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1. INTRODUCTION

Copula models are popular tools for describing multivariate data where the univariate
distribution functions are combined to joint distribution function by Sklar’s theorem (Sklar,
1959 [13]). Let X and Y be random variables with joint distribution function H and the
marginal distribution functions F and G, respectively. Then, there exists a copula C such
that H(x, y) = C(F (x), G(y)), for all x, y in R. As an advantage of the copula models, the
dependence structure can be modelled separately from the marginal distributions. If F and
G are continuous, then C is unique. Otherwise, the copula C is uniquely determined on
Ran(F )× Ran(G). There are various families of copulas. One of the most popular families
is Archimedean copula family of which the dependence structure can be characterized by an
univariate distribution function (Nelsen, 2006 [12], Section 4). The important feature that
separates this class from the others is that it has a generator function ϕ which is used to
construct an Archimedean copula.

Definition 1.1. A generator function ϕ is a continuous, strictly decreasing convex
function defined from I to [0,∞) such that ϕ(1) = 0. If ϕ(0) = ∞, then the generator is
called as a strict generator. The pseudo inverse of ϕ is the function ϕ[−1], defined on [0,∞)
to I is given by

ϕ[−1] =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t < ∞.

A bivariate Archimedean copula with generator function ϕ, C : I2 → I is defined by

(1.1) C(u, v) = ϕ[−1]{ϕ(u) + ϕ(v)},

where u = F (x) and v = G(y).

An Archimedean copula function can be reduced to an univariate distribution function
through generator function. Genest et al. (1993) [8] showed that the function ϕ(t) can be
obtained by the univariate distribution function K(t) = Pr(C(u, v) ≤ t). Remarkably, there
is a link between the function ϕ(t) and K(t) such as

(1.2) K(t) = t− ϕ(t)
ϕ′(t)

= t− λ(t).

K(t) called as Kendall distribution function identifies the generator function ϕ(t) and so
the dependence structure of the Archimedean copula family. Dependence measures such as
Kendall’s tau, upper and lower tail dependence coefficients can be obtained by using Kendall
distribution function. For a bivariate Archimedean copula with Kendall distribution function
K(t), Genest and MacKay (1986) [7] defined Kendall’s Tau (τ) as

(1.3) τ = 3− 4
∫ 1

0
K(t)dt.

And also, Michiels et al. (2011) [10] defined lower λL and upper λU tail dependence as

λL = 2limt→0+

(
t−K(t)

)′
,(1.4)

λU = 2− 2limt→1−
(
t−K(t)

)′
,(1.5)
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and they investigated a general method for constructing bivariate Archimedean copula fami-
lies using λ function. They worked with polynomials to construct multi-parameter copula fam-
ilies. Genest et al. (1998) [9] proposed several ways to generate bivariate Archimedean copula
models via smooth transformations of existing generator function. Dimitrova et al. (2008) [4]
defined an estimation method of Kendall distribution using B-spline functions. In addition,
they defined sufficient conditions for the B-spline estimator to possess the properties of the
Kendall distribution function. So, the function can be considered as a proper Kendall distri-
bution function and associated with the multivariate Archimedean copula. Cooray (2018) [3]
introduced two-parameter strict Archimedean generator function based on Clayton copula.
Najjari et al. (2014) [11] constructed a new generator function ϕ(t) using hyperbolic functions
as generators of Archimedean copulas. The majority of the papers proposed some methods
based on generator function ϕ for constructing a new Archimedean family of copulas. In this
study, we propose constructing a multi-parameter Archimedean copula using Kendall distri-
bution function K(t). We use Bernstein-Bézier polynomials to create the new Archimedean
class. Kendall’s tau, lower and upper tail dependence coefficients are also obtained according
to the polynomial degree and the control points. This new multi-parameter Archimedean
copula family is contributed to the expansion of the existing Archimedean copula family.

The contribution of this study is two fold: First, a new Archimedean copula class
based on Bernstein-Bézier polynomial is proposed. Different values of Kendall’s tau (nega-
tive or positive), lower and upper tail dependence coefficients can be obtained by changing
the polynomial degree and the control points, so the proposed class has flexible dependence
structure. It is possible to create a new distribution function which has desirable dependence
characteristics. This is quite useful in power analysis of goodness-of-fit test statistic. Second,
an algorithm is proposed to create different distributions with the same dependence level
by changing the control points for poynomial degree. Also, an estimation process based on
minimizing Cramér-von Mises distance is presented and a Monte Carlo simulation study is
employed to measure the performance of the parameter estimates.

