of 2-runs. In Section [6,](#page-9-0) we point out some relevant remarks.

2. NOTATIONS AND PRELIMINARIES

Recall that $W_n = \sum_{i=1}^n \xi_i$, where $\xi_1, \xi_2, ..., \xi_n$ are *n* independent random variables concentrated on \mathbb{Z}_+ . Throughout, we assume that ψ_{ξ_i} , the PGF of ξ_i , satisfies

(2.1)
$$
\frac{\psi_{\xi_i}'(w)}{\psi_{\xi_i}(w)} = \sum_{j=0}^{\infty} g_{i,j+1} w^j =: \phi_{\xi_i}(w),
$$

at all $w \in \mathbb{Z}_+$. Note that this assumption is satisfied for the series [\(2.1\)](#page-2-1) converges absolutely. Also, one can show that the hyper-geometric and logarithmic series distribution do not satisfy [\(2.1\)](#page-2-1). See Yakshyavichus [\[34\]](#page-12-13), and Kumar and Upadhye [\[17\]](#page-12-6) for more details. Note that

1. If
$$
\xi_i \sim Po(\lambda_i) \implies g_{i,j+1} = \begin{cases} \lambda_i, & \text{for } j = 0, \\ 0, & \text{for } j \ge 1. \end{cases}
$$

\n2. If $\xi_i \sim Ge(p_i) \implies g_{i,j+1} = q_i^{j+1}$.
\n3. If $\xi_i \sim Bi(n, p_i) \implies g_{i,j+1} = n(-1)^j (p_i/(1-p_i))^{j+1}$.

Next, let μ and σ^2 be the mean and variance of W_n , respectively. Also, let μ_2 and μ_3 denote the second and third factorial cumulant moments of W_n , respectively. Then, it can be easily verified that

(2.2)
$$
\mu = \sum_{i=1}^{n} \phi_{\xi_i}(1) = \sum_{i=1}^{n} \sum_{j=0}^{\infty} g_{i,j+1}, \sigma^2 = \sum_{i=1}^{n} [\phi_{\xi_i}(1) + \phi'_{\xi_i}(1)] = \sum_{i=1}^{n} \sum_{j=0}^{\infty} (j+1)g_{i,j+1},
$$

$$
\mu_2 = \sum_{i=1}^{n} \phi'_{\xi_i}(1) = \sum_{i=1}^{n} \sum_{j=0}^{\infty} j g_{i,j+1}, \text{ and } \mu_3 = \sum_{i=1}^{n} \phi''_{\xi_i}(1) = \sum_{i=1}^{n} \sum_{j=0}^{\infty} j (j-1) g_{i,j+1}.
$$

For more details, see Vellaisamy et al. [\[32\]](#page-12-5), and Kumar and Upadhye [\[17\]](#page-12-6).

Next, let $H := \{f | f : \mathbb{Z}_+ \to \mathbb{R} \text{ is bounded} \}$ and

(2.3)
$$
H_{\bar{X}} := \{ h \in H | h(0) = 0, \text{ and } h(j) = 0 \text{ for } j \notin \text{Supp}(\bar{X}) \}
$$

for a random variable \bar{X} and $\text{Supp}(\bar{X})$ denotes the support of random variable \bar{X} .

Now, we discuss Stein's method which can be carried out in the following three steps.

We first identify a suitable operator $A_{\bar{X}}$ for a random variable X (known as Stein operator) such that

$$
\mathbb{E}(\mathcal{A}_{\bar{X}}h(\bar{X})) = 0, \quad \text{for } h \in H.
$$

In the second step, we find a solution to the Stein equation

(2.4)
$$
\mathcal{A}_{\bar{X}}h(j) = f(j) - \mathbb{E}f(\bar{X}), \ j \in \mathbb{Z}_+ \text{ and } f \in H_{\bar{X}}
$$

and obtain the bound for $\|\Delta h\|$, where $\|\Delta h\| = \sup_{j\in\mathbb{Z}_+} |\Delta h(j)|$ and $\Delta h(j) = h(j+1) - h(j)$ denotes the first forward difference operator.

