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1. INTRODUCTION

From the vast range of literature intended for the financial and insurance community,
it is widely accepted that dependencies play a determinant role in risk assessment and man-
agement. Namely, reinsurance is a risk mitigating tool, constituting an important instrument
in the management of risk of an insurance company where dependencies should be taken into
account. When transferring risk, the cedent seeks a trade-off between profit and safety, which
is dependent on the nature of the insured underlying risk and on the reinsurance premium
calculation principle. This optimization problem has been largely studied in the literature,
however only recently dependencies among risks have been considered. The goal is always to
find the reinsurance strategy, which is usually defined by the forms of reinsurance to be con-
sidered and the specific retention levels, that minimizes a given measure of the underlying risk.

In [19] (for the aggregate claim model) and [13] (for the individual claim model) the
authors obtain analytically the optimal reinsurance strategy maximizing the adjustment co-
efficient or the expected utility assuming independence. The premium calculation principle
used is a convex functional, including the expected value, standard deviation and variance
premium principles as special cases. In the case of “variance related” premium calculation
principles, the optimal reinsurance contract is a specific, implicitly defined, non-linear func-
tion of the retained risk such that the tail of the underlying risk is shared by both the insurer
and the reinsurer. If the expected value calculation principle is considered, the pure stop loss
treaty is optimal. In fact, the pure stop loss, which appears as the optimal form of reinsurance
in an innumerable amount of cases where the expected value premium principle is used, is
not realistic in practice. It means all the risk in the tail is ceded to the reinsurer which will
not accept it but at a very high premium loading, in which case the stop loss is probably not
optimal anymore (as shown in [19, 13]). Other works considering convex premium principles
include [21, 22] and [17], where convex risk measures (e.g. the variance or semi-variance of the
retained risk) are used as optimality criteria. In all these works, independence is assumed.
Indeed, while a large quantity of analytical studies can be found regarding optimal reinsur-
ance, only a few number consider dependence. Notwithstanding, the interest in studying
optimal reinsurance strategies under dependencies is increasing, driven by the need for real,
robust and reliable quantitative risk models.

Article [12] is one of the first works including the effects of dependence when investigat-
ing analytical optimal forms or risk transfer. The optimal retention limit for the excess-loss
(XL) reinsurance is studied considering two classes of insurance businesses, dependent through
the number of claims by means of a bivariate Poisson, when the cedent intends to maximize
the expected utility or the adjustment coefficient, using the expected value premium principle.
Other authors have considered the optimal reinsurance problem under dependence between
claim numbers, such as [28] and [5]. In [26] the impact of dependencies from year to year rein-
surance payoffs are investigated using copulas and simulation, however optimal reinsurance
is not directly addressed. In [6] positive dependencies in the individual risk are considered
by means of the stochastic ordering. By considering a fixed reinsurance premium, calculated
through the expected value principle, the authors demonstrate that in this case the optimal
form of reinsurance is the XL treaty, when the optimality criterion is the maximization of the
expectation of a convex function of the retained risk, including the expected utility for the ex-
ponential functional. In that paper, the authors refer to the non-proportional reinsurance as
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excess of loss (XL), assuming the risks are individual claims and then considering their sum.
Accounting for dependence have protruded the use of numeral techniques, such as Dynamical
Financial Analysis (DFA), Linear Programming, see e.g. [2], dynamic control problems, see
e.g. [4], or simulation, see e.g. [26], which is often based on Monte Carlo simulation. Very
recently, in [3], it has been advocated that when constraints on dependencies and economic
and solvency factors are included in the optimal reinsurance problem,“the optimal contract
can only be found numerically”. Hence, they propose a numerical framework, based on the
Second-Order Canonical Problem for numerical optimization. Other works regarding the ap-
plication of numerical techniques to solve optimal reinsurance problems consider numerical
methods for stochastic control theory (see for instance [29]). Most of these numerical works
deal with real data.

