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1. INTRODUCTION

The Lasso introduced in [10] is a shrinkage and selection method for linear regression
models. As variable selection is of increasing importance in big data analysis, the lasso is
much more appealing owing to its sparse representation. However, the literature about the
penalization techniques mainly deals with homoscedastic linear regression models, see, e.g.,
[2], [5], [9], [15], [16], and [18], among others. The investigation of the Lasso type estimator for
heteroscedastic models started relatively late. Recently, [11] and [12] analysed the weighted
lasso type estimators in a linear heteroscedastic regression model setting. [17] derived an
iteratively reweighted adaptive lasso algorithm for time series models under conditional het-
eroscedasticity, and proved that the resulting estimator has sign consistency and asymptotic
normality. The proposed method can be applied to various AR-ARCH type processes.

In this paper, we generalize the results of [17] to the adaptive elastic net method.
That is, we consider the model similar to the one used by [17], but suggest the use of an
iteratively reweighted adaptive elastic net algorithm. The elastic net introduced by [19] is a
convex combination of the Lasso and ridge penalty. The ridge part of the penalty shrinks the
estimated coefficients of all the variables and induces coefficients of correlated variables to be
close to one another. The Lasso part of the penalty shrinks and selects the coefficients of the
variables. As discussed in [4], the elastic net benefits from the selection of the Lasso, as well
as from the finite-sample grouping effect inherited from the ridge penalty. This makes the
elastic net particularly useful for estimating the autoregressive time series models, since this
estimation procedure leaves out irrelevant variables but does not exclude correlated variables
that may be relevant as part of a group.

In the next section, we introduce the iteratively reweighted adaptive elastic net algo-
rithm for high-dimensional sparse linear regression models under conditional heteroscedas-
ticity. The sign consistency and the asymptotic normality of the weighted adaptive elastic
net estimators of the parameters are also addressed. Section 3 gives the Monte Carlo simu-
lations based on a specific AR-ARCH model, evaluating and comparing the performance of
the proposed adaptive elastic net algorithm and the adaptive Lasso method. The proof of
the theorem is given in Appendix.

Throughout the paper, all limits are taken as n→∞, unless specified otherwise. The
symbol C denotes an absolute positive constant whose value may vary at each occurrence.
D−→ denotes convergence in distribution, P−→ denotes convergence in probability, Z stands

for a standard normal random variable. For any two real sequences {an} and {bn}, an ∼ bn
means that there are constants c > 0 and C <∞ such that c ≤ an/bn ≤ C for all sufficiently
large n.
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2. THE ITERATIVELY REWEIGHTED ADAPTIVE ELASTIC NET ALGO-
RITHM

We now introduce the model and the basic ideas of the algorithm. The model discussed
here is similar to the one used by [14] and [17]. We consider a stationary random process Yt∈R
and a possibly infinite vector of covariates of stationary processes, Xt,∞ = (Xt,1, Xt,2, ...)′,
t ∈ Z, Z := {0,±1,±2, ...}, obeying the model

Yt = X ′
t,∞β

0
∞ + εt , t ∈ Z ,(2.1)

where β0
∞ = (β0

1 , β
0
2 , ...)

′ satisfying
∑∞

i=1 |β0
i |2 < +∞, εt is zero mean and independent of the

covariates Xt,∞, and

εt = σtZt , σt = g(α0
∞;L∞,t) , t ∈ Z ,

where Zt, t ∈ Z, are i.i.d. standardized r.v.’s, g is a positive function, L∞,t = (L1,t, L2,t, ...) is a
possibly infinite vector of covariates of stationary processes Li,t, t ∈ Z, and α0

∞ = (α0
1, α

0
2, ...)

′

is a parameter vector. Here the covariates Xt,∞ and L∞,t can contain lagged versions of Yt
and (εt, σt), respectively, which allows flexible modelling of autoregressive processes and a
class of conditional variance models such as GARCH type models.

The observed data consists of (Xn,Yn), where

Yn =

 Y1
...
Yn

, Xn =

 X1,1 ··· X1,pn

...
. . .

...
Xn,1 ··· Xn,pn

, β0
n =

 β0
1
...
β0
pn

, ε0
n = Yn −Xnβ

0
n ,

where pn is the number of possible parameters which increases with sample size n, β0
n is the

restriction of β0
∞ to its first pn coordinates, ε0

n = (ε01, ..., ε
0
n)
′.

The fact
∑∞

i=1 |β0
i |2 < +∞ implies that there is a positive sequence an decreasing to

zero such that limn→∞ P (max1≤t≤n |ε0t − εt| < an) → 1 holds. Thus, for a sufficiently large n
we can approximately write

ε0t = σtZt , σt = gn(α0
n;L

0
n,t) , 1 ≤ t ≤ n ,(2.2)

here α0
n and L0

n,t are the restrictions of α0
∞ and L∞,t to their first pn coordinates, respectively,

and gn is the restriction of g that corresponds to α0
n and L0

n,t. Without loss of generality we
assume that only qn of the pn parameters are non-zero. That is, β0

n = (β0
1 , ..., β

0
qn , 0, ..., 0)′ =

(β0
n(1)′,0′)′. In a similar manner, Xn = (Xn(1),Xn(2)) and Xt,n = (Xt,n(1)′,Xt,n(2)′)′,

where Xt,n is the t-th row of Xn.