Finally, substitute a random variable \overline{Y} for j in [\(2.4\)](#page-2-2) and taking expectation and supremum, the expression leads to

(2.5)
$$
d_{TV}(\bar{X}, \bar{Y}) := \sup_{f \in \mathcal{H}} \left| \mathbb{E} f(\bar{X}) - \mathbb{E} f(\bar{Y}) \right| = \sup_{f \in \mathcal{H}} \left| \mathbb{E} [\mathcal{A}_{\bar{X}} h(\bar{Y})] \right|,
$$

where $\mathcal{H} = \{ \mathbf{1}_A \mid A \subseteq \mathbb{Z}_+ \}$ and $\mathbf{1}_A$ is the indicator function of A. Equivalently, [\(2.5\)](#page-2-3) can be represented as

$$
d_{TV}(\bar{X}, \bar{Y}) = \frac{1}{2} \sum_{j=0}^{\infty} |P(\bar{X} = j) - P(\bar{Y} = j)|.
$$

For more details, we refer the reader to Barbour et al. [\[7\]](#page-11-1), Chen et al. [\[9\]](#page-11-6), Goldstein and Reinert [\[11\]](#page-11-7), and Ross [\[27\]](#page-12-14). For recent developments, see Barbour and Chen [\[3\]](#page-11-8), Ley et al. [\[21\]](#page-12-15), Upadhye et al. [\[31\]](#page-12-12), and references therein.

Next, it is known that a Stein operator for $X \sim Po(\lambda)$, the Poisson random variable with parameter λ , is given by

(2.6)
$$
\mathcal{A}_X h(j) = \lambda h(j+1) - jh(j), \text{ for } j \in \mathbb{Z}_+ \text{ and } h \in H.
$$

Also, from Section 5 of Barbour and Eagleson [\[6\]](#page-11-9), the bound for the solution to the stein equation (say h_f) is given by

(2.7)
$$
\|\Delta h_f\| \le \frac{1}{\max(1,\lambda)}, \quad \text{for } f \in \mathcal{H}, h \in H.
$$

In terms of $||f||$, we have the following bound

(2.8)
$$
\|\Delta h_f\| \le \frac{2\|f\|}{\max(1,\lambda)}, \quad \text{for } f \in \mathcal{H}, h \in H.
$$

See Section 3 of Upadhye *et al.* [\[31\]](#page-12-12) for more details. Note that the condition $h(0) = 0$ in (2.3) is used while obtaining the bound (2.7) , see Barbour and Eagleson [\[6\]](#page-11-9) for more details. Next, suppose we have three random variables X_1 , X_2 , and X_3 defined on some common probability space. Define $\mathcal{U} = \mathcal{A}_{X_2} - \mathcal{A}_{X_1}$ then the upper bound for $d_{TV}(X_2, X_3)$ can be obtained by the following lemma which is given by Upadhye et al. [\[31\]](#page-12-12).

Lemma 2.1 (Lemma 3.1, Upadhye et al. $[31]$). Let X_1 be a random variable with support S, Stein operator A_{X_1} , and h_0 be the solution to Stein equation [\(2.4\)](#page-2-2) satisfying

$$
\|\Delta h_0\| \le w_1 \|f\| \min(1, \alpha^{-1}),
$$

where $w_1, \alpha > 0$. Also, let X_2 be a random variable whose Stein operator can be written as $\mathcal{A}_{X_2} = \mathcal{A}_{X_1} + U_1$ and X_3 be a random variable such that, for $h \in H_{X_1} \cap H_{X_2}$,

$$
||U_1h|| \le w_2||\Delta h|| \quad \text{and} \quad ||\mathbb{E} \mathcal{A}_{X_2}h(X_3)| \le \varepsilon ||\Delta h||,
$$

where $w_1w_2 < \alpha$. Then

$$
d_{TV}(X_2, X_3) \leq \frac{\alpha}{2(\alpha - w_1w_2)} \left(\varepsilon w_1 \min(1, \alpha^{-1}) + 2P(X_2 \in \mathcal{S}^c) + 2P(X_3 \in \mathcal{S}^c)\right),
$$

where S^c denote the complement of set S .

Finally, from Corollary 1.6 of Mattner and Roos [\[23\]](#page-12-16), we have

(2.9)
$$
d_{TV}(W_n, W_n + 1) \leq \sqrt{\frac{2}{\pi}} \left(\frac{1}{4} + \sum_{i=1}^n \left(1 - d_{TV}(\xi_i, \xi_i + 1) \right) \right)^{-1/2}.
$$

For more details about these results, we refer the reader to Barbour et al. [\[5\]](#page-11-10), Upadhye et al. [\[31\]](#page-12-12), Vellaisamy et al. [\[32\]](#page-12-5), Kumar and Upadhye [\[17\]](#page-12-6), and references therein.