In this work, we aim at studying the sensitiveness of the optimal reinsurance strategy,
in presence of dependencies, to different factors such as premium calculation principles and
dependence structures and levels. We account not only for the expected value principle,
but also for the standard deviation and the variance principles. We consider two underlying
risks and by risk we mean the aggregate claims of a line of business, a portfolio of policies
or a policy. Dependence between the two risks is modelled through copulas, allowing to
easily change the dependence structure and strength. We construct the optimal problem as
finding the optimal combination of quota share (QS) and stop loss treaties, for each risk, that
maximizes the expected utility or the adjustment coefficient of the total wealth of the first
insurer. The analytical results in [6] for the expected value principle are not straightforwardly
extendable to the variance related premiums, thus, we use numerical methods. To properly
study the sensitivity of the optimal reinsurance strategy to several dependence structures and
levels, and to a variety of reinsurance premium calculation principles, the problem setting
is kept as simple as possible and no real data is used. The distributions of the underlying
risks are assumed to be known and different distributions are considered. This controlled
environment allows for a systematically analysis of the optimal reinsurance and its sensitivity
to the several factors considered.

The layout of this paper is as follows. In Section 2 we set the optimization problem
to be solved, introducing the copulas that will be used, the premium calculation principles
and optimality criteria. In Section 3 we present the numerical results and their discussion.
Finally, conclusions and future perspectives are drawn in Section 4.

2. SETTING THE OPTIMIZATION PROBLEM

We consider two risks, X1 and X2, with distribution functions FX1(x1) and FX2(x2),
respectively. By risk we mean a line of business, a portfolio of policies or a policy. We
assume that the two risks are dependent through a copula, denoted by Cα, α > 0, such that
the joint distribution is given by Cα(x1, x2) = Cα(FX1(x1), FX2(x2)), and the joint density
function is given by fX1,X2(x1, x2). We use the notation dCα(x1, x2) = fX1,X2(x1, x2) dx1dx2.
We assume that the insurer reinsures each risk by means of a QS contract topped by a
stop loss treaty. Thus, the retained risks are Yi = Yi(ai,Mi) = min(aiXi,Mi), i = 1, 2, where
0 6 ai 6 1, represents the QS retained level of risk i, i = 1, 2, and Mi > 0, denotes the stop
loss retention limit, above which all the risk is ceded to the reinsurer, for risk i, i = 1, 2.
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Therefore, the total wealth of the insurer after reinsurance is given by

W (a1,M1, a2,M2) = W (a1,M1) + W (a2,M2)

= (1− e1) P1 − PR1 − Y1 + (1− e2) P2 − PR2 − Y2 ,(2.1)

where Pi > 0, represents the premium received by the insurer for each risk i, i = 1, 2, and
ei > 0, i = 1, 2 are the corresponding insurer expenses; PRi = PRi(ai,Mi) > 0 denotes the
premium charged by the reinsurer for each risk i, i = 1, 2.

2.1. The dependence structure

When two risks are assumed not to be independent, an infinite range of possible depen-
dencies between them can be at stake. The first question is, if they are dependent, what is the
best model to explain the existing dependencies. Copulas constitute a convenient and elegant
way of describing dependencies between two or more random variables. Also, using copulas,
measures of non-linear dependence can be explored, such as the Kendall’s rank correlation
coefficient, which is a measure of concordance [14].

Our underlying risks1, X1 and X2, are continuous random variables and the joint den-
sity function is given by fX1,X2(x1, x2) = fX1(x1)fX2(x2) c

(
FX1(x1), FX2(x2)

)
, where c(u1, u2)

= ∂2

∂u1∂u2
C(u1, u2), (u1, u2) ∈ [0, 1]2 is the so-called copula density. In our case, the retained

risk after the combination of QS and stop loss, Yi = min(aiXi,Mi), i = 1, 2, 0 6 ai 6 1,
Mi > 0, is non-decreasing function of Xi, hence the dependence structure is maintained for
the retained risks (see [14]). That is, if the joint distribution of (X1, X2) is described by cop-
ula C, FX1,X2(x1, x2) = C

(
FX1(x1), FX2(x2)

)
, then the joint distribution of (Y1, Y2) is also

described by copula C, FY1,Y2(y1, y2) = C
(
FY1(y1), FY2(y2)

)
.

