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Abstract:

• From the economic perspective, cost minimization is an important part of Statistical Process Con-
trol (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance
for possible shifts. In some processes, such as clinical and financial investments, the process mean
and variance are not independent of one another. Thus, a separate monitoring of the mean and
variance using two different control charts is not meaningful. Therefore, the coefficient of vari-
ation chart that measures the ratio of the process variance to the mean needs to be employed.
In multivariate SPC, the quality characteristics that jointly control the process quality are corre-
lated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to
monitor the process MCV. This work studies the economic and economic-statistical designs of the
MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed.
Furthermore, it is shown that adding statistical constraints to the economic design of the MCV
chart improves the chart’s statistical performance with only a minimal increase in cost.
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1. INTRODUCTION

The coefficient of variation (CV) chart is commonly used in SPC for processes which
require the reproducibility of measuring tools or methods [3, 20]. Operators usually demand
a lower CV profile for better equipment and/or method precision while maintaining the accu-
racy of the process with an in-control state [8, 17]. Examples of the use of CV are laboratory
assay techniques in medicine and biology [19, 36], monitoring the associated stand-alone
risk in actuarial finance [24], factory processes in mechanical industries [4], to name a few.

Kang et al. [9] proposed the first Shewhart-type univariate CV chart. Since then, the
univariate CV charts continue to receive attention among researchers (see [4] and [28], to name
a few) but not the multivariate CV (MCV) chart. Yeong et al. [32] was the first to propose
a control chart for the MCV. More recent studies on MCV charts include studies by Giner-
Bosch et al. [6] on the EWMA MCV chart and Nguyen et al. [16] on one-sided synthetic
MCV charts. Some crucial applications of MCV in laboratories and industries are in the
correlation of phenotypic variation [25], affymetrix gene expression [7], comparison of serum
protein electrophoresis techniques [35], multivariate gage repeatability and reproducibility
studies [18, 27], and several others.

The advancement in hardware technologies enabled more automation techniques to
be easily applied in various aspects of living. Newly developed equipment and methods can
produce large pool of useful data and results with high efficiency. The generalization of CV to
the multivariate setting is required to accommodate the part-to-part variability measurements
and the correlations of higher dimensional variables. However, the definition of MCV is not
as straight forward as that of the univariate CV, i.e. lacking in the generality. Currently,
the available definitions of MCV were those by Reyment [21], Van Valen [29], Voinov and
Nikulin [30], and Albert and Zhang [2]. Similar to existing MCV type control charts (see for
example, Yeong et al. [32], Abbasi and Adegoke [1], Khaw et al. [11] and Khatun et al. [10]),
this work adopts the Voinov and Nikulin’s [30] definition of MCV.

A pure statistical design of a control chart may not be cost effective in industrial
practices. An optimal economic design of a control chart will enhance the competency of
the chart from the cost perspective [26]. The idea of an economic model was first presented
by Duncan [5], and later improved by Lorenzen and Vance [13]. Saniga [23] expanded the
model by incorporating statistical constraints into the cost function, resulting in an economic-
statistical model. The unified cost model by Lorenzen and Vance [13] is widely accepted and
used in many types of control charts. Some published works which are closely related to this
study include Linderman and Love [12] and Molnau et al. [14] on economic and economic-
statistical designs of multivariate EWMA control chart.

Despite being over three decades old, the Lorenzen and Vance’s [13] model is one of
the most inclusive cost models in the literature, where it considers all possible sources of
cost assumptions, phases of a process and evaluations of expenses. As the Lorenzen and
Vance’s [13] model is easy to be implemented, it continues to be adopted by researchers until
now. Some of the recent works that adopted the Lorenzen and Vance’s [13] model are Safe
et al. [22] and Wan and Zhu [31] who used the model on variable sampling interval type
control charts; and Ng et al. [15] who employed the model on auxiliary information based X̄,
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synthetic and EWMA charts. Note that the numerical example presented in Lorenzen and
Vance [13] and adopted by the above-mentioned researchers, to name a few, is based on a
real casting operation process from the General Motors Company.