3. STEIN OPERATOR FOR THE CONVOLUTION OF RANDOM VARIABLES

In this section, we derive Stein operators for W_n and $X + Y$ as a perturbation of Poisson operator which are used to obtain the main results in Section [4.](#page-6-0)

Proposition 3.1. Let $\xi_1, \xi_2, \ldots, \xi_n$ be independent random variables satisfying [\(2.1\)](#page-2-1) and $W_n = \sum_{i=1}^n \xi_i$. Then, a Stein operator for W_n is

$$
\mathcal{A}_{W_n}h(j) = \mu h(j+1) - jh(j) + \sum_{i=1}^n \sum_{k=0}^\infty \sum_{l=1}^k g_{i,k+1} \Delta h(j+l),
$$

where μ is defined in [\(2.2\)](#page-2-5).

Proof: It can be easily verified that the PGF of W_n , denoted by ψ_{W_n} , is

$$
\psi_{W_n}(w) = \prod_{i=1}^n \psi_{\xi_i}(w)
$$

as $\xi_1, \xi_2, \ldots, \xi_n$ are independent random variables. Differentiating with respect to w, we have

$$
\psi'_{W_n}(w) = \psi_{W_n}(w) \sum_{i=1}^n \phi_{\xi_i}(w)
$$

=
$$
\sum_{i=1}^n \psi_{W_n}(w) \sum_{j=0}^\infty g_{i,j+1} w^j,
$$

where $\phi_{\xi_i}(\cdot)$ is defined in [\(2.1\)](#page-2-1). Using definition of the PGF, the above expression can be expressed as

$$
\sum_{j=0}^{\infty} (j+1)\gamma_{j+1}w^j = \sum_{i=1}^n \sum_{k=0}^{\infty} \gamma_k w^k \sum_{j=0}^{\infty} g_{i,j+1}w^j = \sum_{j=0}^{\infty} \left(\sum_{i=1}^n \sum_{k=0}^j \gamma_k g_{i,j-k+1}\right) w^j,
$$

where $\gamma_j = P(W_n = j)$. Comparing the coefficients of w^j , we get

$$
\sum_{i=1}^{n} \sum_{k=0}^{j} \gamma_k g_{i,j-k+1} - (j+1)\gamma_{j+1} = 0.
$$

Let $h \in H_{W_n}$ as defined in (2.3) , then

$$
\sum_{j=0}^{\infty} h(j+1) \left[\sum_{i=1}^{n} \sum_{k=0}^{j} \gamma_k g_{i,j-k+1} - (j+1)\gamma_{j+1} \right] = 0.
$$

Therefore,

$$
\sum_{j=0}^{\infty} \left[\sum_{i=1}^{n} \sum_{k=0}^{\infty} g_{i,k+1} h(j+k+1) - j h(j) \right] \gamma_j = 0.
$$

Hence, a Stein operator for W_n is given by

(3.1)
$$
\mathcal{A}_{W_n} h(j) = \sum_{i=1}^n \sum_{k=0}^\infty g_{i,k+1} h(j+k+1) - jh(j).
$$

It is well known that

(3.2)
$$
h(j+k+1) = \sum_{l=1}^{k} \Delta h(j+l) + h(j+1).
$$

Using (3.2) in (3.1) , the proof follows.

Proposition 3.2. Let $X \sim Po(\lambda)$ and $Y \sim Ge(p)$ as defined in [\(1.2\)](#page-1-0). Also, assume X and Y are independent random variables. Then a Stein operator for $X + Y$ is given by

$$
\bar{A}_{X+Y}h(j) = \left(\lambda + \frac{q}{p}\right)h(j+1) - jh(j) + \sum_{k=0}^{\infty} \sum_{l=1}^{k} q^{k+1} \Delta h(j+l).
$$

Proof: It is known that the PGF of X and Y are

$$
\psi_X(w) = e^{-\lambda(1-w)}
$$
 and $\psi_Y(w) = \frac{p}{1-qw}$,

respectively. Then, the PGF of $Z = X + Y$ is given by

$$
\psi_Z(w) = \psi_X(w) . \psi_Y(w).
$$

Differentiating with respect to w , we get

$$
\psi'_Z(w) = \left(\lambda + \frac{q}{1-qw}\right) \psi_Z(w) = \left(\lambda + q \sum_{j=0}^{\infty} q^j w^j\right) \psi_Z(w), \quad |w| < q^{-1}.
$$

Let $\bar{\gamma}_j = P(Z = j)$ be the PMF of Z. Then, using definition of the PGF, we have

$$
\sum_{j=0}^{\infty} (j+1)\overline{\gamma}_{j+1}w^j = \lambda \sum_{j=0}^{\infty} \overline{\gamma}_j w^j + \sum_{j=0}^{\infty} q^{j+1} w^j \sum_{k=0}^{\infty} \overline{\gamma}_k w^k.
$$