We now introduce the adaptive elastic net algorithm based on an iteratively reweighted
technique which is similar to the approaches in [7], [8], and [17]. Rewrite Model (2.1) as

Ỹt = X̃′
t,nβ0

n + Zt , 1 ≤ t ≤ n ,(2.3)

where Ỹt = 1
σt
Yt, X̃t,n = 1

σt
Xt,n. It is obvious that the error Zt is homoscedastic.
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Since we have no a priori information about the conditional standard deviation σt, at
first step we assume homoscedasticity. Then we use a weighted adaptive elastic net algorithm
to estimate β0

n in each iteration step. That is,

βn,elastic(λn, γn, wn)

= argmin
β

(Yn −Xnβ)′W 2
n(Yn −Xnβ) + λn‖Σ1β‖1 + γn‖Σ1/2

2 β‖2
2 ,(2.4)

where λn ≥ 0, γn ≥ 0, Σ1 = diag(vn), vn = (vn,1, ..., vn,pn) = |βn,init1|−τ1 , Σ2 = diag(un), un =
(un,1, ..., un,pn) = |βn,init2|−τ2 , βn,init1 and βn,init2 are two initial estimators of β0

n for some
τ1 ≥ 0 and τ2 ≥ 0, and Wn = diag(wn), wn = (wn,1, ..., wn,n) = (σ̂−1

n,1, ..., σ̂
−1
n,n), σ̂n,t is a suit-

able estimator of σt. Moreover, let α̂n (βn,elastic;Xn,Yn) and L̂n,t(βn,elastic;Xn,Yn) be the
suitable known plug-in estimators for α0

n and L0
n,t, respectively. For relevant literature on

estimation methods for the conditional variance part, see e.g. [7], [8], [17], and the references
therein. For example, if the error process is an ARCH(p) model as in the simulation studies
of Section 3, the usual maximum likelihood methods can be applied to estimate the unknown
parameters of the conditional variance part based on the residuals from step 2 of the following
algorithm.

The iteratively reweighted adaptive elastic net algorithm:

1. Let k = 1, w[0]
n = 1. Determine the initial values of vn, un, λn and γn.

2. Calculate the estimator β
[k]
n = βn,elastic(λn, γn, w

[k−1]
n ) of β0

n for Model (2.3) using
the weighted adaptive elastic net algorithm (2.4), compute the residuals ε

[k]
n =

Yn −Xnβ
[k]
n .

3. Estimate the conditional variances σ[k]
n,t = gn(α

[k]
n ;L[k]

n,t), 1 ≤ t ≤ n, where α
[k]
n =

α̂n(β
[k]
n ;Xn,Yn), L[k]

n,t = L̂n,t(β
[k]
n ;Xn,Yn) based on Model (2.2) and the residuals

from step 2.

4. Calculate new weights w[k]
n,t = gn(α

[k]
n ;L[k]

n,t)
−1. Let w[k]

n = (w[k]
n,1, ..., w

[k]
n,n).

5. Let k = k + 1 and back to step 2 until a specified stopping criterion is satisfied.
Return estimate β

[k]
n .

As stated in [17], a plausible stopping criterion should measure the convergence of
σ

[k]
n , where σ[k]

n = (σ[k]
n,1, ..., σ

[k]
n,n)′. One can stop the algorithm if ‖σ[k]

n − σ[k−1]
n ‖2 < ζ for some

small ζ > 0. It is suggested that, under certain conditions, k = 2 is sufficient to get an optimal
estimator if n is large.

For the two initial estimators βn,init1 and βn,init2, as stated in [17], there are several
options available. When pn < n, one can simply choose the OLS estimator. Alternatively,
one can select the lasso estimator as βn,init1, the ridge regression estimator as βn,init2, or set
both βn,init1 and βn,init2 equal the elastic net estimator.

Next we show the sign consistency and asymptotic normality of the non-vanishing
components of β

[k]
n . Let bn = min{|β0

n(1)|}, W [k]
n = diag(w[k]

n ), X̃[k]
n = W

[k−1]
n Xn, Ỹ[k]

n =
W

[k−1]
n Yn, Γ̃[k]

n = 1
n(X̃[k]

n )′X̃[k]
n , Γn = Γ̃[1]

n = 1
nX

′
nXn. Let W 0

n and Γ̃0
n be the true matrices,

and the submatrices to β0
n(1) are denoted as Γ̃[k]

n (1), Γ̃0
n(1), Γn(1), Σ1(1) and Σ2(1). Similarly

to [12] and [17], we require the following assumptions.
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Assumption (A):

(A1) {Yt, Xt,1, ..., Xt,m, σt}t∈Z is weakly stationary for all m ≥ 1, {Zt}t∈Z is an i.i.d.
standardized random sequence and E(Z4

t ) <∞, Zt is independent of Xt,∞ for
any t ∈ Z, and E(σ4

t ) <∞.

(A2) E(X2
t,i) = 1 for any i ≥ 1 and t ∈ Z.

(A3) There is a positive sequence {υn} such that max1≤t≤n ‖Xt,n(1)‖2 = Op(υn
√
qn).

(A4) There are constants a1 > 0 and a2 > 0 such that

lim
n→∞

P
(
a1 min

{
|βn,init1(1)|τ1

}
< bn

)
= 0 ,

lim
n→∞

P
(
a2 min

{
|βn,init2(1)|τ2

}
< bn

)
= 0 .

(A5) There exists a positive sequence {rn} with rn →∞ such that

lim
n→∞

P
(
max

{
|βn,init1(2)|τ1

}
≥ rn

−1
)

= 0 .