This study proposes the economic and economic-statistical designs of MCV chart as
they are currently not available in the literature. In each of the designs, optimal parameters
will be computed to minimize the cost. A comparison between purely economic design and
economic-statistical design will also be presented.

This paper is organized in the following order: The properties of MCV and the MCV
chart will be explained in Section 2. Following that is a brief review on Lorenzen and Vance
[13] cost model in Section 3. Subsequently, a set of numerical examples along with compar-
isons of different parameter settings and designs are given in Section 4. A sum up of the
paper with some general remarks and findings are given in Section 5.

2. PROPERTIES OF MCV AND MCV CHART

Section 2.1 discusses the cumulative distribution function (cdf) and inverse cdf of the
sample MCV derived by Yeong et al. [32] while the MCV chart is discussed in Section 2.2.

2.1. Distribution of the sample MCV

Suppose that a random vector, Xi, in a sample of size n with mean vector, µ and
covariance matrix, Σ follows a p-variate normal distribution, i.e. Xi ∼ Np(µ,Σ), where XT

i =
(Xi1, Xi2, ..., Xip), for 1 ≤ i ≤ n. A general definition of the population MCV by Voinov and
Nikulin [30] is

(2.1) γ =
(
µTΣ−1µ

)− 1
2 .

Yeong et al. [32] derived an estimator of the process MCV, γ̂ based on Equation (2.1),
where µ and Σ are estimated using the sample mean vector, X̄ and the sample covariance
matrix, S, respectively. Here,

(2.2) X̄T =

(
1
n

n∑
i=1

Xi1,
1
n

n∑
i=1

Xi2, ...,
1
n

n∑
i=1

Xip

)
,

and

(2.3) S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T.

Then, γ̂ takes the form

(2.4) γ̂ = (X̄TS−1X̄)−
1
2 .
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The cdf of γ̂ was derived by Yeong et al. [32] to be

(2.5) Fγ̂(x|n, p, δ) = 1− FF

(
n(n− p)

(n− 1)px2
|p, n− p, δ

)
,

where FF (·|p, n− p, δ) is the non-central F distribution with p and n− p degrees of freedom
and non-centrality parameter δ = nµTΣ−1µ (which can be written as δ =

n

γ2
). Yeong et al.

[32] also derived the inverse cdf of γ̂ (or the α quantile of Fγ̂) as follows:

(2.6) F−1
γ̂ (α|n, p, δ) =

√√√√n(n− p)
(n− 1)p

[
1

F−1
F (1− α|p, n− p, δ)

]
.

Note that F−1
F (·|p, n− p, δ) is the inverse cdf of the non-central F distribution with p and

n− p degrees of freedom and non-centrality parameter δ.

2.2. MCV chart

The MCV chart is a Shewhart type chart where the statistic plotted on the chart is
the sample MCV, γ̂. To justify the use of the MCV chart, a check for the constant MCV
assumption needs to be conducted. This check is conducted by plotting the rational group
MCV, γ̂2

t versus X̄T
t X̄t, followed by a formal test of the regression slope [32].

Yeong et al. [32] suggested estimating the in-control sample MCV, γ̂0 using the root
mean square method as this method has high statistical efficiency and the estimate can be
easily computed. Consequently, γ̂0 is computed as

(2.7) γ̂0 =

√√√√ 1
m

m∑
t=1

γ̂2
t ,

where m is the number of Phase-I sample MCVs. As the distribution of γ̂ is not symmetric,
the use of two-sided limits will result in an average run length (ARL) biased chart. Therefore,
Yeong et al. [32] suggested adopting two separate one-sided (an upward and a downward)
charts to overcome this drawback. Using two separate one-sided charts allow the upper and
lower limits of the respective charts to be determined independently based on the desired
in-control ARL value.