In this work, we consider Clayton’s and Frank’s copulas, which belong to the Archi-
medean family of copulas and have lower and no tail dependency, respectively. In these cases
the Kendall’s tau rank coefficient can be easily described by τα = α

α+2 , for Clayton’s copula,

and τα = 1− 4 1−D1(α)
α , with D1(α) = 1

α

∫ α
0

t
et−1 dt, for Frank’s copula (see [14]). We also

consider the Pareto’s copula which can be derived as the “natural” bivariate distribution of
two Pareto distributions with the same shape parameter α and it is as heavy right tail copula.
Indeed, the Pareto’s copula is the survival Clayton’s copula with dependence parameter 1/α.
Thus, the Pareto’s copula Kendall’s tau is τα = 1

1+2α .

2.2. The reinsurance premium

We analyse optimal reinsurance strategies for the expected value calculation principle,
where the loading is proportional to the expected value of the risk, and also for the variance
and standard deviation calculation principles. The later belong to the so-called (see [19])
variance related premium principles, as the premium loading is an increasing function of the

1In this work the random variables of interest are the two risks considered. Hence, often the underlying
random variables are designated by risks.
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variance of the covered risk. Noticing that the amount of risk ceded to the reinsurer, per risk i,
i = 1, 2, is Xi − Yi, with Yi = min(aiXi,Mi), we can compute the reinsurance premium on
each total ceded risk.

Expected value principle: PRi = E(Xi−Yi)+δiE(Xi−Yi) = (1+δi) E(Xi−Yi) .

Variance principle: PRi = E(Xi − Yi) + δi Var(Xi − Yi) .

Standard deviation principle: PRi = E(Xi − Yi) + δi

√
Var(Xi − Yi) .

Here δi > 0, i = 1, 2, is the loading coefficient. This is how the authors in [6], using the
expected value principle, as well as in [19, 13], for variance related principles, compute the
reinsurance premium. However, when a combination of QS and stop loss is taken into account,
the QS and stop loss premiums can be considered separately. This is the procedure followed
for instance in [8, 9], and it corresponds to many practical cases, where the stop-loss contract
is independent of the QS treaty, coming on top of the QS. In fact, the QS premium is
usually proportional to the ceded risk minus a commission. In this case, the QS premium
is the proportion of the premium received by the insurer Pi correspondent to the ceded
risk, (1− ai)Pi, subtracting the commission, ci > 0: PQSi = (1− ai) (1− ci)Pi. The stop
loss premium will be computed on the ceded risk after QS: Zi = max(aiXi −Mi, 0), i = 1, 2.
Thereby, the total reinsurance premium turns out as follows.

Expected value principle: PRi = PQSi + (1 + δi) E(Zi) .

Variance principle: PRi = PQSi + E(Zi) + δi Var(Zi) .

Standard deviation principle: PRi = PQSi + E(Zi) + δi

√
Var(Zi) .

Here, we will study and compare optimal reinsurance strategies in both cases where
the premium is computed on the total ceded risk or separately for QS and stop loss.

2.3. The expected utility and the adjustment coefficient

Several authors have considered to use the expected utility of wealth as optimality
criteria when ascertaining the optimal reinsurance strategy, e.g. [8, 9, 12, 19, 13, 23]. The
adjustment coefficient can be regarded as a given coefficient of aversion of the exponential
utility function. On the other hand, the adjustment coefficient is connected to the ulti-
mate probability of ruin. From the well known Lundberg Inequality, the larger the ad-
justment coefficient is, the smaller the upper bound of the probability of ultimate ruin is.
Thus, maximizing the adjustment coefficient R instead of minimizing the probability of ruin
Φ(u) is reasonable. Because of this, many authors have considered maximizing the adjust-
ment coefficient as optimality criteria for reinsurance, e.g. [7, 11, 12, 19, 13, 10, 28]. In [18]
reinsurance strategies minimizing directly the probability of the insurer’s ruin are studied.
There, the authors consider that the reinsurance premium is an increasing function of the
expected value of the transferred risk. They show that in this case the stop loss, or the trun-
cated stop loss if there are reinsurance premium budget restrictions, is the optimal strategy.
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In [27] the same problem, also considering the expected value premium principle, is analyzed
in the presence of background risk. Other works can be found, where strategies minimizing
directly the probability of ruin are obtained, such as in [20, 25, 1, 24]. However, in such works
the framework is usually a dynamical setting, with a diffusion setup and a continuous time
adaptation of the contract, which is not the case of the present paper.