(A6) There are positive constants λ0,min<λ0,max and λ1,min such that the eigenvalues
satisfy

lim
n→∞

P
(
λ0,min < λmin(Γn(1))≤ λmax(Γn(1))< λ0,max

)
= 1 ,

and

lim
n→∞

P
(
λ1,min < λmin(Γ̃0

n(1))≤ λmax(Γ̃0
n(1))

)
= 1 .

(A7) There are constants 0< λ2,min and λ3,min > 0 such that the eigenvalues satisfy

lim
n→∞

P
(
λ2,min < λmin(Dn)≤ λmax(Dn)

)
= 1 ,

and

lim
n→∞

P
(
λ3,min < λmin(En)≤ λmax(En)

)
= 1 ,

where

Dn =
(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Γ̃0
n(1)

(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

,

En =
(
Γn(1) +

γn
n

Σ2(1)
)−1

Γn(1)
(
Γn(1) +

γn
n

Σ2(1)
)−1

.

(A8) There is a positive constant σmin such that

0 < σmin < gn

(
α̂n(βn;Xn,Yn), L̂n,t(βn;Xn,Yn)

)
, 1 ≤ t ≤ n ,

for all large enough n and βn in an open neighbourhood of β0
n.

(A9) For all n and any 1 ≤ t ≤ n, the estimators α̂n and L̂n,t are consistent for α0
n

and L0
n,t, and there is a sequence {hn} with hnn−1/2 → 0 such that

max
1≤t≤n

∣∣∣∣g(α0
∞;L∞,t

)−2−gn
(
α̂n(β0

n;Xn,Yn), L̂n,t(β0
n;Xn,Yn)

)−2
∣∣∣∣ = Op

(
hn/

√
n
)
.
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(A10) There are positive constants C1, C2 and d with 1 ≤ d ≤ 2 such that, for any
t ∈ Z,

P
(
|εt| > x

)
≤ C1 exp

(
−C2x

d
)
.

(A11)

1© (logn)I{d=1}(log (1+qn))1/d
√
nbn

→ 0, 2© hn√
nbn

→ 0,

3© λn
√
qn√

nbn
→ 0, 4©

√
n(logn)I{d=1}(log (1+pn−qn))1/d

λnrn
→ 0,

5© hn
√
n

λnrn
→ 0, 6©

√
qn

bnrn
→ 0,

7© υn
√
qn√
n

→ 0, 8© hn
√
qn√
n

→ 0,

9© γn

(
(logn)I{d=1}+hn

)
√
nbn

→ 0.

Similar assumptions as in (A1)–(A11) are also imposed in [17] to study the asymp-
totic behaviour of the iteratively reweighted adaptive lasso algorithm. Assumption (A1) is
standard for variable selection in a time series setting. Assumption (A2) is the usual scale
standardization required in a lasso setting without loss of generality (see e.g. [6]), because
{Xt,i} is stationary and hence its mean and variance are constants. Assumption (A3) charac-
terises the structure of regressors. For instance, if {Xt,n(1)} is stationary and β0

n contains a
finite number of non-zero components, then we can choose υn = OP (1) for Assumption (A3)
to hold. Assumptions (A4) and (A5) actually assume that the weights vn and un are not too
large for β0

j 6= 0 and not too small for β0
j = 0. They also mean that the initial estimators

can distinguish between zero and non-zero components of the parameter vector well. For the
Lasso initial estimators, Assumptions (A4) and (A5) can be derived from sharp thresholds
and sign consistency of the Lasso estimate under some additional mild assumptions (see, e.g.,
[13] and [16]). Assumption (A6) is needed to address heteroscedasticity in high-dimensional
regression models (see, for example, [3]). Since we deal with the weighted adaptive elastic
net algorithm, additional similar assumptions such as (A7) are also needed here. It is worth
mentioning that, under certain conditions, Dn − Γ̃0

n(1) → 0 and En − Γn(1) → 0 as n→∞.
Assumptions (A8) and (A9) are standard in heteroscedastic regression and Assumption (A10)
excludes heavy-tailed errors.

Assumption (A11) postulate properties required for deriving the asymptotics of the
proposed estimator. As a simple example, to better understand Assumption (A11) assume
bn to be fixed and d = 1, 1© and 2© permit hn ∼ 1 and qn ∼ n1/2+δ for any 0 < δ < 1/4. With
these choices we can choose λn ∼ n1/4−δ, rn ∼ n1/2+δ, υn ∼ 1 and γn ∼ n1/4−δ by 3©, 4©, 7©
and 9©, and pn can grow with every polynomial order. Obviously these selections satisfy
Assumption (A11), and also Assumptions (A3)–(A5) and (A9). Moreover, by 4© and 9©, we
obtain γn

bnλnrn
→ 0 as n→∞.

The following theorem shows the sign consistency and asymptotic normality of the
estimator. The proof will be given in the Appendix. The sign consistency introduced by [16]
is stronger than the usual selection consistency which only requires the zeros to be matched,
but not the signs. The reason for using sign consistency is to avoid dealing with situations
where a model is estimated with matching zeros but reversed signs.
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Theorem 2.1. Under Assumption (A), it holds for all k ≥ 1 that:

(1) (Sign consistency)
lim
n→∞

P
(
sign(β[k]

n ) = sign(β0
n)
)

= 1 ,

where sign(·) maps positive entry to 1, negative entry to −1 and zero to zero,

that is, β
[k]
n asymptotically matches the zeros and signs of β0

n with probability one.