For the downward MCV chart in detecting decreasing shifts in the process MCV, its
lower control limit (LCL) is computed as

(2.8) LCL = F−1
γ̂ (α|n, p, δ0),

where α is the Type-I error probability and δ0 =
n

γ2
0

with γ0 representing the in-control process

MCV. The statistical performance of MCV chart can be measured using the ARL criterion.
The corresponding value of the in-control average run length (ARL0) computed using the
LCL in Equation (2.8) is

(2.9) ARL0 =
1
α

.



Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 121

In like manner, for the upward MCV chart in detecting increasing shifts in the process
MCV, its upper control limit (UCL) is obtained as

(2.10) UCL = F−1
γ̂ (1− α|n, p, δ0)

which gives the ARL0 value in Equation (2.9). The process MCV is considered as out-of-
control when γ̂ < LCL (for the downward chart) or γ̂ > UCL (for the upward chart).

The out-of-control process MCV is represented by γ1 = τγ0. Here, τ is the shift size in
the process MCV, where τ < 1 (γ1 < γ0) indicates process improvement, while τ > 1 (γ1 > γ0)
implies process deterioration. The probability of detecting a shift by the downward and
upward MCV charts are

P = Pr(γ̂ < LCL) = Fγ̂(LCL|n, p, δ1)(2.11)

and

P = Pr(γ̂ > UCL) = 1− Fγ̂(UCL|n, p, δ1),(2.12)

respectively, where δ1 =
n

γ2
1

. The out-of-control average run length (ARL1) is computed as

(2.13) ARL1 =
1
P

.

3. LORENZEN AND VANCE COST MODEL

The unified cost model proposed by Lorenzen and Vance [13] is adopted for the economic
and economic-statistical designs of the MCV chart. The functional form of this model only
requires the computation of ARL, sample size and control limit of the chart at hand. Thus,
Lorenzen and Vance [13] cost model can be used on any type of control chart, regardless of
the quality characteristics. Table 1 provides the list of notations for this cost model.

The total cost per hour as defined by this model includes the costs during the in-control
and out-of-control states, cost of false alarms, cost of repair and cost of sampling. In Lorenzen
and Vance [13] cost model, the assignable cause is assumed to occur randomly once in every
λ hours. Another assumption is that the shift in the process MCV is due to only a single
assignable cause. Lorenzen and Vance [13] cost function is defined as

(3.1) C =

C0

λ
+ C1B +

b + cn

h

(
1
λ

+ B

)
+

sY

ARL0
+ W

1
λ

+
(1− ϕ1)sT0

ARL0
+ EH

,

where

B = (ARL1 − 0.5)h + F,

F = ne + ϕ1T1 + ϕ2T2,

EH = (ARL1 − 0.5)h + G,

G = ne + T1 + T2,

and
s =

1
λh

− 1
2
.
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Table 1: List of notations for Lorenzen and Vance (1986) cost model.

b Fixed cost per sample

c Variable cost per unit sampled

C Cost per hour

C0 Quality cost per hour while in-control

C1 Quality cost per hour while out-of-control

e Time to sample and interpret one unit

h Sampling interval

n Sample size

s Expected number of samples taken while in-control

T0 Expected search time during false alarm

T1 Expected time to find the assignable cause

T2 Expected time to repair the process

W Cost to locate and remove the assignable cause

Y Cost of false alarms

ϕ1 = 1 if process continues during search
= 0 if process stops during search

ϕ2 = 1 if process continues during repair
= 0 if process stops during repair

λ Rate of occurrence of assignable cause

The objective of the economic design of the MCV chart is to obtain the optimal pa-
rameters n, h and α in minimizing the cost function, C in Equation (3.1), for specified values
of p, τ and γ0. Note that the parameters p, τ and γ0 are not included in the optimization
procedure because they are intrinsic properties of the process.