Notice that the adjustment coefficient is independent from the initial capital, u, of
the insurer. Thus, the optimal strategy that maximizes the adjustment coefficient is also
independent of u. In [15] an upper bound for the probability of ruin, dependent on the initial
capital, is provided. In [16] this inequality is further refined and used to approximate the
probability of ruin in regime-switching Markovian models. This upper bound represents an
improvement to the Lundberg bound, specially for the cases where the initial capital is small.
Hence, it is expected that using such upper bound as optimality criteria will lead to different
optimal retention levels, specially for small values of the initial capital. However, it requires
the distribution of losses to be new worse than used (NWU) and represents a significantly
more complex bound from the computational point of view, when compared to the Lundberg
bound, as it includes the need to solve an extra minimization problem.

In this work we will consider maximizing the expected exponential utility and the
adjustment coefficient. Interesting future works include the minimization of the improved
upper bound for the probability of ruin provided in [15] as optimality criteria, and to compare
it with the results here presented.

2.3.1. Maximizing the expected utility

The goal is to determine the optimal reinsurance contract for a risk-averse insurer
which purpose is to maximize the expected utility of its wealth. We consider the expo-
nential utility function, for risk averse investors, defined through U(x) = 1− e−β x

β , where
β = −U ′′(x)/U ′(x) > 0 is the coefficient of risk aversion. In this case, the expected utility of
the wealth for a given (fixed) coefficient of aversion β is:

(2.2) E

[
U

(
W

(
a1,M1, a2,M2

))]
=

1
β

(
1− E

[
e−βW (a1,M1,a2,M2)

])
.

Maximizing the expected utility (2.2) corresponds to find the reinsurance strategy, (a1,M1,

a2,M2), that maximizes E[U(W )] for a given (fixed) coefficient of risk aversion β. Recalling
(2.1), this is equivalent to minimize the following functional:

E
[
e−βW (a1,M1,a2,M2)

]
:= G

(
β, a1,M1, a2,M2

)
=

= e−β((1−e1)P1+(1−e2)P2) eβ(PR1(a1,M1)+PR2(a2,M2)) ×(2.3)

×
∫ +∞

0

∫ +∞

0
eβ(Y1(a1,M1)+Y2(a2,M2)) dCα(x1, x2)

for a given (fixed) β.
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2.3.2. Maximizing the adjustment coefficient

The adjustment coefficient, R, of the retained risk after reinsurance is defined as the
unique positive root, if it exists, of G(R, a1,M1, a2,M2) = 1, where G is given by (2.3). The
coefficient of adjustment is related to the coefficient of risk aversion of the exponential utility,
as it corresponds to the value of the risk aversion coefficient for which the expected utility (2.2)
is zero, see [19]. In [19] it is demonstrated that, under general regularity assumptions on the
functional G verified in our case, a reinsurance policy maximizes the adjustment coefficient,
R̂, if and only if:

i) The expected utility, with coefficient of risk aversion R̂, is maximum for that policy,
and

ii) G
(
R̂, a1,M1, a2,M2

)
= 1.

Thus, as suggested in [19], the problem of maximizing the adjustment coefficient can be split
in two sub problems:

1. For each β > 0, find the reinsurance strategy, (a1,M1, a2,M2) that minimizes G.

2. Solve G
(
β, a1,M1, a2,M2

)
= 1 with respect to the single variable β.

Whence, given the algorithm to find the optimal reinsurance maximizing the expected utility
it is straightforward to obtain the reinsurance strategy maximizing the adjustment coefficient.
However, maximizing the adjustment coefficient requires the solution of several expected
utility maximization problems, until the desired root is found.