(2) (Asymptotic normality)
√
n (sn(k))−1 ξ′n

(
β[k]
n (1)− β0

n(1)
)

D−→ Z ,

where ξn ∈ Rqn with ‖ξn‖2 = 1, s2n(1) = ξ′nEnξn and s2n(k) = ξ′nDnξn for k ≥ 2.

3. SIMULATION STUDIES

In this section, we provide simulation studies to check the finite sample performance of
the iteratively reweighted adaptive elastic net algorithm (IRAEN) for an AR-ARCH model.
The comparison with the iteratively reweighted adaptive Lasso algorithm (IRAL) introduced
in [17] is also considered.

We consider the following AR-ARCH model

Yt =
∑

i∈I φiYt−i + εt ,

and

εt = σtZt , σt =
√
α0 + α1ε2t−1 + α2ε2t−2 ,

where the true values of the parameters are α0 = 0.02 and α1 = α2 = 0.49, Zt ∼ N(0, 1),
φi = 0.95(φ−1−1)φ

√
i, φ = 0.85, I = {1, 4, 9, 16, ...}. It is easy to see that

∑
i∈I |φi| = 0.95 < 1

and
∑

i∈I φ
2
i <∞ which imply the stationarity of Yt. Note that, by the properties of the AR-

ARCH model, EY 2
t = Eσ2

t = α0/(1− α1 − α2) = 1. This implies that Assumption (A2) is
satisfied.

Let pn = [2
√
n] and qn = [

√
pn], where n is the sample size. For example, when n =

500, pn = 44, qn = 6 and I = {1, 4, 9, 16, 25, 36}. If n = 1000, then pn = 63, qn = 7 and I =
{1, 4, 9, 16, 25, 36, 49}.

After generating data from the above AR-ARCH model with sample size n = 500 and
n = 1000, respectively, we use two methods, IRAEN and IRAL, to estimate the parameters
φi and to check the sign consistency of the estimators. In the simulations, we use the Cp
criterion to choose the appropriate λn and γn. The two initial estimators βn,init1 and βn,init2

are chosen to be the OLS estimator.

3.1. The iteratively reweighted adaptive elastic net algorithm

To apply the proposed iteratively reweighted elastic net algorithm, we consider two
cases: the homoscedastic case (k = 1) and the heteroscedastic case with one additional repli-
cation (k = 2).
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For the k = 1 case, Table 1 reports the estimation results for two sample sizes n = 500
and n = 1000 based on 1000 replications. We hope that the covariates with non-zero coeffi-
cients (relevant parameters) can be selected from the estimation procedure, but the covariates
with zero coefficients (irrelevant parameters) shouldn’t be included. Table 1 shows the pro-
portions of both the relevant and irrelevant included parameters of all estimated parameters
for the homoscedastic case. Proportion 1 (the accuracy rate) denotes the proportion of the
relevant included parameters and Proportion 2 (the error rate) is the proportion of the irrel-
evant included parameters. The number of times each parameter has been selected during
1000 simulations are also reported.

Table 1: Proportions of relevant included parameters and irrelevant included parameters
for the case of k = 1 using IRAEN.

sample
size

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 ... Proportion 1 Proportion 2

n = 500 866 691 622 834 568 506 454 482 864 ... 81.25% 33.61%

n = 1000 932 721 668 902 575 542 502 502 927 ... 89.41% 29.66%

It is seen from Table 1 that the accuracy rate increases with larger sample size n, while
the error rate decreases in n. This is consistent with the theoretical results in Theorem 2.1.

In a similar way, we apply the proposed iteratively reweighted elastic net algorithm with
k=2. Proportions of both the relevant and irrelevant included parameters of all estimated pa-
rameters and the number of times each parameter has been selected during 1000 simulations
for the heteroscedastic case are given in Table 2. Inspection of Table 2 reveals that, as in the
k=1case, theaccuracy rate increaseswith larger sample sizen, while theerror ratedecreases inn.
Comparing two tables, we conclude that the heteroscedastic case with k = 2 has better selec-
tion properties than the homoscedastic case k = 1 for the conditional heteroscedastic models.

Table 2: Proportions of relevant included parameters and irrelevant included parameters
for the case of k = 2 using IRAEN.

sample
size

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 ... Proportion 1 Proportion 2

n = 500 938 415 395 969 383 363 322 345 979 ... 94.92% 29.54%

n = 1000 992 407 371 999 377 287 316 294 999 ... 98.77% 21.98%

Moreover, the plots in Figure 1 show the selection results for both the k = 1 and k = 2
cases from one simulation with n = 500. For each plot, the vertical axis represents the values
of the estimated coefficients, the horizontal axis (bottom) represents the values of lnλn,
and the top shows the numbers of the non-zero coefficients selected for different values of
lnλn. The 44 curves illustrate the change of the values of 44 estimated coefficients with
lnλn changing. Note that there are only six non-zero positive coefficients in the true model.
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It can be seen that, when k = 2, these six coefficients tend to zero from positive side, while
when k = 1, there exist some coefficients tending to zero from negative side, which means
that no matter what value lnλn takes, the sign consistency may not be satisfied. This is
consistent with the conclusions drawn from the comparison of Tables 1 and 2. Figure 1 again
visually displays that the heteroscedastic algorithm with k = 2 outperforms its homoscedastic
counterpart.

Figure 1: Estimated coefficients for different λn values with n = 500 and
k = 1 (upper) or k = 2 (lower) using IRAEN.