With the same objective, the economic-statistical design adds additional constraints on
ARL0 and ARL1 while minimizing the cost function, C in Equation (3.1). Here, ARL0 must
be greater than a lower bound value while ARL1 must be less than an upper bound value.
The aim of these constraints is to ensure that the MCV chart gives acceptably high ARL0

value when the process is in-control and low ARL1 value when the process is out-of-control.
In this research, the constraints ARL0 ≥ 250 and ARL1 ≤ 20, i.e. similar to those used by
Yeong et al. [34] are adopted.

The optimal sampling interval, h can be computed as follows [33]:

(3.2) h =
−r2 +

√
r2
2 − 4r1r3

2r1
,

where

r1 =
ARL1 − 0.5

2λARL0

{
λ
(
Y + C1T0(−1 + ϕ1)

)
− 2 ARL0

[
C0 + λ

(
(ARL1 − 0.5)b + (ARL1 − 0.5)cn + W

)
+ C1(−1 + Fλ−Gλ)

]}
,

r2 = −
2(ARL1 − 0.5)

[
Y + C1T0(−1 + ϕ1) + ARL0(b + cn)(1 + Fλ)

]
λARL0

,
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and

r3 = − 1
2λ2ARL0

{
2Y + 2C0T0(−1 + ϕ1)− bT0λ− 2(ARL1 − 0.5)bT0λ− 2C1FT0λ

− cnT0λ− 2(ARL1 − 0.5)cnT0λ− 2T0Wλ + 2GY λ + bT0ϕ1λ

+ 2(ARL1 − 0.5)bT0ϕ1λ + 2C1FT0ϕ1λ + cnT0ϕ1λ

+ 2(ARL1 − 0.5)cnT0ϕ1λ + 2T0Wϕ1λ− bFT0λ
2 − cFnT0λ

2

+ bFT0ϕ1λ
2 + cFnT0ϕ1λ

2 + 2ARL0(b + cn)(1 + Fλ)(1 + Gλ)
}

.

From Equations (3.1) and (3.2), it is clear that both ARL0 and ARL1 need to be
computed first before the computation of C and h can be made. The formulae for computing
ARL0 and ARL1 are dependent on n, α, p, τ and γ0. As the exact values of p, τ , γ0 and the
desired values of the thirteen input parameters in Table 2, i.e. λ, C0, C1, Y , W , b, c, e, T0,
T1, T2, ϕ1 and ϕ2 are specified, the parameters that control the cost minimization iteration
in this case are n and α. The desired values of these thirteen input parameters are adopted
from Lorenzen and Vance [13], where they are taken as the control case (Case 1) in Table 2.

Table 2: Input parameters for the cost function, C and the variations of each input parameters,
labelled with case numbering.

Case Changes λ C0 C1 Y W b c e T0 T1 T2 ϕ1 ϕ2

1 Control 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

2 λ2 0.01 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
3 λ3 0.04 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

4 C02 0.02 57.12 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
5 C03 0.02 228.48 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

6 C12 0.02 114.24 474.6 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
7 C13 0.02 114.24 1898.4 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

8 Y 2 0.02 114.24 949.2 488.7 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
9 Y 3 0.02 114.24 949.2 1954.8 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

10 W2 0.02 114.24 949.2 977.4 488.7 0 4.22 0.083 0.083 0.083 0.75 1 0
11 W3 0.02 114.24 949.2 977.4 1954.8 0 4.22 0.083 0.083 0.083 0.75 1 0

12 b2 0.02 114.24 949.2 977.4 977.4 5 4.22 0.083 0.083 0.083 0.75 1 0
13 b3 0.02 114.24 949.2 977.4 977.4 10 4.22 0.083 0.083 0.083 0.75 1 0

14 c2 0.02 114.24 949.2 977.4 977.4 0 2.11 0.083 0.083 0.083 0.75 1 0
15 c3 0.02 114.24 949.2 977.4 977.4 0 8.44 0.083 0.083 0.083 0.75 1 0