The rest of the paper is organized as follows. In Section 2, Bernstein-Bézier type
Archimedean copula is given and some dependence characteristics are investigated. A sim-
ulation procedure of this new class for different polynomial degrees is given in Section 3.
Parameter estimation procedure which is based on minumum Cramér-von-Mises measure is
given and parameter estimates are obtained in Section 4. And the last section is devoted to
the conclusion.

2. BERNSTEIN BÉZIER TYPE BIVARIATE ARCHIMEDEAN COPULA

A Kendall distribution function K(t) should satisfy the following properties (1–4)
described in Nelsen (2006) [12]:

1. K(0) = 0;

2. K(1) = 1;

3. K
′
(t) > 0;

4. K(t) > t , t ∈ (0, 1).
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Let K(m,α; t) be a Bernstein-Bézier type Kendall distribution function with polynomial
degree m and control points α defined as

(2.1) K(m,α; t) =
m∑

k=0

αkBk,m(t)

where Bk,m(t) =
(
m
k

)
tk(1− t)m−k for t ∈ [0, 1].

Lemma 2.1. A Bernstein-Bézier type Kendall distribution function K(m,α; t) satis-

fies the properties (1–4) if the following constraints hold:

1. α0 = 0 < α1 < α2 < ... < αm = 1;

2. αk > k
m , k = 1, ...,m− 1.

Proof: K(m,α, t = 0, ) =
∑m

k=0 αkBk,m(t = 0) = 0 holds since α0 = 0. Similarly,
K(m,α, t = 1) =

∑m
k=0 αkBk,m(t = 1) = 1 holds since αm = 1 .

Also, K(m,α, t)
′
= m

∑m−1
k=0 (αk+1 − αk)Pk,m−1(t) ≥ 0. See, Duncan (2005) [5]. So,

α0 = 0 < α1 < α2 < ... < αm = 1.

If the Bézier control points αk > k
m , k = 1, ...,m− 1 where αk = k/m + εk, then,

K(m,α, t) =
m∑

k=0

αk

(
m

k

)
tk(1− t)m−k

=
m∑

k=0

(
k

m
+ εk)

(
m

k

)
tk(1− t)m−k

=
m∑

k=0

(
k

m
)
(

m

k

)
tk(1− t)m−k +

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t
m∑

k=1

(
m− 1
k − 1

)
tk−1(1− t)m−k +

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t

m−1∑
p=0

tp(1− t)m−p−1

(
m− 1

p

)
+

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t +
m∑

k=0

(εk)
(

m

k

)
tk(1− t)m−k > t.

We also obtain Kendall’s tau, lower and upper tail dependence of the Bernstein-Bézier
type Archimedean copula class using the following lemmas.

Lemma 2.2. Kendall’s tau for Bernstein-Bézier type Archimedean copula is obtained

as

τ = 3− 4
m∑

k=0

αk

(
m

k

)
β(k + 1,m− k + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1dt for v1, v2 positive

integers.

Proof: τ is easily derived from equation τ = 3− 4
∫ 1
0 K(t)dt.
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Lemma 2.3. The lower tail λL and the upper tail λU dependence for Bernstein-Bézier

type Archimedean copula are obtained by

λL = 21−mα1 ,

λU = 2− 21−m(1−αm−1).

Proof: λU and λL are easily derived from equation λL = 2limt→0+

(
t−K(t)

)′
,

λU = 2− 2limt→1−
(
t−K(t)

)′
.

It is seen that λL and λU are affected by only the control points α1 and αm−1, respec-
tively. We can create Bernstein-Bézier type Archimedean copula using λL and λU , setting
up the control points α1 and αm−1.

The following inequalities given in the next lemma provide an information for proper
selection of λU and λL.

Lemma 2.4. Let λL and λU be lower and upper tail dependence of Bernstein-Bézier

type Archimedean copula with polynomial degree m. Then,

1 > λL >
22−m

2− λU

holds for all values of polynomial degree m.