This implies

$$
\sum_{j=0}^{\infty} (j+1)\bar{\gamma}_{j+1}w^j - \lambda \sum_{j=0}^{\infty} \bar{\gamma}_j w^j - \sum_{j=0}^{\infty} \left(\sum_{k=0}^j \bar{\gamma}_k q^{j-k+1} \right) w^j = 0.
$$

Collecting the coefficients of w^j , we get

$$
(j+1)\bar{\gamma}_{j+1} - \lambda \bar{\gamma}_j - \sum_{k=0}^j \bar{\gamma}_k q^{j-k+1} = 0.
$$

Let $h \in H_Z$ as defined in [\(2.3\)](#page-2-4), then

$$
\sum_{j=0}^{\infty} h(j+1) \Big[\lambda \bar{\gamma}_j - (j+1)\bar{\gamma}_{j+1} + \sum_{k=0}^{j} \bar{\gamma}_k q^{j-k+1} \Big] = 0.
$$

 \Box

Further simplification leads to

$$
\sum_{j=0}^{\infty} \left[\lambda h(j+1) - jh(j) + \sum_{k=0}^{\infty} q^{k+1} h(j+k+1) \right] \overline{\gamma}_j = 0.
$$

Therefore,

$$
\bar{A}_{X+Y}h(j) = \lambda h(j+1) - jh(j) + \sum_{k=0}^{\infty} q^{k+1}h(j+k+1).
$$

Using [\(3.2\)](#page-5-0), the proof follows.

4. APPROXIMATION RESULTS

In this section, we derive an error bound for the Poisson and Poisson convoluted geometric approximation to W_n . The following theorem gives the bound for Poisson, with parameter μ , approximation.

Theorem 4.1. Let $\xi_1, \xi_2, \ldots, \xi_n$ be independent random variables satisfying [\(2.1\)](#page-2-1) and $W_n = \sum_{i=1}^n \xi_i$. Then

$$
d_{TV}(W_n, X) \le \frac{|\mu_2|}{\max(1, \mu)},
$$

where $X \sim Po(\mu)$.

Proof: From Proposition [3.1,](#page-4-1) a Stein operator for W_n is given by

$$
\mathcal{A}_{W_n} h(j) = \mu h(j+1) - jh(j) + \sum_{i=1}^n \sum_{k=0}^\infty \sum_{l=1}^k g_{i,k+1} \Delta h(j+l) \n= \mathcal{A}_X h(j) + \mathcal{U}_{W_n} h(j),
$$

where A_X is a Stein operator for X as discussed in (2.6) . Observe that A_{W_n} is a Stein operator for W_n which can be seen as a perturbation of Poisson operator. Now, for $h \in H_X \cap H_{W_n}$, taking expectation of perturbed operator \mathcal{U}_{W_n} with respect to W_n and using [\(2.7\)](#page-3-0), the result follows. \Box

Next, we derive $Z = X + Y$ approximation to W_n , where $X \sim Po(\lambda)$ and $Y \sim Ge(p)$, by matching first two moments, that is, $\mathbb{E}(Z) = \mathbb{E}(W_n)$ and $\text{Var}(Z) = \text{Var}(W_n)$ which give the following choice of parameters

(4.1)
$$
\lambda = \mu - \sqrt{\sigma^2 - \mu}
$$
 and $p = \frac{1}{1 + \sqrt{\sigma^2 - \mu}}$.

Theorem 4.2. Let $\xi_1, \xi_2, \ldots, \xi_n$ be independent random variables satisfying [\(2.1\)](#page-2-1) and the mean and variance of $W_n = \sum_{i=1}^n \xi_i$ satisfying [\(4.1\)](#page-6-1). Also, assume that $\sigma^2 > \mu$ and $\lambda > 2(q/p)^2$. Then

$$
d_{TV}(W_n, Z) \le \frac{\lambda \sqrt{\frac{2}{\pi}} \Big| \mu_3 - 2 (q/p)^3 \Big| \left(\frac{1}{4} + \sum_{i=1}^n (1 - d_{TV}(\xi_i, \xi_i + 1))\right)^{-1/2}}{\left(\lambda - 2(q/p)^2\right) \max(1, \lambda)},
$$

where $Z = X + Y$, $X \sim Po(\lambda)$ and $Y \sim Ge(p)$.

 \Box

Remark 4.1. Note that, in Theorem [4.2,](#page-6-2) the choice of parameters are valid as

$$
\mu = \lambda + \frac{q}{p} > \frac{q}{p} = \sqrt{\sigma^2 - \mu}
$$
 and $p = \frac{1}{1 + \sqrt{\sigma^2 - \mu}} \le 1$,

since $\sigma^2 > \mu$.

