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1. INTRODUCTION

In this paper, the biased nonparametric regression model is considered. It is formulated
as follows. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be identically distributed random variables
defined on a probability space (Ω,F ,P) with the common density function

(1.1) f(x, y) =
ω(x, y) g(x, y)

µ
, (x, y) ∈ [0, 1]×R ,

where ω stands for a known positive function, g denotes the density function of the unobserved
random variables (U, V ) and µ := E(ω(X,Y )) <∞. In this setup g and f mean the target
density and weighted density, respectively, and the resulting data are biased data. We want
to estimate the dth derivative r(d)(x) of regression function

(1.2) r(x) := E
(
ρ(V ) |U= x

)
=
∫

R

ρ(y) g(x, y)
h(x)

dy , x ∈ [0, 1] .

This above model arises in many applications. For example, in order to estimate the
change rate of agricultural output V when the input U increase (decrease) in a country.
We obtain data (Xi, Yi) (i = 1, 2, ..., n) from those regions where spend more in agriculture,
then Xi and Yi stands for the agricultural input and output. Because it is more likely to
sample those special regions, the density f of (Xi, Yi) satisfies f(x, y) = ω(x,y) g(x,y)

µ with some
weight function ω and the real density g of (U, V ). Then we can estimate the change rate r(d)

of the country by the given data (Xi, Yi). Hence, the work about this regression estimation
model is very important.

The former works have developed kernel or modified local polynomials estimators for
the problem of estimating r(x), i.e., r(d)(x) with d = 0. See, for instance, [1], [20], [10], [21],
[11], [12] and [5]. In order to obtain theoretical results, as optimal rates of convergence, in
a general statistical setting or to reach the goal of adaptivity, wavelet methods have been
developed by [9], [4] and [6]. Always focusing on wavelet methods, the estimation of r(x) for
(strongly mixing) dependent (X1, Y1), (X2, Y2), ..., (Xn, Yn) has been explored by [7], [8] and
[17]. Also, for the prime goal, the estimation of the derivative r(d)(x) has been considered
by [3] and [14], but only for independent (X1, Y1), (X2, Y2), ..., (Xn, Yn). More precisely, [3]
provide an upper bound estimation over Lp(R) (1 ≤ p <∞) risk for the derivative r(d)(x) of
regression function with a linear wavelet estimator. Because this linear wavelet estimator is
not adaptive, [14] construct a nonlinear wavelet estimator and study its convergence rate over
Lp(R) (1 ≤ p <∞) risk.

In this paper, we investigate a generalization of these works by considering the estima-
tion of r(d)(x) from dependent (X1, Y1), (X2, Y2), ..., (Xn, Yn); the negatively associated case
is considered. This kind of dependence naturally appear in many well-known multivariate
distributions involved in a wide variety of applications. We refer to [2] and [16]. In this
setting, a linear nonadaptive and nonlinear adaptive wavelet estimators are introduced.
We determine their rates of convergence under the Lp risk with 1 ≤ p <∞, assuming that
r(d)(x) belongs to Besov spaces Bsep,q(R). We prove that, with mathematical efforts, the es-
tablished results in the independent case can be transposed to the negatively associated case,
showing the consistency of the wavelet methodology for this problem.
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The rest of this paper is the following. The mathematical assumptions on the model
are presented in Section 2. The necessary on the wavelets and Besov spaces are described in
Section 3. The linear wavelet estimation is performed in Section 4. The nonlinear wavelet
estimation is developed in Section 5. Some concluding remarks are postponed in Section 6.

2. ASUMPTIONS ON THE MODEL

In this section, we will introduce the definition and properties of negatively associated
sample. In addition, some other assumptions for the model (1.1)–(1.2) are proposed.

Definition 2.1 ([2]). A sequence of random variable X1, X2, ..., Xn is said to be neg-
atively associated, if for each pair of disjoint nonempty subsets A and B of {i = 1, 2, ..., n},

Cov
(
f(Xi, i∈A), g(Xj , j ∈B)

)
≤ 0 ,

where f and g are real-valued coordinate-wise nondecreasing functions and the corresponding
covariances exist.

This definition can be extended to random vectors (see [16]). It is well known that
Cov

(
Xi, Xj

)
≡ 0 when the random variable X1, X2, ..., Xn is independent. Hence, the in-

dependence case is a special case of negatively associated case. Also, let X1, X2, ..., Xn be

independent random variables with log concave densities. Then, if
n∑

i=1
Xi = c (c is a constant),

X1, X2, ..., Xn are negatively associated.

For examples of negatively associated case, [16] showed that many well-known multi-
variate distributions process the negatively associated property. Some examples include: the
multinomial distribution, the multivariate hypergeometric distribution, the Dirichlet com-
pound multinomial distribution, the permutation distribution and so on. Because of its
wide application in multivariate statistical analysis and system reliability, many research of
negatively associated has already considered, see, e.g., [19], [24], [18], [23]. In addition, an
important property of negative association is given in the following lemma. It will be at a
center of one of our main result.

