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1. INTRODUCTION

Over the last two decades, functional data modeling was highly considered in the sta-
tistical literature. The new generation of electronic devices is now allowing practitioners to
have access to data continuously (over time and/or space). This change in the data structure
raised several challenging statistical problems in analyzing curve-type data. In practice, one
can observe functional data in several fields such as climatology, stock market analysis, signal
processing, satellite images analysis, etc. For an overview of the functional data analysis,
the readers can refer to Ramsay and Silverman [30, 31], Masry [26], Ferraty and Vieu [16],
Cuevas [8], Hsing and Eubank [21], Goia and Vieu [18] and the references therein.

Modeling of the relationship between two concomitant variables is one of the most
relevant tasks in functional data analysis. In this paper, we are interested in using semi-
parametric approach to model the conditional density of a real-valued response variable given
an infinite dimensional (functional) covariate. A dimension reduction approach, based on
single index model, is used in this paper to estimate the conditional mode whenever the
response variable is affected by a right censorship phenomenon.

The problem of estimating the conditional density function has taken considerable at-
tention in the past for both independent and dependent data. Conditional density estimation
of a scalar response given a scalar/multivariate covariate has been widely used to estimate
some characteristic features of a data set, such as the conditional mode, and gained consider-
able interest in the statistical literature. For completely observed data, several nonparametric
approaches have been proposed. Samanta and Thavaneswaran [32] showed that, under some
regularity conditions, the kernel estimator of the conditional mode function was consistent
and asymptotically normally distributed. Mehra et al. [27] established the law of iterated
logarithm (LIL). Under random censoring, Ould-Säıd and Cai [29] established the uniform
strong consistency of a nonparametric estimator of the censored conditional mode function, in
the i.i.d. case using a step function for the interest random variable. For their part, Khardani
et al. [22] obtained the strong consistency with rate and asymptotic normality. Ould-Säıd [28]
constructed a kernel estimator of the conditional quantile under an i.i.d. censorship model and
established its strong uniform convergence rate. For the censored dependent case, Khardani
et al. [23] obtained the strong consistency with rate for the α-mixing framework. The asymp-
totic normality of the conditional mode estimator for the censored dependent case was proved
by Khardani et al. [24].

Many authors are interested in the estimation of the conditional mode of a scalar re-
sponse given a functional covariate. The kernel-type estimators of some characteristics of the
conditional cumulative distribution function and the successive derivatives of the conditional
density were introduced by Ferraty et al. [13]. Some asymptotic properties were established
with a particular application to the conditional mode and conditional quantiles. An applica-
tion to a chemometrical data set coming from food industry is also presented. The uniform
strong consistency with rates and the asymptotic normality for the kernel conditional mode
estimator were obtained by Ezzahrioui and Ould-Säıd [10] in the i.i.d. case. The asymp-
totic normality, under α-mixing conditions, of the kernel conditional quantile estimator, was
established by Ezzahrioui and Ould-Säıd [11].
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In multivariate statistics, where the vector of covariates belongs to a high dimensional
but finite space, single index model represents one of the well-known semi-parametric models
which allows to reduce the dimensionality of the covariate space and, at the same time,
gives flexibility in describing the relationship between the response and the covariate through
an unknown link function. Indeed, single index model reduces the curse of dimensionality
effect known in pure nonparametric estimation methods and it is always seen as a reasonable
compromise between nonparametric and parametric models. Consequently, reducing the
dimensionality can be of great interest in practice. For instance, it allows to increase the
prediction accuracy and to improve the interpretability of the relationship between a response
variable with a vector of covariates. For more details about the advantages of single index
models in finite dimensional space setting, the reader can be referred to [19], [20], [33] and
the references therein. In our infinite dimensional purpose, we use the terminology functional
nonparametric, where the word functional referees to the infinite dimensionality of the data
and where the word nonparametric referees to the infinite dimensionality of the model. Such
functional nonparametric statistics is also called doubly infinite dimensional (see Ferraty and
Vieu [15], for more details).

The extension of the single index model to the functional data framework was intro-
duced first in Ferraty et al. [14] to estimate semi-parametrically the regression operator where
the response variable is real-valued and the covariate is a functional random variable. The
single functional index model (SFIM) assumes that a functional explanatory variable acts
on a scalar response only through its projection on one functional direction. The SFIM was
intensively extended to estimate several statistical parameters describing the shape of the
conditional distribution. For instance, Aı̈t-Saidi et al. [1] were interested in using SFIM to
estimate the regression operator and suggest to use a cross-validation procedure allowing the
estimated the unknown link function as well as the unknown functional index. Attaoui [3]
and Attaoui and Ling [6] studied, respectively, the estimation of the conditional density and
the conditional cumulative distribution function based on a SFIM and assuming that the
data satisfy a strong mixing condition. Bouchentouf et al. [7] were interested in the semi-
parametric estimation of the hazard function. Goia and Vieu [17] presented a methodology
allowing to approximate in a semi-parametric way the unknown regression operator through
a single index approach and by taking possible structural changes into account. Furthermore,
Ling et al. [25] obtained the asymptotic normality of the conditional density estimator and
the conditional mode estimator for the α-mixing dependence functional time series data.

The main contribution of this work, is to establish the pointwise almost complete
convergence and the uniform almost complete convergence (with rate) of the conditional
density estimator in the single functional index model in i.i.d. case under random censorship,
this result will be applied to obtain the convergence rates of the conditional mode estimator.
Moreover, we prove the asymptotic normality of the estimators of conditional density function
and conditional mode. The layout of the paper is as follows: Section 1 presents the functional
nonparametric framework. In Section 2 we treat the almost complete convergence, while in
Section 3 the uniform version is studied. The asymptotic normality is given in Section 4, and
a simulation study is provided in Section 5. Finally, all the proofs of the theoretical results
are given in Section 6.
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1.1. The functional nonparametric framework

Consider a random pair (X, T ) where T is valued in R and X is valued in some infinite
dimensional Hilbertian space H with scalar product 〈·,·〉. Let (Xi, Ti)i=1,...,n be the statistical
sample of pairs which are identically distributed like (X, T ), but not necessarily independent.
X is called functional random variable f.r.v.

As example, in the classical regression case, the important parameter whose one as-
sumed existence is the regression function of Y knowing the covariate X, denoted r(x) =
E(Y |X = x), X, Y ∈ Rd×R. For this model, the non-parametric method considers only reg-
ularity assumptions on the function r. Obviously, this method has some drawbacks. One
can cite the problem of curse of dimensionality. This problem appears when the number
of regressors d increases, the rate of convergence of the nonparametric estimator r which is
supposed k times differentiable is O(n−k/2k+d) deteriorate. The second drawback is the lack
of means to quantify the effect of each explanatory variable. To alleviate in these drawbacks,
an alternative approach is naturally provided by the semi-parametric model which supposes
the introduction of a parameter on the regressors. Assume that the conditional expectation
of T given X is done through a fixed functional index θ in H, such that by writing than the
regression function is of the form

Eθ

(
T |X

)
= E

(
T |〈X, θ〉= x

)
.

This model was introduced by Ferraty et al. [14] and we can refer to Attaoui et al. [5]
for details. From this model, let f(θ, ·, x) be the conditional density of Y given 〈X, θ〉 = 〈x, θ〉
for x ∈ H, which also shows the relationship between X and Y but it often unknown.