Proof of Theorem [4.2:](#page-6-2) From (3.1) , the Stein operator for W_n is given by

$$
\mathcal{A}_{W_n}h(j) = \sum_{i=1}^n \sum_{k=0}^\infty g_{i,k+1}h(j+k+1) - jh(j).
$$

Using [\(3.2\)](#page-5-0), with $\sum_{i=1}^{n} \sum_{k=0}^{\infty} g_{i,k+1} = \mathbb{E}(W_n) = \mathbb{E}(Z) = \lambda + q/p$, we get

$$
\mathcal{A}_{W_n}h(j) = \left(\lambda + \frac{q}{p}\right)h(j+1) - jh(j) + \sum_{k=0}^{\infty} \sum_{l=1}^{k} q^{k+1} \Delta h(j+l) + \sum_{i=1}^{n} \sum_{k=0}^{\infty} \sum_{l=1}^{k} g_{i,k+1} \Delta h(j+l) - \sum_{k=0}^{\infty} \sum_{l=1}^{k} q^{k+1} \Delta h(j+l) = \mathcal{A}_Z h(j) + \bar{\mathbf{u}}_{W_n} h(j).
$$

This is a Stein operator for W_n which can be seen as perturbation of $Z = X + Y$ operator, obtained in Proposition [3.2.](#page-5-2) Now, consider

(4.2)
$$
\bar{u}_{W_n}h(j) = \sum_{i=1}^n \sum_{k=0}^\infty \sum_{l=1}^k g_{i,k+1} \Delta h(j+l) - \sum_{k=0}^\infty \sum_{l=1}^k q^{k+1} \Delta h(j+l).
$$

We know that

$$
\Delta h(j + l) = \sum_{m=1}^{l-1} \Delta^2 h(j + m) + \Delta h(j + 1).
$$

Substituting in [\(4.2\)](#page-7-0) and using $\text{Var}(Z) = \text{Var}(W_n)$ with $\sum_{i=1}^n \sum_{k=0}^\infty g_{i,k+1} = \mathbb{E}(W_n) = \mathbb{E}(Z)$ $\lambda + q/p$, we have

$$
\bar{u}_{W_n}h(j) = \sum_{i=1}^n \sum_{k=0}^\infty \sum_{l=1}^k \sum_{m=1}^{l-1} g_{i,k+1} \Delta^2 h(j+m) - \sum_{k=0}^\infty \sum_{l=1}^k \sum_{m=1}^{l-1} q^{k+1} \Delta^2 h(j+m).
$$

Now, taking expectation with respect to W_n , we get

$$
\mathbb{E}\big[\bar{u}_{W_n}h(W_n)\big] = \sum_{j=0}^{\infty} \Big[\sum_{i=1}^{n} \sum_{k=0}^{\infty} \sum_{l=1}^{k} \sum_{m=1}^{l-1} g_{i,k+1} \Delta^2 h(j+m) - \sum_{k=0}^{\infty} \sum_{l=1}^{k} \sum_{m=1}^{l-1} q^{k+1} \Delta^2 h(j+m) \Big] P[W_n = j].
$$

Therefore,

$$
\left| \mathbb{E} \left[\bar{u}_{W_n} h(W_n) \right] \right| \leq 2 d_{TV}(W_n, W_n + 1) \|\Delta h\| \left| \sum_{i=1}^n \sum_{k=0}^\infty \frac{k(k-1)}{2} g_{i,k+1} - \sum_{k=0}^\infty \frac{k(k-1)}{2} q^{k+1} \right|.
$$

$$
\leq d_{TV}(W_n, W_n + 1) \|\Delta h\| \left| \mu_3 - 2 \frac{q^3}{p^3} \right|.
$$

Using (2.9) , we have

$$
(4.3) \qquad \left| \mathbb{E} \left[\mathcal{U}_{W_n} h(W_n) \right] \right| \leq \left\| \Delta h \right\| \sqrt{\frac{2}{\pi}} \left(\frac{1}{4} + \sum_{i=1}^n \left(1 - d_{TV}(\xi_i, \xi_i + 1) \right) \right)^{-1/2} \left| \mu_3 - 2 \frac{q^3}{p^3} \right|.
$$

From Proposition [3.2,](#page-5-2) we have

(4.4)
$$
\|\mathcal{U}_{X+Y}h\| \leq \frac{q^2}{p^2} \|\Delta h\|.
$$

Using (2.8) , (4.3) , and (4.4) with Lemma [2.1,](#page-3-4) the proof follows.