Lemma 2.1 ([16]). Let X1, X2, ..., Xn be a sequence of negatively associated random

variables and B1, B2, ..., Bm be some pairwise disjoint nonempty subsets of {i = 1, 2, ..., n}.
If fi (i = 1, 2, ...,m) are m coordinate-wise nondecreasing (nonincreasing) functions, then

f1

(
Xi, i∈B1

)
, f2

(
Xi, i∈B2

)
, ..., fm

(
Xi, i∈Bm

)
are also negatively associated.

In this paper, A . B denotes A ≤ cB with a positive constant c which is independent
of A and B; A & B means B . A; A ∼ B stands for both A . B and B . A.

For the problem (1.1)–(1.2), in addition to assume that (X1, Y1), (X2, Y2), ..., (Xn, Yn)
are negatively associated, we make the following other assumptions:

A1. The density function h of the random variable U is nonincreasing, and has a
positive lower bound,

0 < c1 ≤ h(x) , x ∈ [0, 1] .
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A2. The weight function ω is coordinate-wise nonincreasing, and has both positive
upper and lower bounds, i.e., for (x, y) ∈ [0, 1]×R,

ω(x, y) ∼ 1 .

A3. The function ρ is known, nondecreasing and ρ ∈ L∞(R).

A4. We have r(u)(0) = r(u)(1) = 0 for any u ∈ {0, ..., d}.

A5. There exists a constant c2 > 0 such that

sup
x∈[0,1]

∣∣r(d)(x)
∣∣ ≤ c2 .

These assumptions are quite standard for the considered problem (see [3] and [14]).
Only those involving the non monotonicity of some functions are deeply link with the neg-
atively associated dependence assumption. They will be used for technical purpose in the
proofs.

3. WAVELETS AND BESOV SPACES

Throughout this paper, we work with the wavelet basis described below. A wavelet func-
tionψ can be constructed from the scaling function φ in a simple way such that

{
2j/2ψ(2jx−k),

j ∈ Z, k ∈ Z
}

constitutes an orthonormal basis (wavelet basis) of L2(R). Then, each f ∈L2(R),

f =
∑
k∈Z

αj0,k φj0,k +
∞∑

j=j0

∑
k∈Z

βj,k ψj,k

holds in L2(R) sense, where αj0,k = 〈f, φj0,k〉, βj,k = 〈f, ψj,k〉 and

φj0,k(x) = 2
j0
2 φ(2j0x− k) , ψj,k(x) = 2

j
2 ψ(2jx− k) .

Let Pj be the orthogonal projection operator from L2(R) onto the space Vj with the
orthonormal basis

{
φj,k(·) = 2j/2φ(2j · −k), k ∈Z

}
. Then, for f ∈ L2(R),

Pjf =
∑
k∈Z

αj,k φj,k .

A scaling function φ is called m regular, if φ ∈ Cm(R) and |Dαφ(x)| ≤ c(1 + x2)−l for each
l ∈ Z (α = 0, 1, ...,m). In this paper, we choose Daubechies scaling function D2N . Then,
φ is m regular when N gets large enough. Furthermore, it can be shown that, for f ∈ Lp(R)
(1 ≤ p <∞),

(3.1) Pjf(x) =
∑
k∈Z

αj,k φj,k(x)

holds almost everywhere on R ([15]).
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Lemma 3.1. Let a scaling function φ ∈ L2(R) satisfy m regular and {αk} ∈ lp
(1 ≤ p ≤ ∞). Then ∥∥∥∥∥∑

k∈Z
αk 2

j
2 φ(2jx− k)

∥∥∥∥∥
p

∼ 2j
�

1
2
− 1

p

�
‖(αk)‖p .

The proof of lemma can be found in [15]. In addition, Lemma 3.1 holds if the scaling
function φ is replaced by the corresponding wavelet ψ.

One advantage of wavelets is that it can characterize Besov spaces. Besov spaces are
important in theory and applications, which contain Hölder and L2 Sobolev spaces as special
examples. The next lemma provides equivalent definition for Besov space.

Lemma 3.2. Let φ be m regular, ψ be the corresponding wavelets and f ∈ Lp(R).
If αj,k = 〈f, φj,k〉, βj,k = 〈f, ψj,k〉, p, q ∈ [1,∞] and 0 < s < m, then the following assertions

are equivalent:

(1) f ∈ Bs
p,q(R) ;

(2)
{

2js‖Pjf − f‖p

}
∈ lq ;

(3)
{

2j
�
s− 1

p
+ 1

2

�
‖βj‖p

}
∈ lq .

