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– Departamento de Métodos Estad́ısticos, EINA, Universidad de Zaragoza,

Zaragoza, Spain
pjodra@unizar.es

Received: February 2020 Accepted: March 2020

Abstract:

• In this note, the right truncated Weibull distribution is derived as the distribution of the minimum
of a random number of independent and identically distributed random variables. Specifically, the
independent random variables have a common power function distribution and the random number
has a zero-truncated Poisson distribution.
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1. INTRODUCTION

The Weibull distribution is one of the most popular probability models, both from a
theoretical and practical viewpoint, and it has been successfully used to model lifetime and
failure data in a wide variety of areas. Prabhakar et al. [11] and Rinne [13] are two excellent
monograph books that review the history, theory and applications of the Weibull distribution.

To be more precise, let X be a random variable having a two-parameter Weibull dis-
tribution, that is, its cumulative distribution function (cdf) is given by

(1.1) FX(x;α, β) = 1− exp
(
−αxβ

)
, x > 0 ,

where α > 0 and β > 0 are the scale and shape parameters, respectively. Note that the
domain of the Weibull model is the positive real line. However, there are many real situations
in which the data take values in a bounded interval and then a truncated distribution may be
preferred. In this note, the attention will be focussed on the Weibull distribution truncated
to the interval (0, c), c > 0, which is commonly referred to as the right –or upper– truncated
Weibull (RTW) distribution. The cdf of a random variable Y having a RTW distribution on
(0, c) is easily deduced from (1.1), namely,

FY (y;α, β, c) = P
(
X≤ y |X≤ c

)
=

FX(y;α, β)− FX(0;α, β)
FX(c;α, β)− FX(0;α, β)

=
1− exp

(
−αyβ

)
1− exp

(
−αcβ

) , 0 < y < c ,
(1.2)

where α > 0 and β > 0. Statistical properties concerning the RTW model can be found in
Mart́ınez and Quintana [7], McEwen and Parresol [8], Rao [12], Wingo [16] and Zhang and
Xie [18], among others.

On the other hand, let Z be a random variable having a power function (PF) distribu-
tion on the interval (0, c), that is, its cdf is given by

FZ(z;β, c) =
(

z

c

)β

, 0 < z < c ,

where β > 0 is a shape parameter. Recall that the PF distribution is obtained by inverting the
Pareto distribution. Statistical properties of the PF distribution can be found in Forbes et al.

[3, Chapter 36] and Johnson et al. [6, Chapter 20]. A detailed review of research concerning
the PF law is given in Tahir et al. [15]. Practical applications in different areas can also
be found in Ferreira and Andrade [2] (queuing theory), Meniconi and Barry [9] (electrical
component reliability) and Wu et al. [17] (economics and finance), among others.

There exists a well-known relationship between the non-truncated Weibull distribution
and the PF distribution. If a random variable Z follows a PF distribution on (0, 1) with shape
parameter α > 0, then the random variable (− log Z)1/β has a Weibull distribution with cdf
(1.1). The aim of this note is to present a non-trivial connection between the distributions
RTW and PF. In the next section, it is shown that the RTW model can be derived as the
distribution of the minimum of a positive random number N of independent and identically
distributed (iid) random variables having a common PF distribution. Specifically, the random
number N follows a zero-truncated Poisson distribution.
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Before going further, it is interesting to point out that families of distributions derived as
the minimum of a positive random number N of iid random variables are common in statistical
applications. For example, this stochastic representation arises in reliability analysis of series
systems, in which the failure of the system is due to the presence of an unknown number of
independent components of the same kind and it is assumed that the system fails if at least one
component fails. Some of those families of distributions are listed in Nadarajah et al. [10] and
some applications can be found in Silva et al. [14]. In addition, Bobotas and Koutras [1] have
also studied the special case where N is a non-negative random number with P (N= 0) > 0.

2. MAIN RESULT

Let N be a random variable having a zero-truncated Poisson distribution with param-
eter λ > 0. The probability mass function of N is given by

(2.1) P (N= n) =
λn exp(−λ)(

1− exp(−λ)
)
n!

, n = 1, 2, ...

The following result provides a relationship between the RTW and the minimum of iid PF
distributions. The zero-truncated Poisson distribution plays a crucial role.

Proposition 2.1. For any c > 0, let Z1, ..., ZN be iid random variables having a PF

distribution on the interval (0, c) with shape parameter β > 0. For any α > 0, let N be a

random variable having a zero-truncated Poisson distribution with parameter λ = αcβ. Then,

the random variable T = min{Z1, ..., ZN} has a RTW distribution on the interval (0, c).

Proof: For any n = 1, 2, ..., c > 0 and β > 0, the conditional cdf of the random variable
T |N = n is given by

FT |N=n(t;β, c) = 1−
n∏

i=1

(
1− FZi(t;β, c)

)
= 1−

(
1−

(
t

c

)β)n

, 0 < t < c .

From the above equation together with (2.1), for any α > 0 the marginal cdf of T is obtained
as follows:

FT (t;α, β, c) =
∞∑

n=1

P
(
T ≤ t, N= n

)
=

∞∑
n=1

FT |N=n(t;β, c) P
(
N= n

)
=

∞∑
n=1

[
1−

(
1−

(
t

c

)β)n]
(αcβ)n exp(−αcβ)(
1− exp(−αcβ)

)
n!

=
1− exp

(
−αtβ

)
1− exp

(
−αcβ

) , 0 < t < c ,

which taking into account (1.2) implies the desired result.

To conclude, it is interesting to note that by taking the minimum of a random number N

of iid PF random variables on the unit interval (0, 1), Jodrá [4] and Jodrá and Jiménez-
Gamero [5] have introduced two new probability distributions depending on if N follows a
shifted Poisson distribution or a zero-truncated geometric distribution, respectively. Sur-
prisingly, the well-studied RTW distribution is obtained if the random number N has a
zero-truncated Poisson distribution.
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[4] Jodrá, P. (2020). A bounded distribution derived from the shifted Gompertz law, Journal
of King Saud University – Science, 32, 523–536.
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