16 e2 0.02 114.24 949.2 977.4 977.4 0 4.22 0.042 0.083 0.083 0.75 1 0
17 e3 0.02 114.24 949.2 977.4 977.4 0 4.22 0.166 0.083 0.083 0.75 1 0

18 T02 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.042 0.083 0.75 1 0
19 T03 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.166 0.083 0.75 1 0

20 T12 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.042 0.75 1 0
21 T13 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.166 0.75 1 0

22 T22 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.375 1 0
23 T23 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 1.5 1 0

24 ϕ1ϕ22 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 0 0
25 ϕ1ϕ23 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 0 1
26 ϕ1ϕ24 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 1
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The computations of the control values of these thirteen input parameters will be explained
in detail in Section 4.

In order to impose changes to each of the thirteen input parameters of the control case
(Case 1) in Table 2, each of these input parameters (except b, ϕ1 and ϕ2) is either increased
(i.e. doubled) or decreased (i.e. halved). For example, λ2 (= 0.01) (Case 2) is half of its
control value (λ = 0.02) in Case 1, while λ3 (= 0.04) (Case 3) is twice of its control value in
Case 1. The notations λ2 and λ3 are used to represent the second and third variations of the
control value of λ, as not every input parameter (such as b, ϕ1 and ϕ2) is doubled or halved.
For instance, the fixed cost per sample, b is set at $0 for the control case (Case 1), while b2
involves a raise to $5 (Case 12) and b3 to $10 (Case 13).

In this research, the sample sizes, n ∈ {2, 3, ..., 30} are considered. The upper limit of n

(= 30) is chosen because from a practical perspective, n = 30 is considered as a large sample
size. In addition, the Type-I error probabilities α ∈ {0.0010, 0.0011, ..., 0.05} are adopted
for the economic design, while α ∈ {0.0010, 0.0011, ..., 0.004} are adopted for the economic-
statistical design. Note that the Type-I error rate for the economic-statistical design is kept
at a maximum of α = 0.004, in order to correspond to the constraint ARL0 ≥ 250 specified
earlier. An optimization program is written in the MATLAB software to compute the optimal
parameters n, α and h that minimize the cost function, C in Equation (3.1), based on the
specified values of p, τ , γ0 and thirteen input parameters in Table 2.

Econ and Econ-Stat Designs of MCV Chart 11

Figure 1: A flowchart explaining the minimization of the cost function, C in
Equation (3.1), where thick arrows indicate additional steps for the economic-
statistical design model.

4. Numerical examples

The thirteen input parameters and their values given in Lorenzen and Vance
[13] for a real case problem of a casting operation process producing 84 castings
per hour will be adopted in the numerical analyses in this section. These values
are taken as the control values of the thirteen input parameters. In practice, the
control values of these input parameters can be computed from historical data
and prior knowledge of the process.

To demonstrate the computations of the control values of these thirteen
input parameters in a real case problem, the following discussions adopted from
Lorenzen and Vance [13] is provided. In this case study, the variable cost per
unit sampled (c) is $4.22 and it requires approximately 5 minutes to sample a

Figure 1: A flowchart explaining the minimization of the cost function, C in Equation (3.1),
where thick arrows indicate additional steps for the economic-statistical design model.
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The program starts with an assumingly large value of the cost per hour, C, which
will be replaced by a new value of C each time a smaller one is obtained. For the con-
trolled parameters, the first pair (n, α) = (2, 0.0010) is iteratively increased as (2, 0.0011),
(2, 0.0012), ..., (2, 0.05), (3, 0.0010), (3, 0.0011), ..., until it reaches (30, 0.05) for the economic
design. However, for the economic-statistical design, the pair (n, α) is iteratively increased as
(2, 0.0010), (2, 0.0011), ..., (2, 0.004), (3, 0.0010), (3, 0.0011), ..., (3, 0.004), ..., (30, 0.0010),
(30, 0.0011), ..., (30, 0.004). After the completion of all the iterations, the lowest cost per
hour, C (= Cmin) is recorded, together with the corresponding optimal parameters n, α and
h that produce the cost Cmin. The ARL0 and ARL1 values associated with these optimal
parameter values are also recorded. Figure 1 shows a flowchart in minimizing C. In this
flowchart, the statistical constraints imposed on the economic-statistical design of the MCV
chart are shown as additional steps with thicker arrows.