The Besov norm of f can be defined by

(3.2) ‖f‖Bs
p,q

:= ‖(αj0)‖p +

∥∥∥∥∥
(

2j
�
s− 1

p
+ 1

2

�
‖βj‖p

)
j≥j0

∥∥∥∥∥
q

,

where ‖βj‖p
p =

∑
k∈Z

|βj,k|p.

In this paper, we will suppose the unknown function r(d)(x) belong to Besov balls
Bs

p,q(H) with H > 0, which means f ∈ Bs
p,q(H) :=

{
f ∈ Bs

p,q(Rd), ‖f‖Bs
p,q
≤ H

}
.

4. LINEAR WAVELET ESTIMATION

This section will introduce a linear wavelet estimator and discuss its convergence rate
over Lp (1 ≤ p <∞) risk. Now our linear wavelet estimator is defined by

(4.1) r̂(d)
n (x) :=

∑
k∈Ω

α̂j0,k φj0,k(x) .

In this definition, we have set

(4.2) α̂j0,k = (−1)d µ̂n

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi) ,

(4.3) µ̂n =

[
1
n

n∑
i=1

1
ω(Xi, Yi)

]−1

and Ω =
{
k ∈Z, supp r(d)∩ suppφj0,k 6= ∅

}
. Then, it follows from the compactly supported

properties of the function r(d) and φj0,k that the cardinality of Ω satisfies |Ω| ∼ 2j0 .
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On the other hand, some existing results on these estimators in the independent case
remain true. Indeed, according to the [14, Lemma 2.1], under Condition A4, we know that

E
(

1
µ̂n

)
=

1
µ

(4.4)

and

E
[
(−1)d µρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k(Xi)

]
= αj0,k .(4.5)

These two equations mean that µ̂n and α̂j0,k are unbiased estimators of µ and αj0,k, respec-
tively. Furthermore, the linear estimator r̂(d)

n (x) can also be as an unbiased estimator of
r(d)(x). In the following, we present an important lemma, which will be used to prove our
theorems.

Lemma 4.1. For the problem (1.1)–(1.2) with Conditions A1–A5 hold. If 2j0 ≤ n,

then, for 1 ≤ p <∞, we have

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . 2j0dp n−
p
2 .

Proof of Lemma 4.1: According to the definition of α̂j0,k, the following decomposi-
tion holds:

α̂j0,k − αj0,k =
µ̂n

µ

[
(−1)d µ

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

]
+ αj0,k · µ̂n

(
1
µ
− 1
µ̂n

)
.

Furthermore, one has

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . E

∣∣∣∣∣ µ̂n

µ

[
(−1)d µ

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

]∣∣∣∣∣
p

+ E
∣∣∣∣αj0,k · µ̂n

(
1
µ
− 1
µ̂n

)∣∣∣∣p .(4.6)

Then, it follows from Condition A5, Hölder’s inequality and the orthonormality of {φj0,k}
that |αj0,k| =

∣∣∫
[0,1] r

(d)(x)φj0,k(x) dx
∣∣ . 1. Moreover, Condition A2 and the definition of µ̂n

imply that |µ̂n| . 1. Hence, the inequality (4.6) reduces to

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . E

∣∣∣∣∣µn
n∑

i=1

(−1)d ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

∣∣∣∣∣
p

+ E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p
:= Q1 +Q2 .(4.7)

Let us now bound Q1 and Q2 as sharp as possible.

• Upper bound of Q1.

Define ξi := (−1)d µρ(Yi)
ω(Xi,Yi) h(Xi)

φ
(d)
j0,k(Xi)− αj0,k. Then, one gets

Q1 := E

∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣
p

=
(

1
n

)p
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

.
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Because φ(d) is a bounded variation function, one can assume

φ(d) := φ− φ̃ ,

where φ and φ̃ are bounded, nonnegative and nondecreasing functions ([22]). Then, we can
write

φ
(d)
j0,k := 2j0d

(
φj0,k − φ̃j0,k

)
.

Moreover, one defines

αj0,k :=
∫

(−1)d 2j0d φj0,k(x) r(x) dx , α̃j0,k :=
∫

(−1)d 2j0d φ̃j0,k(x) r(x) dx

and

ξi :=
(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φj0,k(Xi)− αj0,k , ξ̃i :=
(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φ̃j0,k(Xi)− α̃j0,k .

Then, we have αj0,k = αj0,k−α̃j0,k, ξi = ξi− ξ̃i and, by an elementary inequality of convexity,
one gets

Q1 =
(

1
n

)p
E

∣∣∣∣∣
n∑

i=1

(
ξi − ξ̃i

)∣∣∣∣∣
p

.

(
1
n

)p [
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

+ E

∣∣∣∣∣
n∑

i=1

ξ̃i

∣∣∣∣∣
p ]
.(4.8)

Using (1.1), (1.2) and Condition A4, one knows that Eξi = 0. Note that
ρ(y) φj0,k(x)

ω(x,y) h(x) is a

nondecreasing function by the monotonicity of φj0,k(x) and Conditions A1–A3. Furthermore,
we get that {ξi, i = 1, 2, ..., n} is negatively associated by Lemma 2.1. On the other hand,
|ξi|p .