5. AN APPLICATION TO THE WAITING TIME DISTRIBUTION OF 2-RUNS

The concept of runs and patterns is well-known in the literature due to its applicability in many real-life applications such as reliability theory, machine maintenance, statistical testing, and quality control, among many others. In this section, we consider the set up discussed by Hirano $\left[13\right]$ and generalized by Huang and Tsai $\left[15\right]$ as follows:

Let N denote the number of two consecutive successes in n Bernoulli trials with success probability p. Then, Huang and Tsai [\[15\]](#page-12-18) (with $k_1 = 0$ and $k_2 = 2$ in their notation) have shown that the waiting time for n -th occurrence of 2-runs can be written as the sum of n independent and identical distributed (iid) random variables, say U_1, U_2, \ldots, U_n , concentrated on $\{2, 3, \ldots\}$. Here U_i is 2 plus the number of trials between the $(j-1)$ -th and j-th occurrence of 2-runs. The PGF of U_i is given by

$$
\psi_U(t) = \frac{p^2 t^2}{1 - t + p^2 t^2},
$$

where U is the iid copy of U_i , $i = 1, 2, ..., n$ (see Hung and Tsai [\[15\]](#page-12-18) for more details).

Now, let $V_i = U_i - 2$ concentrated on \mathbb{Z}_+ . Then, Kumar and Upadhye [\[17\]](#page-12-6) have given the PGF of V_i and which is given by

$$
\psi_{V_i}(t) = \frac{p^2}{1 - t + p^2 t^2} = \sum_{j=0}^{\infty} \left(\sum_{\ell=0}^{\lfloor j/2 \rfloor} {j - \ell \choose \ell} (-1)^{\ell} p^{2(\ell+1)} \right) t^j = \sum_{j=0}^{\infty} g_{i,j+1} t^j,
$$

where $g_{i,j+1} = \sum_{\ell=0}^{\lfloor j/2 \rfloor} {j-\ell \choose \ell}$ $(\ell^{-\ell})$ $(-1)^{\ell} p^{2(\ell+1)}$, for each $i = 1, 2, ..., n$. For more details, we refer the reader to Huang and Tsai [\[15\]](#page-12-18), Kumar and Upadhye [\[17\]](#page-12-6), and Balakrishnan and Koutras [\[1\]](#page-11-11), and references therein.

Now, let $W_{\bar{n}} = \sum_{i=1}^{\bar{n}} V_i$ then $W_{\bar{n}}$ denotes the number of failures before \bar{n}^{th} occurrence of 2-runs. Therefore, from Theorem [4.1,](#page-6-3) we have

$$
d_{TV}(W_{\bar{n}}, Po(\mu)) \le \frac{|\mu_2|}{\max(1,\mu)},
$$

where $\mu = \bar{n} \sum_{j=0}^{\infty} g_{i,j+1}$ and $\mu_2 = \bar{n} \sum_{j=0}^{\infty} j g_{i,j+1}$. In a similar manner, from Theorem [4.2,](#page-6-2) we can also obtain the bound for the Poisson convoluted geometric approximation. For more details, we refer the reader to Section 4 of Kumar and Upadhye [\[17\]](#page-12-6).

 \Box

6. CONCLUDING REMARKS

- 1. Note that, if $\xi_i \sim Po(\lambda_i)$, $i = 1, 2, ..., n$ then $d_{TV}(W_n, X) = 0$ in Theorem [4.1,](#page-6-3) as expected.
- 2. If $\xi_1 \sim Po(\lambda)$ and $\xi_2 \sim Ge(p)$, for $i = 1, 2$, and $W_2 = \xi_1 + \xi_2$ then $d_{TV}(W_2, Z) = 0$ in Theorem [4.2,](#page-6-2) as expected.
- 3. The bounds obtained in Theorems [4.1](#page-6-3) and [4.2](#page-6-2) are either comparable to or improvement over the existing bounds available in the literature. In particular, some comparison can be seen as follows:
	- (a) If $\xi_i \sim Ber(p_i)$, for $i = 1, 2, ..., n$ then, from Theorem [4.1,](#page-6-3) we have

$$
d_{TV}(W_n, Po(\mu)) \le \frac{1}{\max(1,\mu)} \sum_{i=1}^n p_i^2,
$$

where $\mu = \sum_{i=1}^{n} p_i$. The above bound is same as given by Barbour *et al.* [\[7\]](#page-11-1) and is an improvement over the bound $d_{TV}(W_n, Po(\mu)) \le \sum_{i=1}^n p_i^2$ given by Khintchine [\[16\]](#page-12-19) and Le Cam [\[18\]](#page-12-20).