3. NUMERICAL RESULTS AND DISCUSSION

The numerical implementation was performed the Mathematica. All the double and
single integrals involved in the evaluation of G(β, a1,M1, a2,M2) are solved using Mathemat-

ica numerical integration, which applies global adaptive Gauss–Kronrod quadrature rules.
The resolution of the minimization problems were carried out using numerical algorithms
for non-linear constrained global optimization already implemented in Mathematica, namely
the Nelder Mead and Differential Evolution algorithms. Strictly speaking, the Nelder Mead
algorithm is not a global optimization method, but it tends to work quite well if the objective
function does not have many local minima, which is the case here. The numerical procedure,
namely the numerical optimization problem, is amenable for improvement as no particular
features of the functional to minimize were taken into consideration and general global op-
timization was applied. The existence of plateaux regions in the functional to minimize,
specially regarding the stop loss retention values, made the convergence to the optimal solu-
tion slower in some cases. Nevertheless, results were achieved and analysis of the sensitiveness
to the several factors, such as premium calculation principles and dependence structures and
levels, of the optimal reinsurance for two dependent risks were performed.

In the following, the premium received by the insurer is computed by means of the
expected value principle with a loading coefficient of γi = 0.2, i = 1, 2. For the underlying
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risks, X1 and X2, we will consider different distributions, but in such way that the expected
value is always 1. Hence, the premium loading charged by the insurer is γi E(Xi) = γi, i = 1, 2.
We assume expenses are 5% of the premium, ei = 0.05, i = 1, 2. Whenever the QS premium is
computed on a proportional basis, separately from the stop-loss premium, the commission is
ci = 0.03, i = 1, 2. Indeed, the QS reinsurance commission should be lower than the insurer
expenses ci < ei, meaning it is impossible to reinsure the whole risk through QS with a
certain profit. This implies that the QS premium loading is E(Xi)

[
(1− ci) (1 + γi)− 1

]
=

0.164 E(Xi). When maximizing the expected utility, we consider a coefficient of risk aversion
β = 0.1.

In Table 1 are presented the premium loadings. With these values, the premium loading
when all the risk is transferred by means of a pure stop loss contract, i.e when ai = 1 and
Mi = 0, is the same for all three premium principles. Indeed, in this case the moments
involved in computing the reinsurance premiums, either for QS and stop loss together or
separately, correspond to the moments of the underlying risk. However, if QS and stop loss
are considered separately that is true only when ai = 1 (and Mi = 0), whereas if the premium
is computed for the QS and stop loss together that is true no matter the value of ai (as long
as Mi = 0).

Table 1: Loading coefficients for the three premium principles considered,
where δ is the loading coefficient for the expected value principle
and X is the underlying risk.

premium principle loading coefficient

expected value δ

variance δ E(X)/ Var(X)

standard deviation δ E(X)/
√

Var(X)

We first consider two Pareto distributions with expected value 1 and shape parameter 3.
The loading coefficients in this case are shown in Table 2. In this case, independently of the
premium calculation principle, the optimal retention levels of QS and stop loss contracts are
the same for both risks, as they are equal.

Table 2: Loading coefficients, for the three premium principles, considering
two Pareto risks with expected value 1 and shape parameter 3.

premium principle QS and stop loss separately QS and stop loss together

expected value 0.3 0.2

variance 0.1 0.0666667

standard deviation 0.173205 0.11547
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Results for the optimal reinsurance, as function of Kendall’s tau coefficient, maximizing
the expected utility with coefficient of risk aversion β = 0.1 and the loading coefficients in
Table 2 are presented in Figure 1.

Exp. Val. Principle Variance Principle Std. Dev. Principle
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horizontal lines: independent case;
dashed lines: premiums computed on the total ceded risk;
solid lines: premiums computed on the ceded risk after QS, with the QS premium computed on original terms;

Figure 1: Optimal reinsurance maximizing the expected utility with β = 0.1.

From the results, we can see that when the expected value principle is computed on the
total ceded risk, the optimal reinsurance contract is always the pure stop loss, independently
of the dependence structure and strength. This is expected, from the results in [6]. If the
expected value principle is computed only on the ceded risk through stop-loss, after QS, the
pure stop loss is no longer the optimal contract. In this case, for larger values of the Kendall’s
tau correlation, the optimal QS levels decrease below the independence optimal QS level. For
larger values of the Kendall’s tau, it compensates to cede part of the risk trough QS and
to cede trough stop loss on top of that, independently of the dependence structure. This is
related with the QS premium loading in this case, that for strong dependence compensates
the stop-loss premium loading. This is not verified when independence is assumed, for this
loading coefficients. Thus, the results suggest that affects the type of optimal contract even
when the expected value principle is considered, if QS and stop-loss premiums are computed
separately. We also observe that, no matter what the optimal contract is, the optimal stop
loss limits for the expected value principle, computed together or separately for QS and stop
loss, decrease as dependence strength increases.