∣∣∣ (−1)d 2j0dµρ(Yi)
ω(Xi,Yi) h(Xi)

φj0,k(Xi)
∣∣∣p+ |αj0,k|p and |αj0,k|p =

∣∣∣E[ (−1)d 2j0dµρ(Yi)
ω(Xi,Yi) h(Xi)

φj0,k(Xi)
]∣∣∣p

≤ E
∣∣∣ (−1)d 2j0dµρ(Yi)

ω(Xi,Yi) h(Xi)
φj0,k(Xi)

∣∣∣p thanks to Jensen’s inequality. Then, one has

E|ξi|p . E
∣∣∣∣(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φj0,k(Xi)
∣∣∣∣p

=
∫

R

∫
[0,1]

∣∣∣∣(−1)d 2j0dµρ(y)
ω(x, y)h(x)

φj0,k(x)
∣∣∣∣pf(x, y) dx dy .

Using Conditions A1–A3 and (1.1), one finds that

E|ξi|p . 2j0dp

∫
[0,1]

∣∣φj0,k(x)
∣∣pdx . 2j0

[
(d+ 1

2)p−1
]
.(4.9)

In particular, E|ξi|2 . 22j0d. Recall Rosenthal’s inequality ([18]): If X1, X2, ..., Xn are nega-
tively associated random variables such that EXi = 0 and E|Xi|p <∞, then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

.


n∑

i=1
E|Xi|p +

(
n∑

i=1
EX2

i

)p
2

, p > 2 ;(
n∑

i=1
EX2

i

)p
2

, 1 ≤ p ≤ 2 .

According to this inequality and (4.9), one gets

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

.


[
2j0
[
(d+ 1

2)p−1
]
· n+

(
n · 22j0d

)p
2

]
, p ≥ 2 ;

2j0dp np/2 , 1 ≤ p < 2 .
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This with 2j0 < n shows that E
∣∣∣∣ n∑
i=1

ξi

∣∣∣∣p . 2j0dp np/2. Similarly, E
∣∣∣∣ n∑
i=1

ξ̃i

∣∣∣∣p . 2j0dp np/2.

Combining those with (4.8), one knows that

Q1 . 2j0dp n−p/2.(4.10)

• Upper bound of Q2.

Using the definition of µ̂n, one has

E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p = E

∣∣∣∣∣ 1n
n∑

i=1

1
ω(Xi, Yi)

− 1
µ

∣∣∣∣∣
p

=
1
np

E

∣∣∣∣∣
n∑

i=1

[
1

ω(Xi, Yi)
− 1
µ

]∣∣∣∣∣
p

.(4.11)

Define ηi := 1
ω(Xi,Yi)

− 1
µ . Then, E(ηi)=0 by (4.4). The monotonicity of ω(x,y) in Condition A2

and Lemma 2.1 imply that η1, ..., ηn are negatively associated. In addition, E|ηi|p . 1 thanks
to Condition A2. According to Rosenthal’s inequality, one has

E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p . n−
p
2 .(4.12)

Now it is easy to see from (4.7), (4.10) and (4.12) that

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . 2j0dp n−
p
2 .

This completes the proof of Lemma 4.1.

In this position, we will state our first theorem.

Theorem 4.1. For the problem (1.1)–(1.2) with Conditions A1–A5. Let r(d)∈Bsep,q(H)(
p̃, q ∈ [1,∞), s> 0

)
, and p̃ ≥ p ≥ 1, or p̃ ≤ p <∞ and s > 1ep . The linear wavelet estimator

r̂
(d)
n be defined in (4.1) with 2j0 ∼ n

1
2s′+2d+1 and s′ = s−

(
1ep − 1

p

)
+
. Then, for 1 ≤ p <∞,

we have

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

Proof of Theorem 4.1: Note that

(4.13) E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣pdx . E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

+
∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
.

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. 2p
�

j0
2
− j0

p

�∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p.
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Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n
1

2s′+2d+1 , one knows

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

.

(
2j0(1+2d)

n

)p
2

∼ n
− s′p

2s′+2d+1 .(4.14)

Next, one estimates
∥∥Pj0r

(d) − r(d)
∥∥p

p
. When p̃ ≤ p and s > 1ep , Bsep,q(R) ⊆ Bs′

p,q(R).

Then, r(d) ∈ Bs′
p,q(R) and ∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
. 2−j0s′p(4.15)

thanks to Lemma 3.2. When p̃ > p, s′ = s. Using Hölder’s inequality and the compact
support of r(d) and φ, one gets∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
.
∥∥∥Pj0r

(d) − r(d)
∥∥∥p

ep .