(b) If $\xi_i \sim Ge(p_i)$, $i = 1, 2, ..., n$ then, from Theorem [4.1,](#page-6-3) we have

$$
d_{TV}(W_n, X) \le \frac{1}{\max(1,\mu)} \sum_{i=1}^n \left(\frac{q_i}{p_i}\right)^2.
$$

This bound is an improvement over negative binomial approximation given by Kumar and Upadhye [\[17\]](#page-12-6) in Corollary 3.1.

(c) If $\xi_i \sim NB(\alpha_i, p_i)$, $i = 1, 2, ..., n$ then, from Theorems [4.1,](#page-6-3) we have

(6.1)
$$
d_{TV}(W_n, Po(\mu)) \le \frac{1}{\max(1, \mu)} \sum_{i=1}^n \alpha_i \left(\frac{q_i}{p_i}\right)^2,
$$

where $\mu = \sum_{i=1}^n \frac{\alpha_i q_i}{p_i}$ $\frac{q_i q_i}{p_i}$. Vellaisamy and Upadhye [\[33\]](#page-12-4) obtained bound for $S_n =$ $\sum_{i=1}^{n} \xi_i$ and is given by

(6.2)
$$
d_{TV}(S_n, Po(\lambda)) \le \min\left(1, \frac{1}{\sqrt{2\lambda e}}\right) \sum_{i=1}^n \frac{\alpha_i q_i^2}{p_i},
$$

where $\lambda = \sum_{i=1}^{n} \alpha_i q_i = \alpha q$. Under identical set up with $\alpha = 5$ and various values of n and q, the numerical comparison of (6.1) and (6.2) as follows:

\boldsymbol{n}		From (6.1)	From (6.2)
10	0.1	0.1111	0.3370
30		0.1111	1.0109
50		0.1111	1.6848
10	0.2	0.2500	1.0722
30		0.2500	3.2166
50		0.2500	5.3610

Table 1: Comparison of bounds.

Note that our bound (from (6.1)) is better than the bound given in (6.2) . In particular, graphically, the closeness of these two distributions can be seen as follows:

The above graphs are obtained by using the moment matching conditions. Also, from the numerical table and graphs, observe that the distributions are closer for sufficiently small values of q and large values of n , as expected.

(d) From Theorem 1 of Hung and Giang [\[14\]](#page-12-21), it is given that, for $A \subset \mathbb{Z}_+$,

$$
\sup_{A} \left| P(W_n \in A) - \sum_{k \in A} \frac{\lambda_n^k e^{-\lambda_n}}{k!} \right|
$$
\n(6.3)
$$
\leq \sum_{i=1}^n \min \left\{ \lambda_n^{-1} (1 - e^{-\lambda_n}) r_{n,i} (1 - p_{n,i}), 1 - p_{n,i} \right\} (1 - p_{n,i}) p_{n,i}^{-1},
$$

where $W_n = \sum_{i=1}^n X_{n,i}, X_{n,i} \sim NB(r_{n,i}, p_{n,i})$ with $\lambda_n = \mathbb{E}(W_n)$. Note that if $\min\{\lambda_n^{-1}(1-e^{-\lambda_n})r_{n,i}(1-p_{n,i}), 1-p_{n,i}\}=1-p_{n,i}$, for all $i=1,2,...,n$, then

(6.4)
$$
\sup_{A} \left| P(W_n \in A) - \sum_{k \in A} \frac{\lambda_n^k e^{-\lambda_n}}{k!} \right| \leq \sum_{i=1}^n (1 - p_{n,i})^2 p_{n,i}^{-1},
$$

which is of order $O(n)$. Clearly, for large values of n, Theorem [4.1](#page-6-3) is an improvement over [\(6.4\)](#page-11-12).