Regarding the variance and standard deviation principles, we can see that the pure stop
loss is never the optimal treaty, not even in the independent case. That is in accordance with
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the results in [19]. In these cases, the optimal QS levels always decrease as the dependence
strength increases, independently of computing the reinsurance premium together, for the
whole ceded risk, or separately for QS and stop-loss. However, the optimal stop-loss limit
does not always decrease as dependence strength increases. For the variance principle, if the
premium is computed together for QS and stop-loss, the optimal limit of stop loss decreases, as
dependence increases, in the case of Pareto’s copula, but it increases, as dependence increases
(and the QS optimal level decreases) for Clayton’s and Frank’s copulas. For the standard
deviation principle, this behaviour of Clayton’s and Frank’s copulas is observed not only for
the premium computed on the whole ceded risk, but also when the premiums of QS and
stop-loss are computed separately. These results show that dependence impacts the optimal
levels of retention in non-intuitive ways, especially in the cases of variance related premium
principles.

Next we consider the maximization of the adjustment coefficient as optimality criteria.
As described in Chapter 2, to obtain the optimal reinsurance treaty maximizing the adjust-
ment coefficient, it is enough to find the optimal solution for the expected utility problem
with the coefficient of risk aversion β > 0 such that the expected utility value in (2.2) is equal
to 0. In order to solve equation G(R, a1,M1, a2,M2) = 1, for (a1,M1, a2,M2) minimizing
G(R, a1,M1, a2,M2), a bisection method was applied. Amongst the root finding numerical
methods, bisection is the simplest. Although its convergence is not very fast when com-
pared with Newton-type methods, it has the advantage of not requiring the computation of
derivatives of the functional. Also, convergence to a tolerance of 10−6 was reached within an
average of 10 iterations, as the initial points were easily chosen close enough to the solution.
Situations where convergence was more difficult regard instances where converge of the con-
straint global optimization algorithm to the minimum of functional G was slow. This was
the case of Clayton’s copula, when using the standard deviation principle computing QS and
stop loss premiums separately. Results are depicted in Figure 2.

Again, as expected from the results in [6] and [19], the optimal treaty when the expected
value principle is applied to QS and stop loss together is the pure stop loss, for all three copulas
and all values of the dependence parameter. That is not the case for the variance related
premium principles, even in the independent case. The optimal retention levels vary with the
dependence parameter, although not so significantly as for the case where the risk aversion
coefficient was fixed. Instead, the impact of dependence is very relevant in the value of the
maximum adjustment coefficient of the optimal contract. It can be observed, for all copulas
and premium principles considered, that the adjustment coefficient decreases as dependence
strength increases. This means that the higher the dependence, the higher the upper bound
of the ultimate probability of ruin.

The remarks made for the case of a fixed coefficient of aversion apply here, although
now the differences in the standard deviation and variance principles, computing QS and stop
loss premiums together, are more accentuated. The adjustment coefficient always decreases
when dependence increases. It can be observed that the maximum adjustment coefficient
using the standard deviation principle is always below those using the expected value and
variance principles. If QS and stop loss premiums are computed together, then the maximum
adjustment coefficient using the expected value principle is higher. If premiums are computed
separately, then the maximum adjustment coefficient using the variance principle is higher.
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Exp. Val. Principle Variance Principle Std. Dev. Principle
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Figure 2: Optimal reinsurance maximizing the adjustment coefficient,
and corresponding optimal values of the adjustment coefficient.