Let (Ti)i≥1 be a sequence of independent and identically distributed (i.i.d.) random
variables, and assume that they form a strictly stationary sequence of lifetimes. Suppose that
there exists a sample of i.i.d. censoring random variable (r.v) (Ci)i≥1 with common unknown
continuous distribution function (df ).

In the censored framework, the observed random variables are the triplets (Yi, δi, Xi)
with

Yi = min
{
Ti, Ci

}
and δi = 1Ti≤Ci , 1 ≤ i ≤ n ,

where both of Ti and Ci are expected to exhibit some kind of dependence which ensures the
identifiability of the model.

In biomedical case studies, it is assumed that Ci and (Ti, Xi) are independent, this
condition is plausible whenever the censoring is independent of the patient’s modality.

The Kernel estimator fn(θ, ·, x) of f(θ, ·, x) is defined by:

(1.1) fn(θ, t, x) =

h−1
H

n∑
i=1

K
(
h−1
K

(
〈x−Xi, θ〉

))
H
(
h−1
H (t−Ti)

)
n∑

i=1

K
(
h−1
K

(
〈x−Xi, θ〉

)) ,
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where the functions K and H are kernels and hK = hK,n (resp. hH = hH,n) a sequence of
positive real numbers.

The Kernel type estimator of the conditional density f(θ, ·, x) adapted for censorship
model, can be reformulated from the expression (1.1) as follows:

(1.2) f̃(θ, t, x) =

h−1
H

n∑
i=1

δi

Ḡ(Yi)
K
(
h−1
K

(
〈x−Xi, θ〉

))
H
(
h−1
H (t−Yi)

)
n∑

i=1

K
(
h−1
K

(
〈x−Xi, θ〉

)) .

In practice Ḡ(·) = 1−G(·) is unknown, then using Kaplan and Meier (1958) estimator,
Ḡn(·) will be given as

Ḡn(t) = 1−Gn(t) =


n∏

i=1

(
1−

1− δ(i)

n− i + 1

)1{Y(i)≤t}
, if t ≤ Y(n) ,

0 , if t > Y(n) ,

(1.3)

where Y(1) < Y(2) < ··· < Y(n) are the order statistics of Yi and δ(i) is the non-censoring indi-
cator corresponding to Y(i).

Therefore, estimator of the conditional density function f(θ, ·, x) is given by

(1.4) f̂(θ, t, x) =

h−1
H

n∑
i=1

δi

Ḡn(Yi)
K
(
h−1
K

(
〈x−Xi, θ〉

))
H
(
h−1
H (t−Yi)

)
n∑

i=1

K
(
h−1
K

(
〈x−Xi, θ〉

)) .

2. ASYMPTOTIC STUDY

2.1. Pointwise almost complete rate of convergence

In the following, for any x ∈ H, let Nx be a fixed neighborhood of x and SR is a fixed
compact of R+. Denote Bθ(x, h) = {f ∈ H : 0 < |〈x− f, θ〉| < h} the ball of center x and
radius h. Assume that (Ci)i≥1 are independent and τG < ∞ where τG := sup{t : G(t) < 1}
and let τ be a positive real number such that τ < τG.

In order to establish the almost complete (a.co.) convergence of our estimator, we need
some regular hypotheses as follows:

(H1) ∀h > 0, P(X ∈ Bθ(x, h)) = φθ,x(h) > 0;

(H2) The conditional density f(θ, t, x) satisfies the Hölder condition, i.e.,
∀(x1, x2) ∈ Nx×Nx, ∀(t1, t2) ∈ S2

R,∣∣∣f(θ, t1, x1)− f(θ, t2, x2)
∣∣∣ ≤ Cθ,x

(
‖x1−x2‖b1 + |t1− t2|b2

)
, b1 > 0 , b2 > 0 ;
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(H3) H is a bounded function, such that ∀(t1, t2) ∈ R2, |H(t1)−H(t2)| ≤ C|t1 − t2|
and

∫
|t|b2H(t) dt < ∞;

(H4) K is a positive bounded function with support [−1, 1], such that ∀u ∈ (0, 1),
0 < K(u);

(H5) The bandwidths hK and hH satisfy

lim
n−→∞

hK = 0 ,
log n

n hH φθ,x(hK)
−→
n→∞

0 .

• Comments on the hypotheses

Our hypotheses are very standard for the conditional density estimation in single func-
tional index model, which have been adopted by Attatoui et al. [5]. Hypotheses (H3) and
(H5) are technical conditions and are similar to those done in Ferraty and Vieu [16].

Proposition 2.1. Under conditions (H1)–(H5), we have as n goes to infinity

(2.1) sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣ = O

(
hb1
K + hb2

H

)
+Oa.co.

(√
log n

n hH φθ,x(hK)

)
.

Proof of Proposition 2.1: Consider now, for i = 1, ..., n, in what follows, let’s de-
note:

Ki(θ, x) = K
(
h−1
K

(
〈x−Xi, θ〉

))
, Hi(t) = H

(
h−1

H (t−Yi)
)
, Ḡi = Ḡ(Yi) ,

f̂N (θ, t, x) =
1

n hH E
(
K1(θ, x)

) n∑
i=1

δi

Ḡn(Yi)
Ki(θ, x) Hi(t) ,

f̃N (θ, t, x) =
1

n hH E
(
K1(θ, x)

) n∑
i=1

δi

Ḡ(Yi)
Ki(θ, x) Hi(t) ,

F̂D(θ, x) =
1

n E
(
K1(θ, x)

) n∑
i=1

Ki(θ, x) .

The proof is based on the following decomposition, valid for any t ∈ SR:

sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣ ≤ 1

F̂D(θ, x)
sup
t∈SR

{∣∣∣f̂N (θ, t, x)− f̃N (θ, t, x)
∣∣∣}

+
1

F̂D(θ, x)
sup
t∈SR

{∣∣∣f̃N (θ, t, x)− Ef̃N (θ, t, x)
∣∣∣}

+
1

F̂D(θ, x)
sup
t∈SR

{∣∣∣Ef̃N (θ, t, x)− f(θ, t, x)
∣∣∣}

+
f(θ, t, x)

F̂D(θ, x)
sup
t∈SR

∣∣∣1− F̂D(θ, x)
∣∣∣ .(2.2)

Finally, the proof of this proposition is a direct consequence of the following interme-
diate results.
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Lemma 2.1. Under hypotheses (H1)–(H4), and if

n hH φθ,x(hK) −→∞ ,
log n

nhH φθ,x(hK)
−→
n→∞

0 ,

we have

sup
t∈SR

{∣∣∣f̂N (θ, t, x)− f̃N (θ, t, x)
∣∣∣} = Oa.s.

(
log log n

n

)
.

The following lemma shows the asymptotic bias term of f̃N (θ, t, x) and f̂D(θ, x) as
n tends to infinity.

Lemma 2.2. Under hypotheses (H1)–(H3), we have as n →∞

(2.3) sup
t∈SR

∣∣∣E[f̃N (θ, t, x)
]
− f(θ, t, x)

∣∣∣ = O
(
hb1
K + hb2

H

)
.

The following result deals with the variance term of the right-hand side of (2.2) which
is expressed by: sup

t∈SR

{∣∣∣f̃N (θ, t, x)− E f̃N (θ, t, x)
∣∣∣}. For F̂D(θ, x)− E

[
F̂D(θ, x)

]
the same ar-

guments will be used with a slight difference.

Lemma 2.3. Under hypotheses (H1), (H4)–(H5), as n goes to infinity, we have

F̂D(θ, x)− EF̂D(θ, x) = Oa.co.