Proof: It can ve proved using the inequality α1 < αm−1. Also, 0 < λU , λL < 1, see
Charpentier and Segers (2009) [2].

Suppose that the parameters αk are defined as αk > k
m for for k = 1, ...,m− 1, then

K(m,α; t) > t. See, Lemma 2.1. Also, we note that if the control points are selected as
αk → k

m , then the dependence coefficients (τ, λU , λL) approximate 1. In other words, the
Bernstein-Bézier type Archimedean copula approximates comonotonic dependence when the
control points are closely distributed uniform.

The Bernstein-Bézier type Archimedean copula with higher degree can represent various
dependence forms. However, they may have some disadvantages:

1. As the degree increases, the complexity and therefore the processing time increase;

2. Because of the complexity, the curves of higher degree are more sensitive to round
off errors.

As opposed to these disadvantages, we can combine several Bernstein-Bézier type
Kendall distribution functions, mostly of degree three and four. We note that the Bernstein-
Bézier polynomials are invariant under barycentric combinations (Farin (2001) [6], p. 61).
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So, we obtain the following Bernstein-Bezier type Archimedean copulas for θ ∈ [0, 1]:

K(m,α; t) =
m∑

k=0

(
θα1,k + (1− θ)α2,k

)
Bk,m(t)

= θ
m∑

k=0

α1,kBk,m(t) + (1− θ)
m∑

k=0

α2,kBk,m(t)

= θK(m,α1,.; t) + (1− θ)K(m,α2,.; t).

We can construct the weighted average of two Bernstein-Bézier Archimedean copulas either
by taking the weighted average of corresponding points on the distribution, or by taking the
weighted average of corresponding parameters α.

Dependence coefficients of two barycentric combinations of Bernstein-Bézier type Archi-
medean copula are given by

τ = 3− 4
m∑

k=0

α2,kβ(k + 1,m− k + 1)
(

m

k

)

+ 4θ

(
m∑

k=0

(α2,k − α1,k)β(k + 1,m− k + 1)
(

m

k

))
,

λU = 2− 21+θmα1,m−1+(1−θ)mα2,m−1−m,

λL = 21−
(
θmα1,1+(1−θ)mα2,1

)
.

Note that if θ is selected as 1, then the classical Bernstein-Bézier type Archimedean
copula is obtained.

3. SIMULATING DATA FROM BERNSTEIN BÉZIER TYPE
ARCHIMEDEAN COPULA

In this section, data simulation from Bernstein-Bézier type Archimedean copula is
given. Construction of a new distribution function which has desirable Kendall’s tau and
tail dependence coefficients are investigated.

The following procedure is used to create a distribution with the dependence charac-
teristics represented by Kendall’s tau and tail dependence coefficients:

1. The arbitrary value of the upper tail dependence λU is determined primarily.

2. λL is determined arbitrarily by using Lemma 2.4.

3. The value of Kendall’s tau τ is determined for the distributions with polynomial
degrees 2 and 3. For the distributions having polynomial degree m ≥ 4, an interval
of Kendall’s tau is determined. Then, Kendall’s tau is selected arbitrarily from this
interval.

4. Bivariate data is simulated using the following algorithm. See, Nelsen (2006) [12].
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The algorithm based on Michiels et al. (2011) [10] allows one to simulate C(u, v) by Kendall
distribution function K(t) given as:

• Simulate uniformly distributed random pair (s, t) on [0, 1].

• Set w = K−1(t).

• Set u such that
∫ u
w

1
t−K(t)dt− ln(s) = 0.

• Set v such that
∫ v
w

1
t−K(t)dt− ln(1− s) = 0.

The range of the parameters and the dependence coefficients depending on the Bernstein-
Bézier polynomial degree m are summarized in Table 1. It is observed that as the degree of
the polynomial increases, the range of the dependence coefficients gets wider.