Then, it is easy to see from Lemma 3.2 and r(d) ∈ Bsep,q(H) that
∥∥Pj0r

(d) − r(d)
∥∥p

p
. 2−j0s′p.

This result with (4.15) shows that, for 1 ≤ p <∞,∥∥∥Pj0r
(d) − r(d)

∥∥∥p

p
. 2−j0s′p .(4.16)

Furthermore, by 2j0 ∼ n
1

2s′+2d+1 , one gets∥∥∥Pj0r
(d) − r(d)

∥∥∥p

p
. n

− s′p
2s′+2d+1 .(4.17)

Combining this with (4.13) and (4.14),

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

This ends the proof of Theorem 4.1.

Since j0 depends on s′ which remains unknown, r̂(d)
n (x) is not adaptive. Theorem 4.1

is however of interest to determine in a simple manner sharp rates of convergence in our
statistical setting. We do not however claim that they are optimal in the minimax sense; the
lower bounds in this case are not proved in this study. Also, Theorem 4.1 can be viewed as
generalization to the [3, Theorem 3.3] to the negatively associated case.

5. NONLINEAR WAVELET ESTIMATION

In this section, we will construct a adaptive nonlinear wavelet estimator and consider
its upper bound over Lp (1 ≤ p < +∞) risk. Now, we define our nonlinear wavelet estimator

(5.1) r̃(d)
n (x) :=

∑
k∈Ω

α̂j0,k φj0,k(x) +
j1∑

j=j0

∑
k∈Λj

β̂j,k I{|bβj,k|≥κtn}ψj,k(x) ,
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where tn := 2jd
√

ln n
n ,

(5.2) β̂j,k = (−1)d µ̂n

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)

and IA denotes the indicator function over a set A, i.e., IA = 1 if A is satisfied and 0 otherwise.
The positive integers j0, j1 (depend on n) and the positive number κ will be given later on.
The main difference between r̃(d) and the linear wavelet estimator is the individual selection
of the β̂j,k’s done by the hard thresholding rule (formalized by the indicator function over
{|β̂j,k| ≥ κtn}). We refer to [13] and [15] for the deep link between this selection technique
and the intrinsic properties of the wavelets.

It should be pointed out that E
[
(−1)d µρ(Yi)

ω(Xi,Yi) h(Xi)
ψ

(d)
j,k (Xi)

]
= βj,k thanks to [14,

Lemma 2.1] (which uses Condition A4).

Note that Lemma 4.1 is still true if α̂j0,k is replaced by β̂j,k, which leads to the following
lemma.

Lemma 5.1. For the problem (1.1)–(1.2) with Conditions A1–A5 hold. If 2j ≤ n,

then for 1 ≤ p <∞, we have

E
∣∣∣β̂j,k − βj,k

∣∣∣p . 2jdp n−
p
2 .

Lemma 5.2. For the problem (1.1)–(1.2) with Conditions A1–A5. Then, for j2j ≤ n

and each w > 0, there exists a constant κ > 1 such that

P
(∣∣∣β̂j,k − βj,k

∣∣∣≥ κtn

)
. 2−wj .

Proof of Lemma 5.2: Via similar arguments to those used in (4.7), we obtain∣∣∣β̂j,k − βj,k

∣∣∣ .

∣∣∣∣∣µn
n∑

i=1

(−1)d ρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

∣∣∣∣∣+
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ .
Hence, it suffices to prove

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj(5.3)

and

P

(
1
n

∣∣∣∣∣
n∑

i=1

[
1

ω(Xi, Yi)
− 1
µ

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

One shows the first inequality (5.3) only, the second one is similar and even simpler.

Define γi := (−1)dµρ(Yi)
ω(Xi,Yi) h(Xi)

ψ
(d)
j,k (Xi)− βj,k. Then, one has

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
= P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)
.
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Because ψ(d) is a bounded variation function, one can assume

ψ(d) := ψ − ψ̃ ,

where ψ and ψ̃ are bounded, nonnegative and nondecreasing functions ([22]). Then,

ψ
(d)
j,k := 2jd

(
ψj,k − ψ̃j,k

)
.

Moreover, one defines

βj,k :=
∫

(−1)d 2jd ψj,k(x) r(x) dx , β̃j,k :=
∫

(−1)d 2jd ψ̃j,k(x) r(x) dx ,

and

γi :=
(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)− βj,k , γ̃i :=
(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ̃j,k(Xi)− β̃j,k .

Then, βj,k = βj,k − β̃j,k, γi = γi − γ̃i and

(5.4) P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)
. P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

4
tn

)
+ P

(∣∣∣∣∣ 1n
n∑

i=1

γ̃i

∣∣∣∣∣ ≥ κ

4
tn

)
.