This is verified for all three copulas. When the standard deviation principle is considered, the
maximum adjustment coefficient of the optimal contract is similar computing the premium
together on the whole ceded risk, or separately for QS and stop-loss. It is worth noticing the
differences in the optimal reinsurance for the different copulas. Differences are particularly
significant between the Pareto’s copula and Clayton’s and Frank’s copulas. This is because
Pareto’s copula has right tail dependence, while Clayton’s and Frank’s copulas do not.

Afterwards we have considered two risks with different tail heaviness: two Pareto dis-
tributions with expected value 1 and shape parameters 3 and 12, respectively. In this case,
the variances are 3 and 1.2, respectively. For this case, we have considered dependence by
means of the Pareto’s copula, where dependence is stronger on the right tail, and we aim
at maximizing the expected utility with coefficient of risk aversion β = 0.1. Regarding the
loading coefficients, we apply the same reasoning as before, which is described in Table 1 and
leads to the loading coefficients presented in Table 3. Results are shown in Figure 3.
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Table 3: Loading coefficients, for the three premium principles,
considering two Pareto risks with expected value 1 and
shape parameter 3 (X1) and 12 (X2).

premium principle
QS and stop loss separately QS and stop loss together

X1 X2 X1 X2

expected value 0.3 0.3 0.2 0.2

variance 0.1 0.25 0.0666667 0.166667

standard deviation 0.173205 0.273861 0.11547 0.182574

Whenever the expected value principle is applied (blue lines of Figure 3), either on the
total ceded risk or just on the stop loss contract, the pure stop loss treaty is optimal for
both risks. The optimal stop loss retention limits are similar for both risks and decrease as
dependence increases.
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horizontal lines: independent case;
dashed lines: premiums computed on the total ceded risk;
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Figure 3: Optimal reinsurance maximizing the expected utility with β = 0.1
for two dependent risks with Pareto distributions with mean 1 and
shape parameters 3 (X1) and 12 (X2).

Regarding the standard deviation principle (green lines in Figure 3), the pure stop
loss contract is optimal for the second (lighter tailed) risk, when computing the reinsurance
premium both on the total ceded risk or separately for QS and stop loss. The optimal stop
loss retention values for this pure stop loss contract on the second risk are significantly high,
compared to the first risk or with the other, expected value and variance, premium calculation
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principles, and decrease as dependence strength increases. For the first (heavier tailed) risk,
the optimal reinsurance contract is not the pure stop loss anymore and the optimal stop loss
retention limits are much lower than those of the second risk, though still higher compared
to the expected value premium principle. The optimal QS levels are quite low and both QS
and stop loss optimal retention limits decrease as dependence increases. With the standard
deviation premium principle, much of the first risk is transferred, while much of the second
risk is kept.

For what concerns the variance principle (red lines in Figure 3), the pure stop loss con-
tract is optimal for the second risk only when the QS premium is computed on a proportional
basis. Again, the optimal QS and stop loss retention values decrease with dependence. The
optimal stop loss retention limits of the first risk are significantly different when QS and stop
loss premiums are computed together or separately. This difference is less accentuated for
the second risk, where the stop loss contract is optimal when computing QS and stop loss
premiums separately.

In general, for all three premium principles and for both risks, the optimal QS and
stop loss retained levels decrease as dependence increases. In most cases the pure stop loss
contract is optimal for the second (lighter tailed) risk. Thus, in most cases only the tail of the
second risk is transferred. On the contrary, for the first (heavier tailed) risk, the pure stop
loss contract is optimal only for the expected value principle, meaning that for the standard
deviation and variance principles it is optimal to transfer more of the first (heavier tailed)
risk.

4. CONCLUSIONS

Clearly dependencies alter the optimal treaty, as compared with the independent case,
and the impact of these dependences on the optimal treaty may be non-intuitive. Different de-
pendence structures, yield significantly different optimal solutions. As expected, the optimal
treaty is also highly sensitive to the premium calculation principle and relevant differences
are encountered between premiums calculated on the total ceded risk or separately for QS
and stop loss. In some cases, this behaviour is accentuated in the presence of dependencies.
The results here presented can be useful in bringing insight on the impact of dependence on
the optimal reinsurance strategy. Such insight can be helpful in the design of more general
theoretical results on optimal reinsurance of dependent risks. It can also be beneficial when
analysing real world case studies of applications.
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