Table 1: Range of parameters and dependence coefficients.

m α0 α1 α2 α3 α4 α5 τ λU λL

3 0
�

1
3
, 1

� �
max

�
2
3
, α1

�
, 1

�
1 — — (0, 1) (0, 1)

�
1
4
, 1

�

4 0
�

1
4
, 1

� �
max

�
2
4
, α1

�
, 1

� �
max

�
3
4
, α2

�
, 1

�
1 — (−0.2, 1) (0, 1)

�
1
8
, 1

�

5 0
�

1
5
, 1

� �
max

�
2
5
, α1

�
, 1

� �
max

�
3
5
, α2

�
, 1

� �
max

�
4
5
, α3

�
, 1

�
1 (−0.33, 1) (0, 1)

�
1
16

, 1
�

Kendall’s tau, upper and lower tail dependence coefficients obtained by the Bernstein-
Bézier type Archimedean copula with control points for degree (m = 3, 4, 5) are summa-
rized in Table 2. Also, different distributions having the same dependence level at the con-
trol points α2 and α3 for poynomial degree 5 are given. All the Bernstein-Bézier control
points and dependence coefficients are obtained by applying the simulation procedure (1–4).
All cases in Table 2 are examined in the Subsections 3.1–3.3.

Table 2: Parameters and dependence coefficients.

Degree K(t) α0 α1 α2 α3 α4 α5 τ λU λL

m = 3 K1 0 0.7173 0.7928 1 — — 0.4899 0.7 0.45

m = 4 K2 0 0.3537 0.5828 0.9815 1 — 0.68 0.1 0.75

m = 5
K3 0 0.4 0.43 0.8531 0.9169 1 0.6 0.5 0.5
K4 0 0.4 0.63 0.6531 0.9169 1 0.6 0.5 0.5

3.1. Bernstein-Bézier type Archimedean copula with degree three

A Bernstein-Bézier type Archimedean copula with degree 3 has the following distribu-
tion function,

K(m = 3, α; t) =
3∑

k=0

αk

(
3
k

)
tk(1− t)3−k, t ∈ [0, 1].
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From Lemma 2.1, α0 = 0, α3 = 1 , α0 < α1 < α2 < α3 and α1 > 1
3 , α2 > 2

3 . Kendall’s
tau of the distribution is given as

τ = 3− 4
3∑

k=0

αk

(
3
k

)
β(k + 1, 3− k + 1) = 2− α1 − α2

and lower and upper tail dependence coefficients are

λL = 21−3α1 , λU = 2− 23α2−2.

(1–4) procedure is applied to determine the Kendall’s tau and the tail dependence coef-
ficients of the distribution. The arbitrary value of the upper tail dependence λU is determined
primarily in the range λU ∈ (0,1). We select λU as 0.7, so α2 is equal to 0.7928. From Lemma
2.4, 1 > λL > 0.3846. Then, λL is determined arbitrarily as 0.45. So, α1 is equal to 0.7173.
The stage conditions for control points given Lemma 2.1 are satisfied. Finally, Kendall’s tau
is 0.4899. K(3, α; t) with control points α0 = 0, α1 = 0.7173, α2 = 0.7928 and α3 = 1 has the
Kendall’s tau value as τ = 0.4899 and the value tail dependence coefficients as λL = 0.45 and
λU = 0.7. Simulated data and K(m = 3, α; t) with the sample of size 150 are visualized in
Figure 1.

0.2 0.4 0.6 0.8 1.0
u

0.2

0.4
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0.8

1.0

v

K(3,�;t)

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

K

Figure 1: Simulated data from K(3, α; t) with τ = 0.4899, λL = 0.45, λU = 0.7.

3.2. Bernstein-Bézier type Archimedean copula with degree four

Bernstein-Bézier type Archimedean copula with degree 4 has the following distribution
function with the dependence characteristics, Kendall’s tau, lower and upper tail dependence:

K(4, α; t) =
4∑

k=0

αk

(
4
k

)
tk(1− t)4−k, t ∈ [0, 1],

τ =
1
5

(
11− 4(α1 + α2 + α3)

