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Appendix A 

From now onwards, we are going to suppose that 0 1hSe  , 0 1hSp  , 0 1p   and 

1q p  . Performing algebraic operations it is verified that  

    1 2
1 2

pq
c c

D D
     (1) 

where    1 1h h hD p Q c qQ c     is the denominator of  h c , with 1, 2h  , and 

  1 1 2q c p        (2) 

where    1 1 2 2 11 1Se Sp Se Sp      and 2 1 2 1 2 1 2Y Y Se Se Sp Sp       . Then 

   1 2c c   if 0  , since 0hD  . Solving equation    1 2 0c c    in c it holds 

that 

 1

1 2

q
c c

p

  
  

, (3) 

being c  a real value. From now onwards, the rules so that    1 2c c  , 

   2 1c c   and    1 2c c  , considering that 1i   and 2j   (the demonstrations 

for 2i   and 1j   are analogous). 

 

a) If 12 1rTPF   and 12 1rFPF  , or 12 1rTPF   and 12 1rFPF  , then    1 2c c   for 

0 1c  . 
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Let us suppose in the first place that 12 1rTPF   and that 12 1rFPF  , then 

1 2Se Se Se   and 1 2Sp Sp . Substituting in equation (2) it holds that 

   1 2Sp Sp cp q c Se       . Here 0   if   0cp q c Se   , since 1 2Sp Sp . If 

0c   or 1c  , then   0cp q c Se    since 0qSe  , and  1 0p Se   is verified; and 

as 1 2Sp Sp , then 0   and    1 2c c  . Let us suppose that 0 1c   and p Se , 

then     0cp q c Se c p Se qSe      , and it is verified that 0   and 

   1 2c c  . If p Se , then       1 1 0cp q c Se c Se p Se p        , since 

  1 0c Se p    and  1 0Se p  . Therefore, 0   and    1 2c c  . 

Let us now suppose that 12 1rTPF   and that 12 1rFPF  , then 1 2Se Se  and 

1 2Sp Sp . It is easy to check that when 0c   or 1c   it is verified that 0   and, 

therefore,    1 2c c  . Moreover, as 12 1rTPF   and 12 1rFPF   then dividing both 

parameters  12 12 1rTPF rFPF   it holds that 
 
 

1 212

12 2 1

1
1

1

Se SprTPF

rFPF Se Sp


 


, verifying that 

   1 1 2 2 11 1 0Se Sp Se Sp      . As 1 2Se Se  and 1 2Sp Sp  then 

2 1 2 1 2 0Se Se Sp Sp      . Furthermore, as it is verified that 1 2Se Se  then 

1 21 1Se Se   , and 1

2

1
0 1

1

Se

Se


 


. Moreover, as 1

2

1
Sp

Sp
  then 

 
31 1

2 2 2 2

1
0

1 1

Sp Se

Sp Se Sp Se


  

 
, when    3 2 1 1 21 1 0Se Sp Se Sp      . It is easy to 

check that 1 2 3    , so that 2 1   . Equation (2) can be written as  

 1 2( )q c cp      . (4) 

Let us suppose that 0 1c  , then if q c  it is verified that 0   and    1 2c c  . 

Let us now suppose that q c , then 0q c  . Equation (4) can be written as  
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1 2( )c q cp        

being 0c q  . Let us suppose that  

1 20 ( ) 0c q cp         , 

so that  

2
1 2 1 2

1

( ) ( )c q cp c q cp c q cp


             


. 

As 2 1    then 2

1

1





, so that  

2

1

0c q cp cp


   


, 

from where we obtain   

 0c q cp   . (5) 

Performing algebraic operations  

 1c q cp q c     

As 0 1c  , 1 0c   and 1 0c  , then  1 0q c   , which is contradictory with 

expression (5). Therefore, if q c  then 0   and    1 2c c  . 

The demonstrations for 12 1rTPF   and 12 1rFPF   are performed following a similar 

process to the previous one.  

 

b). If 12 1rTPF   and 12 1rFPF  , then: 

b.1)    1 2c c   if 0 1c c    

b.2)    1 2c c   if 0 1c c    

b.3)    1 2c c   if c c , with 0 1c   

b.4)    1 2c c   for 0 1c   if 0c   (or 1c  ) and 12 12 1rTPF rFPF   
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b.5)    1 2c c   for 0 1c   if 0c   (or 1c  ) and 12 12 1rFPF rTPF   

 

Firstly, we are going to demonstrate that c  cannot be equal to 0 or to 1. As 

1rTPF   and 1rFPF  , then it is verified that 1 2Se Se  and 1 2Sp Sp . If 0c   then 

1 0  , and it is verified that  

1 2

2 1

1
1

1

Se Sp

Se Sp


 


, 

which is incompatible with 1rTPF   and 1rFPF  , since as 1

2

1
Se

Se
  and 

2

1

1
0 1

1

Sp

Sp


 


 then it is verified that 1 2

2 1

1
1

1

Se Sp

Se Sp


 


. Therefore c  cannot be equal to 

0 if 1rTPF   and 1rFPF  . If 1c   then    1 2 2 1 1 21 1 0Sp Se Sp Se        , and 

it is verified that  

2 1

1 2

1
1

1

Sp Se

Sp Se


 


, 

which is incompatible with 1rTPF   and 1rFPF  , since as 2

1

1
Sp

Sp
  and 

1

2

1
0 1

1

Se

Se


 


 then it is verified that 2 1

1 2

1
1

1

Sp Se

Sp Se


 


. Therefore, c  cannot be equal to 

1 if 1rTPF   and 1rFPF  . 