4. NUMERICAL EXAMPLES

The thirteen input parameters and their values given in Lorenzen and Vance [13] for a
real case problem of a casting operation process producing 84 castings per hour will be adopted
in the numerical analyses in this section. These values are taken as the control values of the
thirteen input parameters. In practice, the control values of these input parameters can be
computed from historical data and prior knowledge of the process.

To demonstrate the computations of the control values of these thirteen input param-
eters in a real case problem, the following discussions adopted from Lorenzen and Vance [13]
is provided. In this case study, the variable cost per unit sampled (c) is $4.22 and it requires
approximately 5 minutes to sample a single unit. The cost of each nonconforming unit pro-
duced is $100. Historical data indicate that the process produces about 1.36% nonconforming
units when it is in-control and about 11.3% nonconforming units when it is out-of-control,
and the process stays in-control for an average of 50 hours. When an out-of-control signal is
detected, a search for assignable cause is conducted. When one is found, the manufacturing
system is stopped for repair, otherwise, the system is allowed to continue running. After
repair is completed, the manufacturing system is restarted. The search for an assignable
cause requires about 5 minutes, while repair requires 45 minutes. The repair cost is $22.80
per hour and the downtime cost is $21.34 per minute.

From the above paragraph, λ = 1/50 = 0.02 is the occurrence rate of assignable cause
per hour. The time per unit sampled (e), expected search time during false alarm (T0)
and expected time to find the assignable cause (T1) are e = T0 = T1 = 5/60 = 0.083 hour;
while the expected time to repair the process is T2 = 45/60 = 0.75 hour. During the search
for the assignable cause, the process continues, thus ϕ1 = 1, whereas the process is stopped
during repair, hence, ϕ2 = 0. The quality cost per hour while the process is in-control (C0) is
computed as follows: C0 = $100 (per nonconforming unit) × 84 (castings / units per hour)
× 1.36% (nonconforming units) = $114.24. Additionally, the quality cost per hour while
the process is out-of-control (C1) is calculated as follows: C1 = $100× 84× 11.3% = $949.20.
Next, the cost of locating and removing the assignable cause (W ) is obtained as the sum of
the downtime cost and repair cost, i.e. W = 45× $21.34 + (45/60)× $22.80 = $977.40. It is
assumed that the cost of false alarms (Y ) is the same as the cost, W , hence, Y = $977.40 is
considered. Lastly, there is no fixed cost per sample, thus b = $0.
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Tables 3 and 4 provide the optimal parameters n, α and h of the MCV chart in minimiz-
ing the cost function, C in Equation (3.1), for the economic and economic-statistical designs
of the aforementioned chart. The minimum cost, Cmin and corresponding ARL0 and ARL1

values are also given in these tables. In Table 3, p = 2, γ0 = 0.1 and τ = 0.5 are considered
for the downward MCV chart while in Table 4, p = 2, γ0 = 0.1 and τ = 1.5 are used for the
upward MCV chart.

Table 3: Optimal parameters n, α and h in minimizing the cost function, C and
the corresponding minimum cost (Cmin), ARL0 and ARL1 values com-
puted for the downward MCV chart when p = 2, γ0 = 0.1 and τ = 0.5.