)
,

λL = 21−4α1 , λU = 2− 24α3−3.
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(1–4) procedure is applied to determine the Kendall’s tau and the tail dependence values of
the distribution. The arbitrary value of the upper tail dependence λU is determined primarily
in range λU ∈ (0, 1). We select λU as 0.1 and so α3 is equal to 0.9815. From Lemma 2.4,
1 > λL > 0.1315. Then, λL is determined arbitrarily as 0.75. So, α1 is equal to 0.3537.
Finally from Lemma 2.1, Kendall’s tau should be selected in the range τ ∈ (0.3610, 0.7462).
We determine Kendall’s tau arbitrarily as 0.68. So, α2 is 0.5828. K(4, α; t) with control
points α0 = 0, α1 = 0.3537, α2 = 0.5828, α3 = 0.9815 and α4 = 1 has the value of Kendall’s
tau τ = 0.68 and the values of tail dependences as λL = 0.75 and λU = 0.1. Simulated data
and K(m = 4, α; t) with the sample of size 150 is visualized in Figure 2.
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Figure 2: Simulated data from K(4, α; t) with τ = 0.68, λL = 0.75, λU = 0.1.

3.3. Bernstein-Bézier type Archimedean copula with degree five

Bernstein-Bézier type Archimedean copula with degree 5 has the following distribution
function with the dependence characteristics Kendall’s tau, lower and upper tail dependence,

K(5, α; t) =
5∑

k=0

αk

(
5
k

)
tk(1− t)5−k, t ∈ [0, 1],

τ =
1
3

(
7− 2(α1 + α2 + α3 + α4)

)
,

λL = 21−5α1 , λU = 2− 25α4−4.

(1–4) procedure is again applied to determine the Kendall’s tau and the tail dependence values
of the distribution. The arbitrary value of the upper tail dependence λU is determined primar-
ily in range λU ∈ (0, 1). We select λU as 0.5 and so α4 is equal to 0.9169. From Lemma 2.4,
1 > λL > 0.0833. Then, λL is determined arbitrarily as 0.5. So, α1 is equal to 0.4. Finally
from Lemma 2.1, Kendall’s tau should be selected in the range τ ∈ (0.2328, 0.6220). We
determine Kendall’s tau arbitrarily as 0.6. α2 and α3 can be derived from solving equations
α2 +α3 = 1.2831. From the last equation and Lemma 2.1, α2 and α3 should be selected in the
range α2 ∈ (0.4, 0.6415) and α3 ∈ (0.6415, 0.8831), respectively. Different α2 and α3 values
can be selected in order to provide α2 + α3 = 1.2831 in the range of α2 and α3. This case is
important, because we can create different distributions with the same dependence level by
selecting different α2 and α3 values. One possible selection is α2 = 0.43 and α3 = 0.8531.
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Another possible selection is α2 = 0.63 and α3 = 0.6531. K1(5, α; t) with control points
α0 = 0, α1 = 0.4, α2 = 0.43, α3 = 0.8531, α4 = 0.9169, α5 = 1 and K2(5, α; t) with control
points α0 = 0, α1 = 0.4, α2 = 0.63, α3 = 0.6531, α4 = 0.9169, α5 = 1 with the same depen-
dence level are visualized in Figure 3.

For the higher order polynomial degree, for example m = 6, the range of τ , λL and λU

are determined as the same as for degree m < 6. But the range of α2, α3 and α4 for the
solutions of α2 + α3 + α4 = a cannot be determined easily.
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Figure 3: Simulated data from K1(5, α; t) and K2(5, α; t)
with the same τ = 0.6, λL = 0.5, λU = 0.5.

4. PARAMETER ESTIMATION BASED ON CRAMÉR-VON-MISES
MEASURE

Genest and Rivest (1993) [8] proposed a nonparametric procedure using empirical es-
timate Kn of K. The psuedo observations of T̂i were obtained by

T̂i =
n∑

j=1

I(Xi < Xj , Yi < Yj)/(n− 1), i = 1, ..., n.

Then, K(t) was estimated by the empirical distribution function as

(4.1) K̂n(t) =
n∑

i=1

(T̂i ≤ t)/n.
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Barbe et al. (1996) [1] investigated consistency of K̂n(t). Alternatively, Susam and
Ucer (2018) [14] defined the empirical Bernstein estimator of order (m1 > 0) for the Kendall
distribution function as

(4.2) K̂m1,n(t) =
m1∑
k=0

K̂n(k/m1)Pk,m1(t),

where Pk,m1(t) =
(
m1

k

)
tk(1− t)m1−k is the binomial probability. Also, they showed that the

Bernstein Kendall distribution function outperforms the empirical Kendall distribution func-
tion according to its performance by Monte Carlo simulation study.