(√
log n

n φθ,x(hK)

)
,

furthermore, we have
∞∑

n=1

P
(∣∣F̂D(θ, x)

∣∣ ≤ 1/2
)

< ∞ .

Lemma 2.4. Under the conditions of Proposition 2.1, we have as n →∞

sup
t∈SR

{∣∣∣f̃N (θ, t, x)− E f̃N (θ, t, x)
∣∣∣} = Oa.co.

(√
log n

n hH φθ,x(hK)

)
.

We conclude the proof of Proposition 2.1 by making use of the inequality (2.2), in
conjunction with Lemmas 2.1, 2.2, 2.3 and 2.4.

2.2. Pointwise almost complete rate of convergence

In this section, we will consider the problem of the estimation of the conditional mode
in the functional single-index model, denoted by Mθ(x). For this, we assume that Mθ(x)
satisfies the following uniqueness property:

(H6) ∀ε0 > 0, ∃η > 0, ∀ϕ:∣∣∣Mθ(x)− ϕ(x)
∣∣∣ ≥ ε0 =⇒

∣∣∣f(θ, ϕ(x), x
)
− f

(
θ, Mθ(x), x

)∣∣∣ ≥ η .
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We estimate the conditional mode Mθ(x) with a random variable M̂θ(x) such that

M̂θ(x) = arg sup
t∈SR

f̂(θ, t, x) .

The difficulty of the problem is naturally linked with the flatness of the function
f(θ, t, x) around the mode Mθ. This flatness can be controlled by the number of vanishing
derivatives at point Mθ, and this parameter will also have a great influence on the asymp-
totic rates of our estimates. More precisely, we introduce the following additional smoothness
condition:

(H7) There exists some integer j > 1 such that ∀x ∈ SH, the function f(θ, ·, x) is
j times continuously differentiable w.r.t. t on SR with

f (l)
(
θ, Mθ(x), x

)
= 0 , if 1 ≤ l < j ,

and f (j)(θ, ·, x) is uniformly continuous on SR such that

f (j)
(
θ, Mθ(x), x

)
6= 0 ,

where f (j)(θ, ·, x) is the jth order derivative of the conditional density f(θ, ·, x).

Theorem 2.1. Under hypotheses of Proposition 2.1 and if the conditional density

f(θ, ·, x) satisfies (H6) and (H7), then we get

(2.4)
∣∣∣M̂θ(x)−Mθ(x)

∣∣∣ = O
(

h
b1
j

K + h
b2
j

H

)
+Oa.co.

((
log n

n hH φθ,x(hK)

)1
2j

)
.

Proof of Theorem 2.1: By the Taylor expansion of f(θ, t, x) in neighborhood of
Mθ(x), we get

(2.5) f̂
(
θ, M̂θ(x), x

)
= f

(
θ, Mθ(x), x

)
+

f (j)
(
θ, M∗

θ (x), x
)

j!

(
M̂θ(x)−Mθ(x)

)j
,

where M∗
θ (x) is between Mθ(x) and M̂θ(x).

Combining the last equality with the fact that∣∣∣f̂(θ, M̂θ(x), x
)
− f

(
θ, Mθ(x), x

)∣∣∣ ≤ 2 sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣ ,

allow to write: ∣∣∣M̂θ(x)−Mθ(x)
∣∣∣j ≤ j!

f (j)(θ, M∗
θ , x)

sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣ .

Using the second part of (H7) we obtain that

∃ c > 0 ,
∞∑

n=1

P
(
f (j)(θ, M∗

θ , x) < c
)

< ∞ .
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So, we would have

(2.6)
∣∣∣M̂θ(x)−Mθ(x)

∣∣∣j = Oa.co.

(
sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣) .

Finally, Theorem 2.1 can be deduced from Proposition 2.1.

Theorem 2.2. Under the hypotheses of Proposition 2.1, thus we have

(2.7) M̂θ(x)−Mθ(x) −→
n→∞

0 , a.co.

Proof of Theorem 2.2: Because the continuity of the function f(θ, t, x), we have,
for all ε > 0, ∃ η(ε) > 0 such that∣∣∣f(θ, t, x)− f

(
θ, Mθ(x), x

)∣∣∣ ≤ η(ε) =⇒
∣∣t−Mθ(x)

∣∣ ≤ ε .

Therefore, for t = M̂θ(x),

P
(∣∣M̂θ(x)−Mθ(x)

∣∣ > ε
)
≤ P

(∣∣f(θ, M̂θ(x), x
)
− f

(
θ, Mθ(x), x

)∣∣ > η(ε)
)

.

Then, according to theorem, M̂θ −Mθ go almost completely to 0, as n goes to infinity.

3. UNIFORM ALMOST COMPLETE CONVERGENCE AND
RATE OF CONVERGENCE

In this section, we devote the result of the uniform version of Proposition 2.1. The
study of the uniform consistency is a crucial tool for studying the asymptotic properties of
all estimates of the functional index if is unknown. In the multivariate case, the uniform
consistency is a standard extension of the pointwise one, nevertheless, in the studied case,
it requires some additional tools and topological conditions (see Ferraty et al. [12]). Con-
sequently, coupled with the conditions introduced antecedently, we need the following ones.
Firstly, consider

(3.1) SH ⊂
d
SH
n⋃

k=1

Bθ(xk, rn) and ΘH ⊂
d
ΘH
n⋃

q=1

Bθ(θq, rn) ,

with xk (resp. θq) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers which tend

to infinity as n goes to infinity and suppose that dSHn , dΘH
n are the minimal numbers of open

balls with radius rn in H, which are required to cover SH and ΘH. Moreover, the following
assumptions are also satisfied:

(A1) There exists a differentiable function φ(·) such that, ∀x ∈ SH and ∀θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,x(h) ≤ C ′φ(h) < ∞ and ∃ η0 > 0, ∀η < η0, φ′(η) < C ;
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(A2) The kernel K satisfy (H4) and Lipschitz’s condition holds∣∣∣K(x)−K(y)
∣∣∣ ≤ C ‖x− y‖ ;

(A3) The conditional density f(θ, t, x) satisfies the uniform Hölder condition, i.e,
∀(t1, t2) ∈ SR×SR,∀(x1, x2) ∈ SH×SH and ∀θ ∈ ΘH,∣∣∣f(θ, t1, x1)− f(θ, t2, x2)

∣∣∣ ≤ C
(
‖x1 − x2‖b1 + |t1 − t2|b2

)
;

(A4) For some ν ∈ (0, 1), lim
n→∞

nνhH = ∞, and for rn = O
( log n

n

)
, the sequences dSHn

and dΘH
n satisfy:

(log n)2

n hH φ(hK)
< log dSHn + log dΘH

n <
n hH φ(hK)

log n
,

and
∞∑

n=1

n(3γ+1)/2
(
dSHn dΘH

n

)1−β
< ∞ , for some β > 1 .

In what follows, denote

Λi(x, θ) =
1

hK φ(hK)
1Bθ(x,h)∪Bθ(xk(x),h)(Xi) ,

Ωi(x, θ) =
1

hK φ(hK)
1Bθ(xk(x),h)∪Bθq(θ)

(xk(x),h)(Xi) ,

∆i

(
xk(x), θq(θ)

)
=

K
(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉)
E K

(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉)
and

Γi

(
xk(x), vkt , θq(θ)

)
=

1
hH

K
(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉)
E K

(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉) H
(
h−1
H (vkt−Yi)

)

− 1
hH

E

 K
(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉)
E K

(
h−1
K

〈
xk(x)−Xi, θq(θ)

〉) H
(
h−1
H (vkt−Yi)

).