REFERENCES

- [1] Balakrishnan, N. and Koutras, M.V. (2002). Runs and Scans with Applications, John Wiley, New York.
- [2] Barbour, A.D. (1990). Stein's method for diffusion approximations, Probab. Theory and Related Fields, 84(3), 297–322.
- [3] Barbour, A.D. and Chen, L.H.Y. (2014). Stein's (magic) method, Preprint: arXiv:1411.1179.
- [4] Barbour, A.D.; Chen, L.H.Y. and Loh, W.L. (1992). Compound Poisson approximation for nonnegative random variables via Stein's method, Ann. Prob., 20(4), 1843–1866.
- [5] BARBOUR, A.D.; ČEKANAVIČIUS, V. and XIA, A. (2007). On Stein's method and Perturbations, ALEA, 3, 31–53.
- [6] Barbour, A.D. and Eagleson, G.K. (1983). Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Prob., 15(3), 585–600.
- [7] BARBOUR, A.D.; HOLST, L. and JANSON, S. (1992). Poisson Approximation, Oxford: Clarendon Press.
- [8] ČEKANAVIČIUS, V. and VAITKUS, P. (2001). Centered Poisson approximation via Stein's method, Lith. Math. J., 41, 319–329.
- [9] CHEN, L.H.Y.; GOLDSTEIN, L. and SHAO, Q.-M. (2011). Normal Approximation by Stein's Method, Springer, Heidelberg.
- [10] DIACONIS, P. and ZABELL, S. (1991). Closed form summation for classical distributions. Variations on a theme of de Moivre, Statist. Sci., 6(43), 284–302.
- [11] Goldstein, L. and Reinert, G. (2005). Distributional transformations, orthogonal polynomials and Stein characterizations, J. Theoret. Probab., 18(1), 237–260.
- [12] GÖTZE, F. (1991). On the rate of convergence in the multivariate CLT, Ann. Prob., $19(2)$, 724–739.
- [13] Hirano, K. (1984). Some properties of the distributions of order k. In "Proceedtngs of the First International Conference on Fibonacci Numbers and Their Apphcations (Gutenberg, Athens)" (A.N. Philippou and A.F. Horadam, Eds.), 43–53.
- [14] Hung, T.L. and Giang, L.T. (2016). On bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables, Springerplus, 5, 79.
- [15] HUANG, W.T. and TSAI, C.S. (1991). On a modified binomial distribution of order k, Statist. Probab. Lett., 11(2), 125–131.
- [16] Khintchine, A.Ya. (1933). Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin.
- [17] KUMAR, A.N. and UPADHYE, N.S. (2017). On perturbations of Stein operator, Comm. Statist. Theory Methods, 46(18), 9284–9302.
- [18] Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution, Pacific J. Math., 10, 1181–1197.
- [19] Ley, C. and Swan, Y. (2013). Stein's density approach and information inequalities, Electron. Commun. Probab., 18(7), 1–14.
- [20] Ley, C. and Swan, Y. (2013). Local Pinsker inequalities via Stein's discrete density approach, IEEE Trans. Inform. Theory, 59(9), 5584–5591.
- [21] Ley, C.; Reinert, G. and Swan, Y. (2014). Stein's method for comparison of univariate distributions, Probab. Surv., 14, 1-52.
- [22] Lugannani, R. and Rice, S.O. (1980). Saddle point approximation for the distribution of the sum of independent random variables, Adv. Appl. Probab., 12(2), 475–490.
- [23] Mattner, L. and Roos, B. (2007). A shorter proof of Kanter's Bessel function concentration bound, Probab. Theory and Related Fields, 139(1–2), 407–421.
- [24] Murakami, H. (2015). Approximations to the distribution of sum of independent nonidentically gamma random variables, *Math. Sci.*, 9, 205–213.
- [25] Roos, B. (2003). Kerstan's method for compound Poisson approximation, Ann. Probab., $9(41), 1754 - 1771.$
- [26] Reinert, G. (2005). Three general approaches to Stein's method. In "An Introduction to Stein's Method", 4, Singapore University Press, Singapore, 183–221.
- [27] Ross, N. (2011). Fundamentals of Stein's method, Probab. Surv., 8, 210–293.
- [28] Serfozo, R.F. (1986). Compound Poisson approximation for sum of random variables, Ann. Probab., 14(4), 1391–1398.
- [29] Stein, C. (1986). Approximate computation of expectations, Institute of Mathematical Statistics Lecture Notes – Monograph Series, 7, Institute of Mathematical Statistics, Hayward, CA.
- [30] Stein, C.; Diaconis, P.; Holmes, S. and Reinert, G. (2004). Use of exchangeable pairs in the analysis of simulations. In "Stein's Method: Expository Lectures and Applications" (P. Diaconis and S. Holmes, Eds.), IMS Lecture Notes Monogr. Ser 46, 1–26, Beachwood, Ohio, USA: Institute of Mathematical Statistics.
- [31] UPADHYE, N.S.; CEKANAVICIUS, V. and VELLAISAMY, P. (2014). On Stein operators for discrete approximations, *Bernoulli*, **23**(4A), 2828–2859.
- [32] VELLAISAMY, P.; UPADHYE, N.S. and ČEKANAVIČIUS, V. (2013). On negative binomial approximation, Theory Probab. Appl., 57(1), 97–109.
- [33] Vellaisamy, P. and Upadhye, N.S. (2009). Compound negative binomial approximations for sums of random variables, Probab. Math. Statist., 29(2), 205–226.
- [34] Yakshyavichus, Sh. (1998). On a method of expansion of the probabilities of lattice random variables, Theory Probab. Appl., 42(2), 271–282.