3.2. The iteratively reweighted adaptive Lasso algorithm

Next we report the estimation results using the iteratively reweighted adaptive Lasso
algorithm. Proportions of both the relevant and irrelevant included parameters and the num-
ber of times each parameter has been selected during 1000 simulations for the homoscedastic
case and the heteroscedastic case with n = 500 and n = 1000 are given in Tables 3 and 4,
respectively. Figure 2 shows the selection results for both the k = 1 and k = 2 cases from one
simulation with n = 500. Similarly to the IRAEN algorithm, Tables 3–4 and Figure 2 indicate
that the heteroscedastic algorithm with k = 2 outperforms its homoscedastic counterpart.

Comparing Tables 1 and 2 with Tables 3 and 4, it is clear that the IRAEN algorithm pro-
posed in this paper uniformly improves the accuracy rate as compared to the IRAL method,
while the error rate is increased as a price to pay for using IRAEN algorithm. This implies
that the IRAL method excludes irrelevant variables more thoroughly. It is also consistent
with the conclusions of [19]. That is, if the covariates have grouping effect (a group of vari-
ables among which the pairwise correlations are very high), then the IRAL algorithm tends
to arbitrarily select only one variable from the group, while the IRAEN algorithm has the ca-
pacity of selecting groups of correlated variables. Generally speaking, the IRAEN algorithm
produces a sparse model with good estimation accuracy, while encouraging a grouping effect.
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This makes the IRAEN algorithm particularly useful for estimating the models containing
several correlated variables such as the AR-ARCH type processes.

Table 3: Proportions of relevant included parameters and irrelevant included parameters
for the case of k = 1 using IRAL.

sample
size

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 ... Proportion 1 Proportion 2

n = 500 871 682 619 863 515 501 481 452 827 ... 80.20% 31.95%

n = 1000 927 710 612 893 555 519 506 471 931 ... 88.37% 27.80%

Table 4: Proportions of relevant included parameters and irrelevant included parameters
for the case of k = 2 using IRAL.

sample
size

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 ... Proportion 1 Proportion 2

n = 500 930 399 358 971 338 296 327 313 974 ... 93.40% 26.35%

n = 1000 995 349 325 997 305 277 253 252 1000 ... 98.66% 19.98%

Figure 2: Estimated coefficients for different λn values with n = 500 and
k = 1 (upper) or k = 2 (lower) using IRAL.
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A. APPENDIX

Proof of Theorem 2.1: The basic ideas of the proof are mainly from [12] and [17].
Since we are dealing with the elastic net algorithm, we need some extra steps to achieve our
goal.

Let ‖X‖ψd
= inf

{
C > 0 |E[ψd(|X|/C)] ≤ 1

}
be the Orlicz norm of a random variable X,

where ψd(x) = exp(xd)− 1, 1 ≤ d ≤ 2. Denote en,j the j-th unit vector in Rqn . For any vector
a and b, a =s b means that sign(a) = sign(b). Let k ≥ 2, the case k = 1 can be proved in a
similar way.

(I) The sign consistency

The Karush–Kuhn–Tucker (KKT) conditions yield that (Yn−Xnβ)′(W [k−1]
n )2 (Yn−Xnβ)

+ λn‖Σ1β‖1 + γn‖Σ1/2
2 β‖2

2 is minimised by β = (β(1)′,0′)′ if and only if

(A.1) X0′
j (W [k−1]

n )2 (Yn −Xnβ)− γnun,j βj =
λn
2
vn,j sign(βj) , if βj 6= 0 ,

(A.2)
∣∣X0′

j (W [k−1]
n )2 (Yn −Xnβ)

∣∣ < λn
2
vn,j , if βj = 0 ,

where X0
j is the j-th column of Xn. Let

δ[k]n (1) = β0
n(1) +

1
n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W [k−1]
n )2 ε0

n

− λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1)

and

β[k]
n (1) =

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Γ̃[k]
n (1)β0

n(1)

+
1
n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W [k−1]
n )2 ε0

n

− λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1) ,(A.3)

where s0n(1) = Σ1(1) sign(β0
n(1)). In addition, let δ[k]n = (δ[k]n (1)′,0′)′ and β

[k]
n = (β[k]

n (1)′,0′)′.

First we show

lim
n→∞

P
(
β0
n 6=s δ

[k]
n

)
= 0 .(A.4)

Let η1,j = e′n,j
(
Γ̃[k]
n (1)+ γn

n Σ2(1)
)−1Xn(1)′(W [k−1]

n )2ε0
n, η2,j = e′n,j

(
Γ̃[k]
n (1)+ γn

n Σ2(1)
)−1

s0n(1),
and let A1 =

{
1
n |η1,j | ≥ 1

2 |β
0
j |, for some j ≤ qn

}
and A2 =

{
λn
n |η2,j | ≥ |β0

j |, for some j ≤ qn
}
.

Thus, to prove (A.4), it is enough to show that P (Aj) → 0 as n→∞ for j = 1, 2.
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For P (A1), we obtain

P (A1) ≤ P

(
1
n

max
1≤j≤qn

|η1,j | ≥
bn
2

)
≤ P

(
1
n

max
1≤j≤qn

|η0,∞
1,j | ≥

bn
4

)
+ P

(
1
n

max
1≤j≤qn

|η1,j − η0
1,j | ≥

bn
8

)
+P

(
1
n

max
1≤j≤qn

|η0
1,j − η0,∞

1,j | ≥
bn
8

)
,(A.5)

where η0
1,j= e′n,j(Γ̃

0
n(1)+

γn

n Σ2(1))−1Xn(1)′(W 0
n)

2ε0
n and η0,∞

1,j = e′n,j(Γ̃
0
n(1)+

γn

n Σ2(1))−1Xn(1)′·
· (W 0

n)2 ε0
n,∞, and ε0

n,∞ is the restriction of the true error ε0
∞ = (ε01, ε

0
2, ...)