Remark 3.1. Note that Assumptions (A1) and (A3) are, respectively, the uniform
version of (H1) and (H2). Assumptions (A1) and (A4) are linked with the topological struc-
ture of the functional variable, see Ferraty et al. [12].

Theorem 3.1. Under Assumptions (A1)–(A4), we have, as n goes to infinity

(3.2)

sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f̂(θ, t, x)− f(θ, t, x)
∣∣∣ = O

(
hb1
K

)
+O

(
hb2
H

)
+Oa.co.

√ log dSFn + log dΘF
n

n hH φ(hK)

.
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Corollary 3.1. Under the assumptions of Theorem 3.1 and hypotheses (H6)–(H7),

we have

(3.3) sup
x∈SH

∣∣∣M̂θ(x)−Mθ(x)
∣∣∣j = O

(
hb1
K

)
+O

(
hb2
H

)
+Oa.co

√ log dSFn + log dΘF
n

n hH φ(hK)

.

The proof of Theorem 3.1 and Corollary 3.1 can be completed by the following lemmas.

Lemma 3.1. Under assumptions (A1), (A3) and (A4), we have as n −→∞

sup
θ∈ΘF

sup
x∈SF

∣∣∣F̂D(θ, x)− E F̂D(θ, x)
∣∣∣ = Oa.co.

√ log dSFn + log dΘF
n

n φ(hK)

.

Corollary 3.2. Under assumptions of Lemma 3.1, we have

∞∑
n=1

P
(

inf
θ∈ΘF

inf
x∈SF

F̂D(θ, x) <
1
2

)
< ∞ .

Lemma 3.2. Under assumptions (A1), (A3) and (H3), we have as n goes to infinity

(3.4) sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f(θ, t, x)− E f̂N (θ, t, x)
∣∣∣ = O

(
hb1
K

)
+ O

(
hb2
H

)
.

Lemma 3.3. Under the assumptions of Theorem 3.1, we have as n goes to infinity

sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f̃N (θ, t, x)− E f̃N (θ, t, x)
∣∣∣ = Oa.co.

√ log dSFn + log dΘF
n

n hH φ(hK)

.

4. ASYMPTOTIC NORMALITY

In this section, the asymptotic normality of the conditional density and the conditional
mode are established. Therefore, further assumptions are required. Assume that:

(N1) There exists a function ξθ,x, such that

∀u ∈ [0, 1] , lim
h−→0

φθ,x(uh)
φθ,x(h)

= lim
h−→0

ξθ,x
h (u) = ξθ,x

0 (u) ;

(N2) The bandwidth hH satisfies

n h3
H φ3

θ,x(hK) −→ 0, as n −→∞ ;

(N3) The df of the censored random variable, G has a bounded first derivative G
′
;
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(N4) The conditional density function f(θ, t, x) satisfies: ∃β0 > 0, ∀(t1, t2) ∈ SR×SR,∣∣∣f (q)(θ, t1, x)− f (q)(θ, t2, x)
∣∣∣ ≤ C

(
|t1 − t2|β0

)
, ∀q = 1, 2 ;

(N5) H
′
and H

′′
are bounded respectively with∫ (

H
′
(t)
)2

dt < ∞ ,
∫
|t|β0H(t) dt < ∞ .

Theorem 4.1. Under assumptions (H1)–(H5) and (N1)–(N3) for all x ∈ H, we have√
n hH φθ,x(hK)

σ2(θ, t, x)

(
f̂(θ, t, x)− f(θ, t, x)

)
D−→ N (0, 1), as n −→∞ ,

where

σ2(θ, t, x) =
a2(θ, x) f(θ, t, x)
(a1(θ, x))2 Ḡ(t)

∫
R
H2(u) du ,

with

al(θ, x) = K l(1)−
∫ 1

0
(K l)

′
(u) ξθ,x

0 (u) du , l = 1, 2 .

“
D−→” means the convergence in distribution.

Proof: In order to establish the asymptotic normality of f̂(θ, t, x), we need further
notations and definitions. First we consider the following decomposition:

f̂(θ, t, x)− f(θ, t, x) =
f̂N (θ, t, x)

F̂D(θ, x)
− a1(θ, x) f(θ, t, x)

a1(θ, x)

=
1

F̂D(θ, x)

(
f̂N (θ, t, x)− E f̂N (θ, t, x)

)
− 1

F̂D(θ, x)

(
a1(θ, x) f(θ, t, x)− E f̂N (θ, t, x)

)
+

f(θ, t, x)

F̂D(θ, x)

(
a1(θ, x)− E F̂D(θ, x)

)
− f(θ, t, x)

F̂D(θ, x)

(
F̂D(θ, x)− E F̂D(θ, x)

)
=

1

F̂D(θ, x)

(
An(θ, t, x) + Bn(θ, t, x)

)
.

Where:

An(θ, t, x) =
1

n hH E K1(θ, x)

n∑
i=1

{(
δi

Ḡ(Yi)
Hi(t)− hH f(θ, t, x)

)
Ki(θ, x)

− E
[(

δi

Ḡ(Yi)
Hi(t)− hH f(θ, t, x)

)
Ki(θ, x)

]}

=
1

n hH E K1(θ, x)

n∑
i=1

Ni(θ, t, x) .
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It follows that

n hH φθ,x(hK) Var(An

(
θ, t, x)

)
=

φθ,x(hK)

hH

(
E K1(θ, x)

)2 Var
(
N1(θ, t, x)

)
= Vn(θ, t, x)

and

Bn(θ, t, x) = a1(θ, x) f(θ, t, x)− E f̂N (θ, t, x) + f(θ, t, x)
(
a1(θ, x)− E F̂D(θ, x)

)
.

Then, the proof of Theorem 4.1 can be deduced from the following Lemmas.

Lemma 4.1. Under conditions of Theorem 4.1, we have√
n hH φθ,x(hK) An(θ, t, x) D−→ N

(
0, σ2(θ, t, x)

)
,

where σ2
θ,x is given in Theorem 4.1.

Lemma 4.2. Under assumptions (H1)–(H5) and (N1)–(N2), we have as n −→∞,√
n hH φθ,x(hK) Bn(θ, t, x) −→ 0 in probability .

Corollary 4.1. If the assumptions (H1)–(H7) as well as (N1)–(N5) hold, then, we

have:

(4.1)

√
n h3

H φθ,x(hK)
σ2

1(θ, x)

(
M̂θ(x)−Mθ(x)

)
D−→ N (0, 1) , as n −→∞ ,

where

σ2
1(θ, t, x) =

a2(θ, x) f
(
θ, Mθ(x), x

)(
a1(θ, x) f (2)

(
θ, Mθ(x), x

))2
Ḡ(t)

∫
R
H

′2(u) du .

5. SIMULATION STUDY

This section aims at illustrating our study which the forecast via the conditional mode.
More precisely, we will compare our model CFSIM (1.4) (censored functional single index
model) with CNPFDA (5.1) (censored nonparametric functional data analysis) in censored
data:

(5.1) f̂n(t, x) =

h−1
H

n∑
i=1

δi

Ḡn(Yi)
K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (t−Yi)

)
n∑

i=1

K
(
h−1
K d(x,Xi)

) .