According to (1.1), (1.2) and Condition A4, one gets Eγi = βj,k. Moreover, γ1, γ2, ..., γn

are negatively associated by Conditions A1–A3, Lemma 2.1 and the nondecreasing property
of ψj,k. On the other hand, by the bounded properties of functions in Conditions A1–A3,∣∣∣ (−1)d 2jd µρ(Yi)

ω(Xi,Yi) h(Xi)
ψj,k(Xi)

∣∣∣ . 2j(d+ 1
2
) and

|γi| .

∣∣∣∣(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)
∣∣∣∣+ E

∣∣∣∣(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)
∣∣∣∣ . 2j(d+ 1

2).

Similar to the arguments of (4.9) with p = 2, E(γi)2 . 22jd. Recall Bernstein’s inequality:
Let X1, ..., Xn be negatively associated random variables such that EXi = 0, |Xi| ≤M and
EX2

i = σ2. Then, for each v ≥ 0,

P

(
1
n

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣≥ v

)
≤ 2 · exp

{
− nv2

2
(
σ2 + vM

3

)} .
It follows from Bernstein’s inequality, tn = 2jd

√
ln n
n and j2j ≤ n that

P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣≥ κ

4
tn

)
. exp

− n
(

κtn
4

)2
2
(
22jd + κtn

12 2j(d+ 1
2)
)
 . exp

{
− lnn κ2

32
(
1 + κ

12

)} .
Obviously, there exists sufficiently large κ > 1 such that exp

{
− ln n κ2

32
(
1+ κ

12

)} . 2−wj . Hence,

P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣≥ κ

4
tn

)
. 2−wj .

Similarly, P
(∣∣∣∣ 1n n∑

i=1
γ̃i

∣∣∣∣ ≥ κ
4 tn

)
. 2−wj . Those results with (5.4) show that

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

This ends the proof of Lemma 5.2.
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Now we will give our last theorem in this position.

Theorem 5.1. For the problem (1.1)–(1.2) with Conditions A1–A5. Let r(d) ∈ Bsep,q(H)
(p̃, q ∈ [1,∞), s > 0), and p̃ ≥ p ≥ 1, or p̃ ≤ p <∞ and s > 1ep . Then, the nonlinear wavelet

estimator r̃
(d)
n defined in (5.1) with 2j0 ∼ n

1
2m+2d+1 (m> s) and 2j1 ∼

(
n

ln n

) 1
2d+1 satisfies

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .
(
lnn

)3p
2 n−αp ,(5.5)

where

(5.6) α =


s

2s+ 2d+ 1
, p̃ ≥ p(2d+ 1)

2s+ 2d+ 1
,

s− 1/p̃ + 1/p
2(s− 1/p̃) + 2d+ 1

, p̃ <
p(2d+ 1)

2s+ 2d+ 1
.

Proof of Theorem 5.1: For the proof of Theorem 5.1, we will prove it under two
cases respectively.

(i) Upper bound estimation under p̃ ≤ p <∞ and s > 1ep .

In this case, (5.6) can be rewritten as

α = min
{

s

2s+ 2d+ 1
,

s− 1/p̃ + 1/p
2(s− 1/p̃) + 2d+ 1

}
.

By the definition of r̃(d)
n (x),

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx . E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

+
∥∥∥r(d) − Pj1+1r

(d)
∥∥∥p

p

+ E

∥∥∥∥∥∥
j1∑

j=j0

∑
k∈Λj

[
β̂j,k I{|bβj,k|≥κtn} − βj,k

]
ψj,k

∥∥∥∥∥∥
p

p

.(5.7)

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. 2p
�

j0
2
− j0

p

�∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p.
Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n

1
2m+2d+1 (m > s), one knows

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. n−
mp

2m+2d+1 < n−
sp

2s+2d+1 ≤ n−αp .(5.8)

Similar to the arguments of (4.15), when p̃ ≤ p and s > 1ep , one gets that∥∥∥Pj1+1r
(d) − r(d)

∥∥∥
p

. 2−j1(s−1/ep+1/p) .(5.9)
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On the other hand, s− 1ep + 1
p ≥ α thanks to p̃ ≤ p and s > 1ep . Then, it follows from 2j1 ∼(

n
ln n

) 1
2d+1 that

∥∥∥Pj1+1r
(d) − r(d)

∥∥∥p

p
.

(
lnn
n

)(s−1/ep+1/p)p

2d+1

.

(
lnn
n

)αp

.

The main work for the proof of Theorem 5.1 is to show

Z := E

∥∥∥∥∥∥
j1∑

j=j0

∑
k∈Λj

[
β̂j,k I{|bβj,k|≥κtn} − βj,k

]
ψj,k

∥∥∥∥∥∥
p

p

. (lnn)
3p
2 n−αp .(5.10)

It is easy to see from Lemma 3.1 that

Z . (j1 − j0 + 1)p−1
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k I{|bβj,k|≥κtn} − βj,k

∣∣∣p .
Then, the classical technique ([13]) gives

Z . (j1 − j0 + 1)p−1 (Z1 + Z2 + Z3) ,(5.11)

where

Z1 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
,

Z2 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]
,

Z3 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} .