′ in Model (2.1).

Regarding the first term of (A.5), Assumptions (A6), (A8) and (A9) imply that ‖W 0
n‖2 ≤

σ−1
min and ‖Γn(1)‖2 ≤ λ0,max. Note thatλ1,min < λ(Γ̃0

n(1)) and 0 ≤ λ(γn

n Σ2(1)), then λ1,min <

λ(Γ̃0
n(1)+ γn

n Σ2(1)). That is, λ((Γ̃0
n(1)+ γn

n Σ2(1))−1)≤ λ−1
1,min and hence ‖(Γ̃0

n(1)+ γn

n Σ2(1))−1‖ ≤
λ−1

1,min. Thus we arrive at∥∥∥∥ 1√
n
e′n,j

(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W 0
n)2
∥∥∥∥

2

≤
∥∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1
∥∥∥∥

2

∥∥∥∥ 1√
n

Xn(1)
∥∥∥∥

2

∥∥(W 0
n)2
∥∥

2
≤ λ−1

1,min

√
λ0,max σ

−2
min .(A.6)

This implies that, as n→∞,

P

(∥∥∥∥ 1√
n
e′n,j

(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W 0
n)2
∥∥∥∥

2

≤ λ−1
1,min

√
λ0,max σ

−2
min

)
→ 1 .

This, together with Lemma 1(i) of [6] and Assumption (A10), yields that∥∥∥∥ 1√
n
η0,∞
1,j

∥∥∥∥
ψd

=
∥∥∥∥ 1√

n
e′n,j

(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W 0
n)

2 ε0n,∞

∥∥∥∥
ψd

≤ C (log n)I{d=1} .(A.7)

Combining this with Equation (16) of [17], we obtain

P

(
1
n

max
1≤j≤qn

|η0,∞
1,j | ≥

bn
4

)
≤ ψ−1

d

(
bn
√
n

4C
(
log(1+ qn)

)1/d (log n)I{d=1}

)
.(A.8)

Now it follows from Assumption (A11) that

P

(
1
n

max
1≤j≤qn

|η0,∞
1,j | ≥

bn
4

)
→ 0 .

For the second term of (A.5), Assumptions (A8) and (A9) ensure that ‖W [k−1]
n ‖2 =Op(1)

and ‖(W 0
n)2 − (W [k−1]

n )2‖2 = Op
(
hn√
n

)
. Furthermore, we notice that ‖ε0

n‖2 ≤ ‖ε0
n − ε0

n,∞‖2 +

‖ε0
n,∞‖2, while ‖ε0

n− ε0
n,∞‖2

P−→ 0, and Assumption (A1) and the weak law of large numbers
yield that ‖ε0

n,∞‖2 = Op(
√
n). This bound implies that ‖ε0

n‖2 = Op(
√
n).

On the other hand, since∥∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1)
)
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)∥∥∥∥

2

=
∥∥∥Γ̃0

n(1)− Γ̃[k]
n (1)

∥∥∥
2

=
∥∥Γn(1)∥∥2

∥∥∥(W 0
n)

2− (W [k−1]
n )2

∥∥∥
2

= Op
(
hn√
n

)
,
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we obtain∥∥∥A−1 − (A+B)−1
∥∥∥

2
≤
∥∥∥A−1 − (A+B)−1 +A−1BA−1

∥∥∥
2
+
∥∥A−1BA−1

∥∥
2

≤ Op
(
‖B‖2

)
+
∥∥A−1

∥∥2

2

∥∥B∥∥
2

= Op
(
hn√
n

)
,

where A = Γ̃0
n(1) + γn

n Σ2(1) and B =
(
Γ̃[k]
n (1) + γn

n Σ2(1)
)
−
(
Γ̃0
n(1) + γn

n Σ2(1)
)
. That is,∥∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
∥∥∥∥ = Op

(
hn√
n

)
.(A.9)

We conclude that, for all 1 ≤ j ≤ qn,

∣∣η1,j − η0
1,j

∣∣ =

∣∣∣∣∣e′n,j(Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′
(
(W 0

n)2 − (W [k−1]
n )2

)
ε0
n

+ e′n,j

((
Γ̃0
n(1) +

γn
n

Σ2(1)
)
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
))

Xn(1)′ (W [k−1]
n )2 ε0

n

∣∣∣∣∣
≤
∥∥nΓn(1)

∥∥1/2

2

∥∥ε0
n

∥∥
2

{∥∥∥(W 0
n)2 − (W [k−1]

n )2
∥∥∥

2

∥∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1)
)−1
∥∥∥∥

2

+
∥∥(W [k−1]

n )2
∥∥

2

∥∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1)
)−1
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
∥∥∥∥

2

}

= Op
(√
n
)
Op
(√
n
)
Op
(
hn√
n

)
Op(1)

= Op
(
hn
√
n
)
.

Thus it follows from Assumption (A11) that P
(

1
n max1≤j≤qn |η1,j−η0

1,j | ≥ bn
8

)
≤ P

(
hn√
nbn

≥ C
)

→ 0 as n→∞.