Note that all the routines for functional data used in this implementation (developed in
R/S-Plus software) are available on the website https://www.math.univ-toulouse.fr/staph/npfda/.

https://www.math.univ-toulouse.fr/staph/npfda/
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We consider a diffusion process on the interval [0, 1]:

(5.2) Xi(t) = cos(πbi t) + ai t
2 , i = 1, ..., 200; t ∈ [0, 1] ,

where ai are uniformly distributed on [0, 1] (a ∼ U(0, 1)) and bi are standard normal dis-
tribution (b ∼ N (0, 1)). We carry out the simulation with a 200 sample of the curves X(t)
(see Figure 1).

Figure 1: The curves Xi=1,...,200(t), t ∈ [0, 1].

5.1. Estimating the single index in practice

The single index θ is unknown and has to be estimated. In practice this parameter
can be selected by cross-validation approach (see Aı̈t Saidi et al. [2]). To simulate the single
functional index model as follows, first, we choose the functional parameter θ.

So for L = {1, ..., 200}, the best approximation of θ is to estimate the eigenfunctions
of the covariance operator E[(X

′ − E(X
′
))〈X ′

, ·〉H] by its empirical covariance 1
L
∑

i∈L(X
′
i −

E(X
′
))t(X

′
i − E(X

′
)) [4]. Figures 2, 3 and 4 show the discretization of the two first eigen-

function, twenty and all the eigenfunctions θi(t), respectively.

Taking θ∗ the first eigenfunction corresponding to the first higher eigenvalue, and
compute the inner product 〈θ∗, X1〉, ..., 〈θ∗, X200〉, then simulate the response variables Ti =
r(〈θ∗, Xi〉)+ε, where r(〈θ∗, Xi〉) = exp(10(〈θ∗, Xi〉−0.05)) and ε generate independently from
a centered gaussian of variance equal to 0.05 times the empirical variance of r(〈θ∗, Xi〉).

We simulate n i.i.d. rv Ci, i = 1, ..., n with the exponential distribution E(1, 5). Noting
that the computation of those estimators are based on the observed data (Xi, Yi, δi)i=1,...,n,
where Yi = min(Ti, Ci) and δi = 1{Ti≤Ci}. On the other hand, we choose the quadratic kernels
defined by:

K(u) =
3
2

(1− u2) 1(0,1)(u)
and

H(t) =
3
4

(1− t2) 1(−1,1)(t) .
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Figure 2: The curves θi=1,2(t), t ∈ [0, 1].

Figure 3: The curves θi=1,...,20(t), t ∈ [0, 1].

Figure 4: The curves θi=1,...,200(t), t ∈ [0, 1].
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Then, taking into account the smoothness of the curves Xi(t), we choose for the CNPFDA
model the semi-metric in H:

d(xi, xj) =

√∫ 1

0

(
x
′
i(t)− x

′
j(t)
)2

dt , xi, xj ∈ H .

For the bandwidths hH ∼ hK =: h is automatically selected by the procedure of the cross-
validation method on the k-nearest neighbors ([16]).

In our simulation, sample sizes are n = 200, we take it into two parts, one is a learning
sample of 150 observations and the others 50 observations are a test sample. Then using
the learning sample to compute the estimator of Ŷi = M̂θ∗(Xi) and Ŷni = M̂(Xi) for i =
{151, ..., 200}.

Finally we show the results by plotting the true values versus the predicted values
for the MSE under censored data for both estimators (1.4) and (5.1) which are respectively
defined as:

CFSIM.MSE =
1
50

200∑
i=151

(Yi − Ŷi)2 ,

CNPFDA.MSE =
1
50

200∑
i=151

(Yi − Ŷni)2 .

By Figures 5 and 6, we can say that both estimators on weak censored rates of 3.5%
works almost as well as if we had the complete data-set. To show how the different censored
rates (CRs) affects the prediction results, we present some CRs and their corresponding MSE
for CFSIM and CNPFDA. Two sample sizes are considered, n = 200 and 300, and for each
sample size different censoring rates are taken: CR=5%, 16%, 27% and 54%. We carried
100 independent replications of the experiment and then we computed the average of mean
squared error. These quantities are presented in Table 1.

Figure 5: Prediction via the conditional mode by NPFDA for complete data
(MSE = 0.0122) and censored data with CR∼ 3.5% (MSE = 0.0295).
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Figure 6: Prediction via the conditional mode by FSIM for complete data
(MSE = 0.006) and censored data with CR∼ 3.5% (MSE = 0.0079).

Table 1: MSE comparison for FSIM and NPFDA.

n CR NPFDA CNPFDA FSIM CFSIM

5% 0.0122 0.0343 0.0065 0.0168

200
16% 0.0844 0.0554
27% 0.1274 0.1084
54% 0.3349 0.3234

5% 0.0115 0.0303 0.0032 0.0063

300
16% 0.0779 0.0473
27% 0.1245 0.0952
54% 0.3165 0.1600

One can observe that both estimators have a reasonable performance for lower censored
rates. However, they are strongly affected when the percentage of censored rate is high, but
the FSIM estimator stays more accurate than the NPFDA one in all cases. And on the other
hand, when the sample size increases, the preciseness of forecast also increases.

5.2. Real data example: peak electricity demand

We evaluate and compare the finite sample performance between a nonparametric func-
tional model with our estimator (the functional single index model). To this end, we apply
our method to the data constituting hourly electricity demand for the Rocky Mountain region
(WACM) of the United States. The data are daily electricity demands divided into 24 grids,
where each hour of the day corresponds to a grid, from July 2015 to November 2018. The
updated version of the data can be found on the site http://www.eia.gov/.

http://www.eia.gov/
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We construct our variables as follows: the observations of our covariate X are the daily
electricity demands from 2016 to 2018, Xi = (xi1, ..., xi24), our sample consists of n = 1037
observations. The observations of our response variable Y are Yi = min(max(Xi), 1408),
i = 1, ..., n, where 1408 is the maximum peak of electricity demands in 2015.

In this part, we use Kaplan–Meier’s estimator Gn(·) as an estimator of G(·) to construct
our conditional distribution estimator, by taking the variables (Ci)i as deterministic (all equal
to 1408, which is the maximum of the peak observed in 2015).

Since we are performing analysis on a time series spread over 4 years, considering the
year 2015 as a base year, and in the simulation we are interested only in the years 2016–2018,
we can consider 1408 as a maximum amplitude, that is, any value (or hourly observation)
greater than 1408 can be considered as aberrant data. So, on this basis, we built our response
variable.

Concerning the estimation of our parameters, we chose deriv1 (the semi-metric based
on the first derivatives of the curves) as semi-metric, the kernel K(·) and the cumulative df

H(u) are defined in the Subsection 5.1. Then, as previously discussed, the optimal bandwidth
hn = hK,n = hH,n are chosen using the cross-validation method on the k-nearest neighbors.
Finally, we replace θ by the first eigenfunction corresponding to the first higher eigenvalue of
the empirical covariance operator. The curves of the data are represented in Figure 7.

Figure 7: Sample curves {Xi(t), t ∈ [0, 1]}i=1,...,1037.

To assess the in-sample estimation accuracy and out-of sample prediction accuracy of
the models, we split the original 1037 samples into two samples. The first one (learning set),
from 1 to 960, used for the estimation, while the second sample (testing set), from 961 to
1037, is served for the prediction. To measure the estimation and prediction accuracies, we
evaluate and compare the forecast accuracy using the testing sample, from which we predict
responses in the testing sample. To measure the performance of each functional prediction
method, we consider the mean square errors (MSE).