Let us consider that 0 1c  , then we must verify one of the two following: 1) 

1 1 20 q p      , or 2) 1 2 1 0p q      . Condition 1 implies that 1 0   and 

1 2p   , and Condition 2 implies that 1 0   and 1 2p   . 
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Moreover, as 1 2Se Se  and 1 2Sp Sp  (which implies that 1 21 1Sp Sp   ) then 

1 2Q Q . Furthermore, if c c  then performing algebraic operations, each weighted 

kappa coefficient is expressed as  

  h
h

h

Y
c


  , 

when 1 2

1 2

h
h

Q

p
   


  

, with 1,2h   . As 1 2Q Q , then 2 1 0    if 2 0  , and 

2 1 0    if 2 0  . If 2 0  , then  

 2 1 2
2 1 1 2 1 2

1 2

0 0 0
Q Q

p p
p

 
 

            
  

. 

If 2 0  , then 

 2 1 2
2 1 1 2 1 2

1 2

0 0
Q Q

p p
p

 
 

           
  

. 

Therefore, whether 2 0   or 2 0  , it is always verified that 1 2p   . This 

condition is only compatible with Condition 1 obtained by the fact that 0 1c  , i.e. 

1 1 20 q p      . Therefore, it is always verified that 1 0   and 1 2p   . 

Moreover, from equation (3) it holds that  1 1 2q c p     , so that substituting 

this expression in equation (2) it holds that  

   1 2p c c      . (6) 

As 1 2p    then 1 2 0p    . Based on equation (6), if 0 1c c    then 0   and 

   1 2c c  . If 0 1c c    then 0   and    1 2c c  , and if c c  (with 

0 1c  ) then 0   and    1 2c c  . 
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If 0c   then one of the following two conditions must be verified: 1) 

1 1 2 20 q p        , or 2) 2 2 1 1 0p q        . Condition 1 implies that 

1 0   and therefore    1 2 2 11 1Se Sp Se Sp   , and from this inequality it holds that  

1 1
12 12

2 2

1
1 1

1

Se Sp
rTPF rFPF

Se Sp


    


. 

As 1 0q   and 1 2 0p    , then applying equation (2) it holds that 0   and 

therefore    1 2c c  . Condition 2 implies that 1 0   and therefore 

   1 2 2 11 1Se Sp Se Sp   , and it holds that  

1 1
12 12

2 2

1
1 1

1

Sp Se
rFPF rTPF

Sp Se


    


. 

As 1 0q   and 1 2 0p    , applying equation (2) again it holds that 0   and 

therefore    1 2c c  . If 1c  , the demonstrations are similar to those of 0c  . 

 

c) If 12 1rTPF   and 12 1rFPF  , then 21 1rTPF   and 21 1rFPF  , and the 

demonstrations are analogous to case b). 

 

Appendix B 

Bloch (1997) has deduced the expressions of the variances of  1̂ c  and  2
ˆ c  and of 

the covariance between them. We then obtain equivalent expressions and we also 

deduce the variance of the ratio of the two weighted kappa coefficients, an expression 

which is necessary to apply the method to calculate the sample size explained in Section 

5. Let  1 1 2 2, , , ,
T

Se Sp Se Sp pω  be the vector of parameters, where 10 11
1

p p
Se

p


 , 
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00 01
1

q q
Sp

q


 , 01 11

2

p p
Se

p


  and 00 10

2

q q
Sp

q


 , with 1q p  . Applying the delta 

method, the matrix of the asymptotic variances-covariances of ω̂  is 

ˆ ˆ

T             
πω

ω ω

π π
. 

Performing the algebraic operations it is obtained that 

      11 10 01 00 1 1
1 3

1ˆ p p p p Se Se
Var Se

np np

  
  , 

      11 01 10 00 2 2
2 3

1ˆ p p p p Se Se
Var Se

np np

  
  , 

      11 10 01 00 1 1
1 3

1ˆ q q q q Sp Sp
Var Sp

nq nq

  
  , 

      11 01 10 00 2 2
2 3

1ˆ q q q q Sp Sp
Var Sp

nq nq

  
  ,  ˆ

pq
Var p

n
 , 

11 00 10 01 1
1 2 3

ˆ ˆ,
p p p p

Cov Se Se
np np

     , 11 00 10 01 0
1 2 3

ˆ ˆ,
q q q q

Cov Sp Sp
nq nq

      

and 

     ˆ ˆ ˆ ˆˆ ˆ, , , 0h h h hCov Se Sp Cov Se p Cov Sp p   , with 1,2h  . 