We proceed to deal with the third term of (A.5). By (A.6),

1√
n

∣∣∣η0
1,j − η0,∞

1,j

∣∣∣ =
1√
n

∣∣∣∣e′n,j(Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′ (W 0
n)2
(
ε0
n − ε0

n,∞
)∣∣∣∣

≤ λ−1
1,min

√
λ0,max σ

−2
min ‖ε

0
n − ε0

n,∞‖2
P−→ 0 .

Hence, by Assumption (A11), we have

P

(
1
n

max
1≤j≤qn

∣∣∣η0
1,j − η0,∞

1,j

∣∣∣ ≥ bn
8

)
≤ P

(
1√
n bn

max
1≤j≤qn

1√
n

∣∣∣η0
1,j − η0,∞

1,j

∣∣∣ ≥ 1
8

)
→ 0 .

Then (A.5) implies that P (A1) → 0 as n→∞. In order to prove P (A2) → 0 as n→∞, we
examine the bound of ‖(Γ̃[k]

n (1) + γn

n Σ2(1))−1‖2. By (A.9) and Weyl’s perturbation theorem
for eigenvalues of the matrices, for all 1 ≤ j ≤ qn,∣∣∣∣λj((Γ̃0

n(1) +
γn
n

Σ2(1)
)−1
)
− λj

((
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
)∣∣∣∣

≤
∥∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
∥∥∥∥

2

= Op
(
hn√
n

)
.
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Therefore
∥∥(Γ̃[k]

n (1) + γn

n Σ2(1)
)−1∥∥

2
≤ λ−1

1,min + C with probability arbitrarily close to 1 for
sufficiently large n. It follows from Assumptions (A4), (A6) and (A11) that

P (A2) ≤ P

(
λn
n

max
1≤j≤qn

|η2,j | ≥ bn

)
≤ P

(
λn
n

∥∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1∥∥∥∥

2

∥∥s0n(1)
∥∥

2
≥ bn

)
≤ P

(
λn
√
qn

nb2n
≥ C

)
→ 0

due to the fact that ‖s0n(1)‖ ≤ ‖Σ1(1)‖2 ‖ sign(β0
n(1))‖2 ≤

b1
√
qn

bn
= Op

(√qn
bn

)
.

This completes the proof of (A.4). We now turn to show that

lim
n→∞

P
(
δ[k]n 6=s β[k]

n

)
= 0 .(A.10)

Observe that

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

=
(
Γ̃[k]
n (1)

)−1
−
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1 γn

n
Σ2(1)

(
Γ̃[k]
n (1)

)−1
.(A.11)

Then, by Assumptions (A4) and (A11),

∥∥∥β[k]
n − δ[k]n

∥∥∥
2

=
∥∥∥∥[(Γ̃[k]

n (1) +
γn
n

Σ2(1)
)−1

Γ̃[k]
n (1)− Iqn

]
β0
n(1)

∥∥∥∥
2

=
∥∥∥∥−(Γ̃[k]

n (1) +
γn
n

Σ2(1)
)−1 γn

n
Σ2(1)β0

n(1)
∥∥∥∥

2

≤ γn
n

∥∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
∥∥∥∥

2

∥∥Σ2(1)
∥∥

2

∥∥β0
n(1)

∥∥
2

= Op
(
γn
nbn

)
P−→ 0 .

This implies (A.10). Combining (A.4) and (A.10) leads to

lim
n→∞

P
(
β0
n 6=s β[k]

n

)
= 0 .(A.12)

Hence, to prove the sign consistency of the iteratively reweighted adaptive elastic net esti-
mator, it suffices to show that, as n→∞, β

[k]
n satisfies the KKT conditions (A.1) and (A.2),

so that β
[k]
n is indeed the solution of (2.4).

The above arguments for proving (A.4) and (A.10) imply that

∥∥∥β[k]
n − β0

n(1)
∥∥∥

2
= Op

(
γn
nbn

+
(log n)I{d=1} + hn√

n
+
λn
√
qn

nbn

)
.(A.13)
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From (A.3), (A.11)–(A.13) and Assumption (A11), for 1 ≤ j ≤ qn,

X0′
j

(
W [k−1]
n

)2(Yn −Xnβ[k]
n (1)

)
− γnun,j β

[k]
n,j

= X0′
j

(
W [k−1]
n

)2
ε0
n + X0′

j

(
W [k−1]
n

)2 Xn(1)
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1 γn

n
Σ2(1)β0

n(1)

− X0′
j

(
W [k−1]
n

)2 Xn(1)
1
n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′
(
W [k−1]
n

)2
ε0
n

+ X0′
j

(
W [k−1]
n

)2 Xn(1)
λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1)− γnun,j β
[k]
n,j

= γnun,j βj +
λn
2
vn,j sign(βj)− γnun,j β

[k]
n,j +Op

(
γn√
nbn

)
=

λn
2
vn,j sign

(
β

[k]
n,j

)
+Op

(
γn√
n bn

+
γn
(
(log n)I{d=1} + hn

)
√
n bn

+
γnλn

√
qn

nbn
2

)
.

This means that β
[k]
n satisfies the first KKT condition (A.1) as n→∞.

Let η3,j = X0′
j (W [k−1]

n )2
[
In− 1

nXn(1)(Γ̃
[k]
n (1)+ γn

n Σ2(1))−1Xn(1)′(W
[k−1]
n )2

]
ε0
n and η4,j =

λn
2nX0′

j (W [k−1]
n )2Xn(1)(Γ̃[k]

n (1)+ γn

n Σ2(1))−1s0n(1)+X0′
j (W [k−1]

n )2Xn(1)
[
(Γ̃[k]
n (1) +γn

n Σ2(1))−1

Γ̃[k]
n (1)− Iqn

]
β0
n(1). Denote A3 =

{
|η3,j | ≥ λn

4 vn,j , for some j > qn
}

and A4 =
{
|η4,j | ≥ λn

4 vn,j ,
for some j > qn

}
.