After performing the calculations, we find MSE = 0.0025 for our estimator, and an
MSE = 0.0197 for that of NPFDA (see Figure 8). We can therefore conclude that there is
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an improvement in estimation and prediction accuracies for our model in comparison to the
nonparametric functional model.

Figure 8: Prediction via the conditional mode by FSIM with error MSE = 0.0025
against NPFDA with error MSE = 0.0197.

6. PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 2.1: The proof is similar to that of Lemma 5.2 in [22]. From Equa-
tions (1.2) and (1.4), we have

∣∣∣f̂N (θ, t, x)− f̃N (θ, t, x)
∣∣∣ ≤ h−1

H

nEK1(θ, x)

n∑
i=1

∣∣∣∣ δi

Ḡn(Yi)
Ki(θ, x)Hi(t)−

δi

Ḡ(Yi)
Ki(θ, x)Hi(t)

∣∣∣∣
≤

h−1
H

nEK1(θ, x)

n∑
i=1

∣∣∣δiKi(θ, x)Hi(t)
∣∣∣ ∣∣∣∣ 1

Ḡn(Yi)
− 1

Ḡ(Yi)

∣∣∣∣
≤

h−1
H

φθ,x(hK)
C

Ḡn(τG)Ḡ(τG)
sup
t≤τG

R

∣∣Ḡn(t)−Ḡ(t)
∣∣ 1
n

n∑
i=1

∣∣Ki(θ,x)Hi(t)
∣∣ .

Since Ḡ(tG) > 0, together with the SLLN and the LIL on the censoring law (see formula
(4.28) in Deheuvels and Einmahl [9]), we obtain

sup
t≤τG

∣∣Ḡn(t)− Ḡ(t)
∣∣ = Oa.s.

(
log log n

n

)
.

We achieve the proof by considering the conditions (H3) and (H4).

Proof of Lemma 2.2: We have

Ef̃N (θ, t,x)−f(θ, t,x) =
1

hH EK1(x, θ)
E
(

δi

Ḡ(Yi)
Ki(x, θ)Hi(t)

)
− f(θ, t, x)

=
1

hh EK1(x, θ)
E

(
Ki(x, θ)

[
E
(

δi

Ḡ(Yi)
Hi(t) | 〈X1, θ〉

)
−hH f(θ, t,x)

])
.(6.1)
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Using the fact that H is a cdf and the use a double conditioning with respect to T1,
we can easily get

I = E
(

δi

Ḡ(Yi)
Hi(t)

∣∣ 〈X1, θ〉
)

= E
(

E
[
1T1≤C1

Ḡ(T1)
H

(
t− T1

hH

) ∣∣ 〈X1, θ〉, T1

])
= E

(
1

Ḡ(T1)
H

(
t− T1

hH

)
E
[
1T1≤C1 |T1

] ∣∣ 〈X1, θ〉
)

= E
[
H

(
t− T1

hH

) ∣∣ 〈X1, θ〉
]

=
∫

R
H

(
t− u

hH

)
f(θ, u, X1) du

= hH

∫
R

H(v) f(θ, t− vhH , X1) dv

= hH

∫
R

H(v)
(
f(θ, t− vhH , X1)− f(θ, t, x)

)
dv + hH f(θ, t, x)

∫
R

H(v) dv ,

we can write, because of (H2) and (H3):

I ≤ hH Cx,θ

∫
R

H(v)
(
hb1
K + |v|b2hb2

H

)
dv + hH f(θ, t, x)

= O
(
hb1
K + hb2

H

)
+ hH f(θ, t, x) .

Combining this last result with (6.1) allows us to achieve the proof.

Proof of Lemma 2.4: Using the compactness of SR, we can write that:

SR ⊂
τn⋃

k=1

(zk − ln, zk + ln), where ln and τn can be chosen such that ln = Cτ−1
n ∼ Cn−ς−1/2.

Taking kt = arg min
{z1,...,zτn}

|t− zk|.

Thus, we have the following decomposition:

1

F̂D(θ, x)
sup
t∈SR

∣∣∣f̃N (θ, t, x)− Ef̃N (θ, t, x)
∣∣∣ ≤ 1

F̂D(θ, x)
sup
t∈SR

∣∣∣f̃N (θ, t, x)− f̂N (θ, tk, x)
∣∣∣

+
1

F̂D(θ, x)
sup
t∈SR

∣∣∣f̂N (θ, tk, x)− Ef̂N (θ, tk, x)
∣∣∣

+
1

F̂D(θ, x)
sup
t∈SR

∣∣∣Ef̂N (θ, tk, x)− Ef̃N (θ, t, x)
∣∣∣

≤ T1 + T2 + T3 .
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• On one hand, as the first and the third terms can be treated in the same manner,
we deal only with first term. Making use of (H3) we get

sup
t∈SR

∣∣∣f̃N (θ, t, x)− f̂N (θ, tk, x)
∣∣∣ ≤

≤ 1
n hH EK1(θ, x)

sup
t∈SR

n∑
i=1

∣∣∣∣ δi

Ḡ(Yi)
Hi(t)−

δi

Ḡn(Yi)
Hi(tk)

∣∣∣∣|Ki(θ, x)|

≤ C

n hH EK1(θ, x)
sup
t∈SR

|t− tk|
hH

(
n∑

i=1

Ki(θ, x)
(

1
Ḡ(Yi)

− 1
Ḡn(Yi)

))

≤ Cln
h2
HḠn(τG)Ḡ(τG)

sup
t∈SR

|Gn(t)−G(t)| F̂D(θ, x) .

Using ln = n−ς−1/2 we obtain

T1 ≤
Cn−ς−1/2

h2
HḠn(τG)Ḡ(τG)

(
log n log n

n

)1/2

,

and note that, because of (H2)-(i), we have

ln
h2
H

= o

(√
log n

n hh φθ,x(hK)

)
.

Thus, for n large enough, we have

T1 = Oa.co

(√
log n

n hH φθ,x(hK)

)
.

Following similar arguments, we can write

T3 ≤ T1 .

• Concerning T2, let us consider ε = ε0

√
log n

n hH φθ,x(hK)
. Since for all ε0 > 0, we have

P
(

sup
t∈SR

∣∣∣f̂N (θ, tk, x)− Ef̂N (θ, tk, x)
∣∣∣ > ε

)
≤ P

(
max

k∈{1,...,τn}

∣∣∣f̂N (θ, tk, x)− Ef̂N (θ, tk, x)
∣∣∣ > ε

)
≤ τn max

k∈{1,...,τn}
P
(∣∣∣f̂N (θ, tk, x)− Ef̂N (θ, tk, x)

∣∣∣> ε

)
.

Applying Berstain’s exponential inequality to:

Ψi =
1

hH EK1(x, θ)

[
δi

Ḡ(Yi)
Ki(x, θ)Hi(tk)− E

(
δi

Ḡ(Yi)
Ki(x, θ)Hi(tk)

)]
.

Firstly, it follows from the fact that the Kernels K and H are bounded, we get

P
(∣∣∣f̂N (θ, tk, x)− Ef̂N (θ, tk, x)

∣∣∣ > ε

)
≤ P

(
1
n

∣∣∣∣ n∑
i=1

Ψi

∣∣∣∣ > ε

)
≤ 2 n−cε2

0 .