In this study, through the parameter estimation process, we first estimate the Bernstein-
Bézier type Archimedean copula parameters by using empirical estimate of K̂n. Then,
Cramér-von-Mises (CvM) distance between the empirical Kendall distribution function and
the Bernstein-Bézier type Kendall distribution function is obtained as

CvMK̂n
=
∫ 1

0
n
(
K̂n(t)−K(α, m2; t)

)2
dK̂n(t)

=
1
n

n∑
i=1

(
K̂n(T̂i)−K(α, m2; T̂i)

)2
.

Then the parameters are estimated by

α̂K̂n
= argmin

α∈Θ

{
CvMK̂n

}

where Θ =
{
αk > k

m2
, αk+1 > αk ; k = 1, ...,m2 − 1

}
and α0 = 0, αm2 = 1.

Secondly, the Bernstein-Bézier type Archimedean copula parameters are estimated by
using empirical Bernstein estimator K̂m1,n(t). Since the empirical Bernstein Kendall distri-
bution function is a continuous approximation of the empirical Kendall distribution function
K̂n, we use empirical Bernstein Kendall distribution function which is upgraded version of
K̂n to obtain Cramér-von-Mises (CvM) distance as

(4.3) CvMK̂n,m
=
∫ 1

0
n
(
K̂n,m1(t)−K(α, m2; t)

)2
dt.

The estimation of the dependence parameter αi for i = 0, ...,m2 can be selected as the value
that minimizes the CvM distance.

Lemma 4.1. Let K(α, m2; t) be the Bernstein-Bézier type Kendall distribution func-

tion with order (m2 > 0) and let K̂m,n(t) be the empirical Bernstein estimator of Kendall
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distribution function with order (m1 > 0). Then the Cramér-von-Mises distance is defined as

CvM = n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)
β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)(
m1

s

)
K̂n

(
k

m1

)
K̂n

(
s

m1

)
β(k + s + 1, 2m1 − k − s + 1)

+ n

m2∑
k=0

(
m2

k

)2

α2
kβ(2k + 1, 2m2 − 2k + 1)

+ 2n

m2−1∑
k=0

m2∑
s=k+1

(
m2

k

)(
m2

s

)
αkαsβ(k + s + 1, 2m2 − k − s + 1)

− 2n

m1∑
k=0

m2∑
s=0

K̂n

(
k

m1

)
αs

(
m1

k

)(
m2

s

)
β(k + s + 1,m1 + m2 − k − s + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1dt for v1, v2 positive

integers.

Proof:

CvM =
∫ 1

0
(K̂n,m1(t)−K(α, m2; t))2dt

= n

∫ 1

0
K̂2

n,m1
(t)dt + n

∫ 1

0
(K(α, m2; t))2dt− 2n

∫ 1

0
K̂n,m1(t)K(α, m2; t)dt

= n

∫ 1

0

(
m1∑
k=0

(
m1

k

)
tk(1− t)m1−kK̂n

(
k

m1

))2

dt

+ n

∫ 1

0

(
m2∑
k=0

αkt
k

(
m2

k

)
tk(1− t)m2−k

)2

dt

− 2n

m1∑
k=0

m2∑
s=0

K̂n

(
k

m1

)
αs

(
m1

k

)(
m2

s

)∫ 1

0
tk+s(1− t)m1+m2−k−sdt

= I1 + I2 − I3.

Now we calculate part of I1. We know that (a1+a2 + ···+an)2 =
∑n

i=1a2
i + 2

∑n−1
i=1

∑n
j=i+1aiaj ,

then we can write

I1 = n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)∫ 1

0
t2k(1− t)2m1−2kdt

+ 2
m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n

(
k

m1

)(
m1

s

)
K̂n

(
s

m1

)∫ 1

0
tk+s(1− t)2m1−k−sdt

= n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)
β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n

(
k

m1

)(
m1

s

)
K̂n

(
s

m1

)
β(k + s + 1, 2m1 − k − s + 1).