Then, to show that β
[k]
n satisfies the second KKT condition (A.2), we only need to

prove that P
(
|η3,j − η4,j | < λn

2 vn,j
)
→ 0 as n→∞ for any qn < j ≤ pn. So it is enough to

show that P (Aj) → 0 as n→∞ for j = 3, 4.

Let η0
3,j = X0′

j (W 0
n)2
[
In − 1

nXn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2
]
ε0
n and η0,∞

3,j =
X0′
j (W 0

n)2
[
In − 1

nXn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2
]
ε0
n,∞. Then

P (A3) ≤ P

(
max

qn<j≤pn

∣∣η0,∞
3,j

∣∣ ≥ λnrn
8

)
+ P

(
max

qn<j≤pn

∣∣η3,j − η0
3,j

∣∣ ≥ λnrn
16

)
+ P

(
max

qn<j≤pn

∣∣η0
3,j − η0,∞

3,j

∣∣ ≥ λnrn
16

)
+ P

(
max

qn<j≤pn

∣∣βj,init1

∣∣τ1 ≥ 1
rn

)
,(A.14)

where βj,init1 is the j-th element of βn,init1.

For estimating the first term of (A.14), let H0
n,j = X0′

j (W 0
n)2
[
In − 1

nXn(1)(Γ̃0
n(1) +

γn

n Σ2(1))−1 Xn(1)′(W 0
n)2
]
. Thus we have η0,∞

3,j = H0
n,j ε0

n,∞. Note that

∥∥H0
n,j

∥∥
2
≤
∥∥X0

j

∥∥
2

∥∥(W 0
n)2
∥∥

2

[
1 +

∥∥∥∥ 1
n

Xn(1)
(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′
∥∥∥∥

2

∥∥(W 0
n)2
∥∥

2

]
= Op

(√
n
)
.

In the same way as in (A.7) and (A.8), by Assumption (11), we obtain

P

(
max

qn<j≤pn

∣∣η0,∞
3,j

∣∣ ≥ λnrn
8

)
≤ ψ−1

d

(
λnrn

c7
√
n
(
log (1+ pn− qn)

)1/d (log n)I{d=1}

)
−→ 0 .(A.15)
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Since

∣∣η3,j − η0
3,j

∣∣ =

∣∣∣∣∣X0′
j

{
(W 0

n)2
[
In −

1
n

Xn(1)
(
Γ̃0
n(1) +

γn
n

Σ2(1)
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Xn(1)′ (W 0
n)2
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−
(
W [k−1]
n

)2[
In −

1
n

Xn(1)
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
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Xn(1)′
(
W [k−1]
n

)2]}
ε0
n

∣∣∣∣∣
≤
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2

∥∥∥(W 0
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)2∥∥∥
2
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∥∥
2
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2

∥∥Gn∥∥2

∥∥ε0
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∥∥
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,

where Gn = 1
n(W 0

n)2Xn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2 − 1
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)2∥∥∥
2
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2
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∥∥∥∥
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∥∥∥∥

2

∥∥(W [k−1]
n

)2∥∥
2

+
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This, together with Assumption (A11), yields that

P

(
max

qn<j≤pn

∣∣η0
3,j − η3,j

∣∣ ≥ λnrn
16

)
≤ P

(
hn
√
n

λnrn
≥ C

)
→ 0 .(A.16)

Moreover, since 1√
n
|η0

3,j − η0,∞
3,j | ≤

1√
n
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n − ε0

n,∞‖2 = Op(1), it follows from Assump-
tion (A11) that
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By (A.14)–(A.17) and Assumption (A5), we arrive at P (A3) → 0 as n→∞.

For A4, notice that∣∣η4,j
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Then Assumption (A11) implies that
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Assumption (A5) yields that

P (A4) ≤ P

(
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as n→∞.

This concludes the proof of the sign consistency of the estimator β
[k]
n . Next we proceed

to show the asymptotic normality of β
[k]
n .

(II) The asymptotic normality

From (A.3), we have
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For the first term of (A.18), similarly to the proof of part (I), we have the decomposition(
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So the conditional Lindeberg condition is satisfied and the martingale central limit theorem
(see, e.g. Theorem 2 of [1]) yields that

(A.19)
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By Slutsky’s Theorem,
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For B2, we know that∣∣∣∣ 1√
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Markov’s inequality and Assumptions (A1), (A2) and (A8) give
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Along similar lines for B2, we obtain∣∣∣∣ 1√
n sn(k)

ξ′nB3 ε0
n

∣∣∣∣
≤ 1√

n sn(k)

∥∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1
∥∥∥∥

2

∥∥ξn∥∥2

∥∥∥Xn(1)′
((
W 0
n

)2 − (W [k−1]
n

)2)
ε0
n

∥∥∥
2



Elastic Net for Heteroscedastic Time Series Models 197
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From Markov’s inequality and Assumptions (A1), (A2) and (A9):
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By (A.20)–(A.22) and Slutsky’s Theorem,
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Now it suffices to show that the last two terms of (A.18) converge to zero in probability.
By Assumption (A11),
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For the last term of (A.18), by (A.11), we obtain
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This completes the proof of Theorem 2.1.
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