Finally, by choosing ε0 large enough, the proof can be concluded by the use of the
Borel–Cantelli lemma. the result can be easily deduced.
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Proof of Lemma 3.3: For all x ∈ SH and ∀θ ∈ ΘH, we set

k(x) = arg min
k∈{1,...,d

SH
n }
‖x− xk‖ and q(θ) = arg min

m∈{1,...,d
ΘH
n }
‖θ − θq‖ ,

and by the compact property of SR ⊂ R we have SR ⊂
τn⋃

k=1

(vk − ln, vk + ln) where ln and τn

can be selected such as ln = O
(
τ−1
n

)
= O

(
n−(3ς+1)/2

)
. Taking kt = arg min

{v1,...,vτn}
|t− vk|.

Let us consider the following decomposition:

sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f̃N (θ, t, x)− E
(
f̃N (θ, t, x)

)∣∣∣ ≤
≤ sup

θ∈ΘH

sup
x∈SH

sup
t∈SR

{∣∣∣f̃N (θ, t, x)− f̃N (θ, t, xk(x))
∣∣∣

+
∣∣∣f̃N (θ, t, xk(x))− f̃N (θq(θ), t, xk(x))

∣∣∣
+
∣∣∣f̃N (θq(θ), t, xk(x))− f̃N (θq(θ), vkt , xk(x))

∣∣∣
+
∣∣∣f̃N (θq(θ), vkt , xk(x))− E

(
f̃N (θq(θ), vkt , xk(x))

)∣∣∣
+
∣∣∣E(f̃N (θq(θ), vkt , xk(x))

)
− E

(
f̃N (θq(θ), t, xk(x))

)∣∣∣
+
∣∣∣E(f̃N (θq(θ), t, xk(x))

)
− E

(
f̂N (θ, t, xk(x))

)∣∣∣
+
∣∣∣E(f̃N (θ, t, xk(x))

)
− E

(
f̃N (θ, t, x)

)∣∣∣}
≤ Ψ1 + Ψ2 + Ψ3 + Ψ4 + Ψ5 + Ψ6 + Ψ7 .

• Concerning Ψ3 and Ψ5; by conditions (H3) and (A4), boundness of K, we obtain∣∣∣f̃N (θq(θ), t, xk(x))− f̃N (θq(θ), vkt , xk(x))
∣∣∣ ≤

≤ 1
nhH EK1(θ, x)

sup
t∈SR

n∑
i=1

∣∣∣∣ δi

Ḡ(Yi)
Ki(θq(θ), xk(x))

∣∣∣∣ ∣∣∣∣H( t− Yi

hH

)
H

(
vkt − Yi

hH

)∣∣∣∣
≤ sup

t∈SR

C
|t− vkt |

h2
H

(
1

nE(K1(θq(θ), xk(x)))

n∑
i=1

∣∣∣∣Ki(θq(θ), xk(x))
1

Ḡ(Yi)

∣∣∣∣
)

≤ Cln
φ(hK)h2

H

= O
(

ln
h2
Hφ(hK)

)
.

Now, the fact that lim
n→∞

nνhH = ∞, and choosing ln = n−(3ν+1)/2 and using the second

part of (A4), imply that
ln

h2
Hφ(hK)

= o

(√
logn

nhHφ(hK)

)
as n →∞, therefore, it follows

Ψ5 ≤ Ψ3 = Oa.co.

√ log dSHn dΘH
n

nhHφ(hK)

.
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• Concerning Ψ4, let us consider ε = ε0

√
log d

SF
n +log d

ΘF
n

nhHφ(hK) . For all ε0 > 0, we have

P(Ψ4 > ε) = P

(
max

q∈{1,...,d
ΘH
n }

max
k∈{1,...,d

SH
n }

max
kt∈{1,2,...,τn}

|Γi − EΓi| > ε

)

≤ τn dSHn dΘH
n P

(
|Γi − EΓi| > ε

)
.(6.2)

Applying Bernstein’s exponential inequality, under (H4), to get ∀q ≤ dΘH
n , ∀k ≤ dSHn

and ∀kt ≤ τn,

P
(
|Γi − EΓi| > ε

)
≤ 2(dΘH

n dSHn )−Cε2
0 .

Choosing τn ≤ Cn(3ς+1)/2, we get

P
(
Ψ4 > ε

)
≤ C

′
τn(dΘH

n dSHn )1−Cε2
0 .

Putting Cε2
0 = β and using (A4), to get

(6.3) Ψ4 = Oa.co.

√ log dSFn + log dΘF
n

n hH φ(hK)

.

• Concerning Ψ1 and Ψ2, by assumption (A1), it follows

sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f̃N (θ, t, x)− f̃N (θ, t, xk(x))
∣∣∣ ≤

≤ 1
nhHEK1(θ, x)

· sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

n∑
i=1

∣∣∣∣ δi

Ḡ(Yi)

∣∣∣∣ |Hi(t)| |(Ki(θ, x)−Ki(θ, xk))|

≤ 1
nhHφ(hK)

sup
x∈SH

sup
θ∈ΘH

n∑
i=1

∣∣∆i(x, θ)−∆i

(
xk(x), θ

)∣∣
≤ 1

hHφ(hK)
sup

x∈SH
sup

θ∈ΘH

1
n

n∑
i=1

1Bθ(x,h)∪Bθ(xk(x),h)(Xi)

≤ C

hH
sup

x∈SH
sup

θ∈ΘH

1
n

n∑
i=1

Λi(x, θ) .

Therefore, similar to the arguments for (6.3), we can get that

Ψ1 = Oa.co.

√ log dSFn + log dΘF
n

nhHφ(hK)

,



244 N. Kadiri, M. Meghnafi and A. Rabhi

sup
θ∈ΘH

sup
x∈SH

sup
t∈SR

∣∣∣f̃N (θ, t, x)− f̃N (θq(θ), t, xk(x))
∣∣∣ ≤

≤
h−1
H

nEK1(θ, x)
· sup

θ∈ΘH

sup
x∈SH

sup
t∈SR

n∑
i=1

∣∣∣∣ δi

Ḡ(Yi)

∣∣∣∣ |Hi(t)|
∣∣(Ki(θ, x(k))−Ki(θq(θ), x(k)))

∣∣
≤

Ch−1
H

nφ(hK)
sup

x∈SH
sup

θ∈ΘH

n∑
i=1

∣∣∆i(θ, xk)−∆i

(
θq(θ), xk(x)

)∣∣
≤

Ch−1
H

φ(hK)
sup

x∈SH
sup

θ∈ΘH

1
n

n∑
i=1

1Bθ(x(k),h)∪Bq(θ)(xk(x),h)(Xi)

≤ C

hH
sup

x∈SH
sup

θ∈ΘH

1
n

n∑
i=1

Ωi(x, θ) .

Similar to the deduce of (6.3), it yields

Ψ2 = Oa.co.

√ log dSFn + log dΘF
n

nhHφ(hK)

.

On the other hand, since Ψ7 ≤ Ψ1 and Ψ6 ≤ Ψ2, it also leads to

Ψ6 = Oa.co.

√ log dSFn + log dΘF
n

nhHφ(hK)


and

Ψ7 = Oa.co.

√ log dSFn + log dΘF
n

nhHφ(hK)

.

Then the proof of Lemma 3.3 can be completed.