The estimators of the variances-covariances are obtained substituting each parameter 

with its corresponding estimator, where 11 10
1

ˆ s s
Se

s


 , 11 01

2
ˆ s s
Se

s


 , 01 00

1
ˆ r r
Sp

r


 , 

10 00
2

ˆ r r
Sp

r


 , ˆ

s
p

n
 , ˆ

r
q

n
 , 11 00 10 0111

1 1 2 2

ˆ ˆ ˆˆ
ˆ

s s s sp
Se Se

p s
 
    and 

00 11 00 10 01
0 1 2 2

ˆ ˆ ˆˆ
ˆ

q r r r r
Sp Sp

q r
 

   . Applying the delta method, the variance of  ˆ
h c  is 

             
2 2 2

ˆ ˆˆ ˆh h h
h h h

h h

c c c
Var c Var Se Var Sp Var p

Se Sp p

  


      
                 

. 
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In this expression the covariances are zero. Performing the algebraic operations, it is 

obtained that 

         
2

2 2 2
1 2 3

ˆ ˆˆ ˆh
h h h h h h

h

c
Var c a Var Se a Var Sp a Var p

pqY




              
 

with 1,2h  , and where 

    1h ha pq p q c c   , 

    2 1h h ha a q c c    

and 

      3 1 2 1 2 1h h h h ha p Y c p Y Sp c c          . 

The expression of  ˆ ˆhVar c    is obtained substituting in the previous expressions each 

parameter with its estimator. Regarding the covariance between  1̂ c  and  2
ˆ c , 

applying the delta method again it is obtained that  

           

     

1 2 1 2
1 2 1 2 1 2

1 2 1 2

1 2

ˆ ˆ ˆ ˆˆ ˆ, , ,

ˆ .

c c c c
Cov c c Cov Se Se Cov Sp Sp

Se Se Sp Sp

c c
Var p

p p

   
 

 

                 

 
 

 

In this expression, the rest of the covariances are equal to zero. Performing the algebraic 

operations it is obtained that  

   
         

1 2

1 2
11 21 1 2 12 22 1 2 13 232 2

1 2

ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ, , .

Cov c c

c c
a a Cov Se Se a a Cov Sp Sp a a Var p

p q YY

 

 

  

    
 

The expression of    1 2
ˆ ˆ ˆ,Cov c c     is obtained substituting in this equation each 

parameter with its estimator. 

Regarding the ration of the two weighted kappa coefficients, the variance of   is 

easily calculated applying the delta method again, i.e. 
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              
2

2

1 2
1 1 2

ˆ ˆ ˆ ˆ2 ,h
h h

Var Var c Cov c c
c c c

     
  

   
             
 . 

Performing the algebraic operations, 

                 
 

2 2
2 1 1 2 1 2 1 2

4
2

ˆ ˆ ˆ ˆ2 ,ˆ c Var c c Var c c c Cov c c
Var

c

       



            , (7) 

and substituting in this equation each parameter with its estimator, we obtain the 

expression of  ˆV̂ar  . The expression of variance of  ˆˆ lnVar  
   is calculated in a 

similar way to in the previous case, but considering  ln   instead of  . 

 

Appendix C 

The selection of the CI with the best asymptotic behaviour, both for the difference   

and for the ratio  , was made taking the following steps: 1) Choose the CIs with the 

least failures ( 93%CP  ), 2) Choose the CIs that are the most accurate i.e. those with 

the lowest AL. The first step in this method establishes that the CI does not fail when 

93%CP  . In the simulation experiments the CIs were calculated to a 95% confidence 

i.e. 1 0.95     is the nominal confidence and 5%   is the nominal error. Then 

* *         , where *  is the CP calculated and *  is the type I error.  

Moreover, the hypothesis test to check the equality of the two weighted kappa 

coefficients is    0 1 2:H c c   vs    1 1 2:H c c  . Based on the difference of both 

parameters, this hypothesis test is equivalent to test 0 : 0H    vs 1 : 0H   . This test 

can be solved through different methods. Applying Bloch’s method (1997), the test 

statistic is given by equation (equation (10) of the manuscript). The statistics for the 

bootstrap method and for the Bayesian method are obtained computationally. 
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In step 1 of the method, a CI has a failure if 93%CP  , i.e. if 2   . In this 

situation, the type I error of the corresponding hypothesis test is 7% , and therefore it 

is a very liberal hypothesis test and it can give false significances. The criteria of 93% 

has been used by other authors (Price and Bonett, 2004; Martín-Andrés and Álvarez-

Hernández, 2014a, 2014b; Montero-Alonso and Roldán-Nofuentes, 2018). If 2%  , 

i.e. 97%CP  , then the hypothesis test is very conservative (its type I error is very 

small, 3% ), but it does not give false significances. Consequently, the choose of the 

optimal CI is linked to the decisions of the hypothesis test, and it is preferable to choose 

a conservative test rather than a very liberal one (as there will be no false significances 

because its type I error is lower than the nominal one). The method for the CIs for the 

ratio   is justified in a similar way. 