• Upper bound of Z1.

It follows from Hölder’s inequality that

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
≤
[
E
∣∣∣β̂j,k − βj,k

∣∣∣2p
]1

2
[
P
(∣∣∣β̂j,k − βj,k

∣∣∣ > κtn
2

)]1
2

.

Furthermore, Lemmas 5.1 and 5.2 imply that

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
. 2jdp n−

p
2 2−

wj
2 ,

where κ > 1 is chosen for w > p+ 2dp in Lemma 5.2. This with the choice 2j0 ∼ n
1

2m+2d+1

(m > s) shows that

Z1 . n−
p
2

j1∑
j=j0

2j( p
2
+dp−w

2 ) . n−
p
2 2j0( p

2
+dp) . n−

mp
2m+2d+1

≤ n−
sp

2s+2d+1 ≤ n−αp .(5.12)
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• Upper bound of Z2.

Taking

2j∗0 ∼
( n

lnn

)1−2α
2d+1

.

Because 0 < α ≤ s
2s+2d+1 and 2j0 ∼ n

1
2m+2d+1 (m> s), 2j∗0 ≤ 2j1 ∼

(
n

ln n

) 1
2d+1 and 2j∗0 ≥(

n
ln n

)1− 2s
2s+2d+1
2d+1 =

(
n

ln n

) 1
2s+2d+1 & n

1
2m+2d+1 ∼ 2j0 . Furthermore, it follows from Lemma 5.1

that

Z21 :=
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]

.

j∗0∑
j=j0

2p( j
2
− j

p)
∑
k∈Λj

2jdp n−
p
2 . 2j∗0( p

2
+dp) n−

p
2 . n−αp .(5.13)

On the other hand, by Lemmas 5.1 and 3.2, and tn = 2jd
√

ln n
n , one has

Z22 :=
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]

.
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k

∣∣∣p ( |βj,k|
κtn/2

)ep

.
j1∑

j=j∗0+1

(lnn)−ep/2 n−
p−ep
2 2−j

h
sep− (p−ep) (2d+1)

2

i
.(5.14)

Define

ε := sp̃ − (p− p̃) (2d+ 1)
2

.

Then, ε > 0 holds if and only if p̃ > p(2d+1)
2s+2d+1 , and (5.14) can be rewritten as

Z22 . (lnn)−ep/2 n−
p−ep
2

j1∑
j=j∗0+1

2−jε.(5.15)

When ε > 0, p̃ > p(2d+1)
2s+2d+1 and α = s

2s+2d+1 thanks to (5.6). Moreover, it can be easily checked

that p−ep
2 + 1−2α

2d+1

[
sp̃− (p−ep) (2d+1)

2

]
= αp. This with the choice of 2j∗0 leads to

Z22 . (lnn)−ep/2 n−
p−ep
2 2−j∗0ε ≤ (lnn)

(
1
n

)p−ep
2

+ 1−2α
2d+1

h
sep− (p−ep)(2d+1)

2

i

= (lnn) n−αp .(5.16)

For the case ε ≤ 0, p̃ ≤ p(2d+1)
2s+2d+1 and α =

s− 1
ep
+ 1

p

2
�
s− d

ep

�
+2d+1

. Define p1 := (1− 2α)p. Then,
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α ≤ s
2s+2d+1 and p̃ ≤ p(2d+1)

2s+2d+1 < (1− 2α)p = p1. Similarly to (5.14), one has

Z22 .
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k

∣∣∣p( |βj,k|
κtn/2

)p1

.
j1∑

j=j∗0+1

2p( j
2
− j

p) 2jdp n−
p
2 t−p1

n ‖βj‖p1
p1

.

Because p̃ ≤ p1 and r(d) ∈ Bsep,q(H), we get ‖βj‖p1
p1 ≤ ‖βj‖p1ep . 2−j(s− 1

ep
+ 1

2)p1 and

Z22 .
j1∑

j=j∗0+1

2p( j
2
− j

p) 2jdp n−
p
2 t−p1

n 2−j(s− 1
ep
+ 1

2)p1

≤
(

1
n

)p−p1
2

j1∑
j=j∗0+1

2−j(sp1− p1
ep

+
p1
2

+dp1−dp− p
2
+1) .

By the definitions of p1 and α, sp1− p1ep + p1

2 +dp1−dp− p
2 +1 = 0 and Z22 .

(
1
n

)p−p1
2 (lnn) =

(lnn)
(

1
n

)αp. This with (5.13) and (5.16) shows in both cases,

Z2 = Z21 + Z22 . (lnn) n−αp .(5.17)

• Upper bound of Z3.