Proof of the parts of I2 and I3 are the same as proof of part I1.
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Then, the parameter estimate which gives the minimum value of Cramér-von-Mises dis-
tance based on Bernstein empirical distribution is defined for Bernstein-Bézier type Archime-
dean copula by

α̂K̂n,m
= argmin

α∈Θ

{
CvMK̂n,m

}

where Θ =
{
αk > k

m2
, αk+1 > αk ; k = 1, ...,m2 − 1

}
and α0 = 0, αm2 = 1.

Genest et al. (1993) [8] introduced a method-of-moment estimator for bivariate Archime-
dean copula based on empirical Kendall distribution function K̂n(t). For one-parameter fam-
ilies, the parameter can be estimated by only using the first moment. However, for more than
one parameters, we need the moments as much as the number of parameters.

We note that the estimation procedure explained in this section are not only available
for Archimedean copulas but also available for all continuous copula classes. The empirical
Kendall distribution function can also be used for all continuous copula classes. See Genest
et al. (1993) [8].

A Monte Carlo simulation study is conducted to measure the performance of the estima-
tion method with several values of Kendall’s tau, lower and upper tail dependence coefficients.

1.000 Monte Carlo samples of sizes n = 50, 150 are generated from each type of
Bernstein-Bézier type Archimedean copulas given in Table 2 and investigated the perfor-
mances of two parameter estimation methods as αK̂n

and αK̂n,m
. For the empirical Bernstein

estimator, we select the polynomial degree as m1 = 15 for sample size n = 50 and m1 = 30
for sample size n = 150.

Simulation results are shown in Table 3 and Table 4. When the results are examined,
the minumum Cramér-von-Mises method based on Kendall distribution using Bernstein poly-
nomials outperforms the method based on empirical Kendall distribution in almost all cases
for all sample sizes.

Table 3: MSE of the parameter estimations for four Bernstein-Bézier type copula
with sample size n = 50.

Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1
α̂K̂n

0.00684 0.00431 — —

α̂K̂n,15
0.00575 0.00313 — —

K2
α̂K̂n

0.00903 0.01116 0.00221 —

α̂K̂n,15
0.00324 0.00688 0.00585 —

K3
α̂K̂n

0.00633 0.01580 0.01428 0.00349

α̂K̂n,15
0.00342 0.00925 0.01192 0.00193

K4
α̂K̂n

0.01544 0.00957 0.00992 0.00266

α̂K̂n,15
0.00534 0.01422 0.00923 0.00356
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Table 4: MSE of the parameter estimations for four Bernstein-Bézier type copula
with sample size n = 150.

Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1
α̂K̂n

0.00261 0.00151 — —

α̂K̂n,30
0.00303 0.00141 — —

K2
α̂K̂n

0.00209 0.00437 0.00096 —

α̂K̂n,30
0.00123 0.00384 0.00177 —

K3
α̂K̂n

0.00177 0.00661 0.00827 0.00242

α̂K̂n,30
0.00229 0.00589 0.00614 0.00091

K4
α̂K̂n

0.00516 0.00775 0.00650 0.00144

α̂K̂n,30
0.00224 0.00753 0.00670 0.00165

5. CONCLUSION

In this study, we propose a new family of Archimedean copulas based on Kendall dis-
tribution function K(t). We use Bernstein-Bézier polynomials to construct this new multi-
parameter distribution. The method is illustrated for polynomial degree m = 3, 4, 5. There
are several advantages of this new Archimedean copula class. It is shown that while work-
ing with the Bernstein-Bézier polynomial structures, a multi-parameter copula family can be
constructed in an organized way. It is possible to create a new distribution function which has
desirable dependence characteristics using Kendall’s tau, lower and upper tail dependence.
The parameters of the new model can be interpreted in terms of these dependence char-
acteristics. And also, it is possible that we can create different distributions with the same
dependence structures. Also, we obtain the parameter estimates minimizing the Cramér-von-
Mises distance which is based on Bernstein-Bézier type Archimedean copulas. We measure
the performance of the estimation method with several values of Kendall’s tau, lower and
upper tail dependence coefficients by a Monte Carlo simulation study. We can conclude
that the minimum Cramér-von-Mises method based on Kendall distribution using Bernstein
polynomials outperforms the method based on empirical Kendall distribution function.
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