Proof of Lemma 4.1:

Vn(θ, t, x) =
φθ,x(hK)

hH(EK1(θ, x))2
E

[
K2

1 (θ, x)
(

δ1

Ḡ(Y1)
H1(t)− hhf(θ, t, x)

)2]

=
φθ,x(hK)

hH(EK1(θ, x))2
E

[
K2

1 (θ, x) E

((
δ1

Ḡ(Y1)
H1(t)− hHf(θ, t, x)

)2/
〈θ, X1〉

)]
.(6.4)

Using the definition of conditional variance, we have

E

[(
δ1

Ḡ(Y1)
H1(t)− hHf(θ, t, x)

)2 ∣∣ 〈θ, X1〉

]
= J1n + J2n ,

where

J1n = Var
(

δ1

Ḡ(Y1)
H1(t)

∣∣ 〈θ, X1〉
)

,

J2n =
[
E
(

δ1

Ḡ(Y1)
H1(t)

∣∣ 〈θ, X1〉
)
− hHf(θ, t, x)

]2

.
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• Concerning J1n:

J1n = E
(

δ1

Ḡ2(Y1)
H2

1 (t)
∣∣ 〈θ, X1〉

)
− E

(
δ1

Ḡ(Y1)
H1(t)

∣∣ 〈θ, X1〉
)2

= J1 + J2 .

As for J1, by the property of double conditional expectation and by changing variables,
we get that

J1 = E
[
E
(

δ1

Ḡ2(Y1)
H2

1

(
t− Y1

hH

) ∣∣ 〈θ, X1〉, T1

)]
= E

(
1

Ḡ2(T1)
H2

1

(
t− T1

hH

)
E
[
1T1≤C1

∣∣T1

] ∣∣ 〈θ, X1〉
)

= E
(

1
Ḡ(T1)

H2
1

(
t− T1

hH

) ∣∣ 〈θ, X1〉
)

=
∫

R

1
Ḡ(v)

H2
1

(
t− v

hH

)
f(θ, v, X1) dv

=
∫

R

1
Ḡ(t− uhH)

H2
1 (u) dF (θ, t− uhH , X1) .

By the first order Taylor’s expansion of the function Ḡ−1(·) around zero, one gets

J1 =
∫

R

1
Ḡ(t)

H2
1 (u) dF (θ, t− uhH , X1) +

h2
H

Ḡ(t)2

∫
R

uH2
1 Ḡ(1)(t∗) f(θ, t− uhH , X1) du + o(1) ,

where t∗ is between t and t− uhH .

Under assumptions (N3) and using hypothesis (H2), we get

h2
H

Ḡ2(t)

∫
R

uH2
1 Ḡ(1)(t∗) f(θ, t− uhH , X1) du = o(h2

H) .

Indeed,

h2
H

Ḡ2(t)

∫
R

uH2
1 Ḡ(1)(t∗) f(θ, t− uhH , X1) du ≤ h2

H

(
sup
u∈R

|G′
(u)||Ḡ2(t)

)∫
R

uf(θ, t− yhH , x) du .

On the other hand, by applying (H2) and (H3), we have∫
R

1
Ḡ(t)

H2
1 (u) dF (θ, t− uhH , X1) =

= hH

∫
R

1
Ḡ(t)

H2
1 (u) f(θ, t− uhH , X1) du

≤ hH

Ḡ(t)

∫
R

H2
1 (u)

(
f(θ, t− uhH , X1)− f(θ, t, x)

)
du

+
hH

Ḡ(t)

∫
R

H2
1 (u) f(θ, t, x) du

≤ hH

Ḡ(t)

(
Cx,θ

∫
R

H2(u)
(
hb1
K + |v|b2hb2

H

)
du + f(θ, t, x)

∫
R

H2(u) du

)
= O

(
hb1

k + hb2
H

)
+

hH

Ḡ(t)
f(θ, t, x)

∫
R

H2(u) du .(6.5)
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As for J2,

J
′
2 = E

(
δ1

Ḡ(Y1)
H1(t)

∣∣ 〈θ, X1〉
)

= E
[
E
(

δ1

Ḡ(Y1)
H1

(
t− Y1

hH

) ∣∣ 〈θ, X1〉, T1

)]
= E

(
1

Ḡ(T1)
H1

(
t− T1

hH

)
E
[
1T1≤C1

∣∣T1

] ∣∣ 〈θ, X1〉
)

= E
(

H1

(
t− T1

hH

) ∣∣ 〈θ, X1〉
)

=
∫

R
H(1)

(
t− v

hH

)
f(θ, t,X1) dv .

Moreover, we have by changing variables:

J
′
2 = hH

∫
R
H(u)

(
f(θ, t− uhH , X1 − f(θ, t, x)

)
du + hH f(θ, t, x)

∫
R
H(u) du .

The last equality is due to the fact that H is a probability density.

Thus, we have:

J
′
2 = O

(
hb1

k + hb2
H

)
+ hH f(θ, t, x) .

Finally we get J2 −→
n →∞ 0.

As for J2n, by (H1)–(H3), we obtain that

(6.6) J2n −→ 0, as n −→∞ .

Meanwhile, by (H1)–(H3) and (N3), it follows that

φθ,x(hK) EK2
1 (θ, x)

E2K1(θ, x)
−→

n−→∞

a2(θ, x)
(a1(θ, x))2

,

which, combining equations (6.4) and (6.5), leads to

(6.7) Vn(θ, t, x) −→ a2(θ, x)
(a1(θ, x))2

f(θ, t, x)
Ḡ(t)

∫
R
H2(u) du .

Proof of Lemma 4.2: We have√
nhHφθ,x(hK) Bn(θ, t, x) =

√
nhHφθ,x(hK)

F̂D(θ, x)

{
Ef̂N (θ, t, x)− a1(θ, x)f(θ, t, x)

+ f(θ, t, x)
(
a1(θ, x)− EF̂D(θ, x)

)}
.
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Firstly, observe that the results below

(6.8)
1

φθ,x(hK)
E
[
K l

(
〈x−Xi, θ〉

hK

)]
−→ al(θ, x), as n −→∞, for l = 1, 2 ,

(6.9) E
[
F̂D(θ, x)

]
−→ a1(θ, x), as n −→∞ ,

and

(6.10) E
[
f̂n(θ, t, x)

]
−→ a1(θ, x) f(θ, t, x), as n −→∞ ,

can be proved in the same way as in Ezzahrioui and Ould Säıd [10] corresponding to their
Lemmas 5.1 and 5.2, and then their proofs omitted.

Secondly, on one hand, making use of (6.8), (6.9) and (6.10) we have{
Ef̂N (θ, t, x)− a1(θ, x)f(θ, t, x) + f(θ, t, x)

(
a1(θ, x)− EF̂D(θ, x)

)}
−→

n−→∞
0 .

On the other hand,

(6.11)

√
nhHφθ,x(hK)

F̂D(θ, x)
=

√
nhHφθ,x(hK)f̃(θ, t, x)

F̂D(θ, x)f̃(θ, t, x)
=

√
nhHφθ,x(hK)f̃(θ, t, x)

f̃N (θ, t, x)
.

Then, using Proposition 2.1, it suffices to show that
√

nhHφθ,x(hK)

efN (θ,t,x)
tend to zero as n goes

to infinity.

Indeed

f̃N (θ, t, x) =
1

nhHEK1(θ, x)

n∑
i=1

δi

Ḡ(Yi)
K

(
〈x−Xi, θ〉

hK

)
H

(
t− Yi

hH

)
.

Because K(·) H(·) is continuous with support on [0,1], then by (H3) and (H4) ∃m =
inf [0,1] K(t)H(t) if follows that

f̃N (θ, t, x) ≥ m

hHφθ,x(hK)
,

which gives √
nhHφθ,x(hK)

f̃N (θ, t, x)
≤

√
nh3

Hφ3
θ,x(hK)

m
.

Finally, using (N2), completes the proof of Lemma 4.2.
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