It is easy to see that

Z31 :=
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn}

≤
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|2κtn|p .

j∗0∑
j=j0

2j( p
2
+dp)

(
lnn
n

)p
2

.

(
lnn
n

)p
2

2j∗0( p
2
+dp) .

(
lnn
n

)αp

.(5.18)

On the other hand, one has

Z32 :=
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn}

≤
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p
∣∣∣∣2κtnβj,k

∣∣∣∣p−ep

.
j1∑

j=j∗0+1

2p( j
2
− j

p) tp−epn ‖βj‖epep .

(
lnn
n

)p−ep
2

j1∑
j=j∗0+1

2−jε .(5.19)

The same arguments as (5.15) shows that, for ε > 0,

Z32 .

(
lnn
n

)αp

.(5.20)
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For the case of ε ≤ 0, one defines

2j∗1 ∼
( n

lnn

) α
s−1/ep+1/p

.

Note that ε ≤ 0 and s > 1ep . Then, p̃ ≤ p(2d+1)
2s+2d+1 , α =

s− 1
ep
+ 1

p

2
�
s− 1

ep

�
+2d+1

and α ≤ s− 1ep + 1
p .

Hence, n
1−2α
2d+1 . 2j∗0 ≤ 2j∗1 ≤ 2j1 ∼

(
n

ln n

) 1
2d+1 and Z32 = Z321 + Z322, where

Z321 :=
j∗1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} ,

Z322 :=
j1∑

j=j∗1+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} .

By the arguments of (5.15) and the choice of 2j∗1 , one has

Z321 .

(
lnn
n

)p−ep
2

2−j∗1ε =
(

lnn
n

)p−ep
2

+ αε
s−1/ep+1/p

.

It is easy to check that p−ep
2 + αε

s−1/ep+1/p = αp. Then,

Z321 .

(
lnn
n

)αp

.

On the other hand, using ‖βj‖ep . 2−j(s− 1
ep
+ 1

2), s > 1ep and 2j∗1 ∼
(

n
ln n

) α
s−1/ep+1/p .

Z322 ≤
j1∑

j=j∗1+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p ≤
j1∑

j=j∗1+1

2p( j
2
− j

p) ‖βj‖pep

.
j1∑

j=j∗1+1

2−j(1+sp−p/ep) . 2−j∗1 (1+sp−p/ep) ∼
(

lnn
n

)αp

.

Now, it follows that for ε ≤ 0,

Z32 = Z321 + Z322 .

(
lnn
n

)αp

.

Combining this with (5.18) and (5.20), one knows

Z3 .

(
lnn
n

)αp

.(5.21)

Then, it follows from (5.11), (5.12), (5.17) and (5.21) that

Z . (lnn)
3p
2 n−αp.

Hence,

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx . (lnn)
3p
2 n−αp(5.22)

in the case of p̃ ≤ p <∞ and s > 1ep .
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(ii) Upper bound estimation under p̃ > p.

From the above arguments, one finds that when p̃ = p, the inequality (5.22) still holds
without the assumption s > 1ep . It remains to conclude (5.22) for p̃ > p ≥ 1. By Hölder’s
inequality, ∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .

[∫
[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣ep dx]p
ep

.

Using Jensen’s inequality and (5.22) with p̃ = p, one gets

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .

[
E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣ep dx]p
ep

. (lnn)
3p
2 n−αp.

This completes the proof of Theorem 5.1.

Contrary to the linear wavelet estimator given by (4.1), r̃(d)
n (x) is fully adaptive; its

construction does not depend on s. The convergence rate of the nonlinear estimator keeps
the same as that of the linear one up to a logarithmic factor when p̃ > p. However, it gets
better in the case of p̃ ≤ p. This aspect remains standard in nonlinear wavelet estimation in
the standard regression (or density) estimation framework (see [15]). Also, Theorem 5.1 can
be viewed as generalization to the [14, Theorem 1] to the negatively associated case.

6. CONCLUDING REMARKS

In this paper, the estimation of the derivatives of a regression function for biased data
is considered. The feature of the study is to investigate the negatively dependent assumption
on the data, beyond the independent assumption, opening new perspective of applications.
Two wavelet estimators are introduced. The first estimator is based on wavelet projection of
wavelet coefficient estimators only, the second estimator is nonlinear; a selection of the wavelet
coefficient estimators are applied according to their magnitude via a hard thresholding rule.
Sharp rates of convergence are obtained under the Lp risk with 1 ≤ p <∞, assuming that the
function of interest belongs to a ball of Besov spaces Bs

p̃,q(R). These rates correspond to those
obtained in the independent setting, showing that the wavelet methodology is consistent for
this problem. Perspectives of this work are to prove the optimal lower bounds in the minimax
sense, to relax some assumptions on the model, mainly the compact support of r(d) and explore
the practical aspects of the proposed estimators. These points needs further investigations
that we leave for a future work.
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