Case
Economic design Economic-statistical design

n α h Cmin ARL0 ARL1 n α h Cmin ARL0 ARL1

1 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426

2 14 0.0255 4.1072 173.8845 39.2157 1.1479 20 0.0039 4.1215 180.1477 256.4103 1.1865
3 12 0.0345 2.1108 258.1688 28.9855 1.2028 17 0.0040 1.8151 275.8835 250.0000 1.4009

4 13 0.0294 2.8124 153.6580 34.0136 1.1744 19 0.0039 2.7275 164.9246 256.4103 1.2426
5 13 0.0295 3.1474 312.5772 33.8983 1.1736 19 0.0039 3.0500 321.9959 256.4103 1.2426

6 14 0.0267 4.7588 175.5130 37.4532 1.1396 20 0.0039 4.7535 180.7912 256.4103 1.1865
7 12 0.0329 1.8891 254.6568 30.3951 1.2150 17 0.0040 1.6308 274.8385 250.0000 1.4009

8 11 0.0500 2.6535 200.1941 20.0000 1.1805 19 0.0039 2.7912 216.7512 256.4103 1.2426
9 15 0.0158 3.0772 213.0151 63.2911 1.1876 19 0.0039 2.8873 218.5457 256.4103 1.2426

10 13 0.0294 2.8935 197.6308 34.0136 1.1744 19 0.0039 2.8064 208.3897 256.4103 1.2426
11 13 0.0295 2.9507 224.8406 33.8983 1.1736 19 0.0039 2.8588 235.2841 256.4103 1.2426

12 13 0.0309 3.0492 208.3568 32.3625 1.1638 19 0.0039 2.9099 219.0768 256.4103 1.2426
13 13 0.0323 3.1805 209.9396 30.9598 1.1548 19 0.0039 2.9941 220.7473 256.4103 1.2426

14 14 0.0174 2.0716 195.5321 57.4713 1.2310 17 0.0040 1.7404 200.6940 250.0000 1.4009
15 11 0.0500 3.8064 221.1789 20.0000 1.1805 20 0.0039 4.2830 240.5155 256.4103 1.1865

16 14 0.0259 2.9664 198.8200 38.6100 1.1451 20 0.0039 2.9661 206.0657 256.4103 1.1865
17 11 0.0384 2.7917 220.0642 26.0417 1.2543 17 0.0040 2.4938 236.8859 250.0000 1.4009

18 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426
19 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426

20 13 0.0294 2.9092 206.1229 34.0136 1.1744 19 0.0039 2.8214 216.7844 256.4103 1.2426
21 13 0.0295 2.9183 207.8738 33.8983 1.1736 19 0.0039 2.8280 218.5125 256.4103 1.2426

22 13 0.0294 2.9140 208.1516 34.0136 1.1744 19 0.0039 2.8265 218.8624 256.4103 1.2426
23 13 0.0294 2.9056 203.8647 34.0136 1.1744 19 0.0039 2.8179 214.4064 256.4103 1.2426

24 13 0.0297 2.9074 205.0555 33.6700 1.1722 19 0.0039 2.8173 215.8458 256.4103 1.2426
25 13 0.0300 2.9575 218.5185 33.3333 1.1700 19 0.0039 2.8632 229.2907 256.4103 1.2426
26 13 0.0297 2.9620 220.1732 33.6700 1.1722 19 0.0039 2.8696 230.8008 256.4103 1.2426

In Tables 3 and 4, the italicized Cmin values represent poorer performance (an increase
in cost) while the boldfaced ones represent better performance (a decrease in cost) when the
values of the input parameters are varied from the control values in case 1. The following
discussions are based on the observations in Tables 3 and 4. It is found that the effects of
changes in the input parameters on Cmin, ARL0, ARL1, n, α, and h for the economic design
are almost similar to that for the economic-statistical design. In this section, the case number
hereafter refers to the cases in Tables 3 and 4, unless stated otherwise.
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Table 4: Optimal parameters n, α and h in minimizing the cost function, C and
the corresponding minimum cost (Cmin), ARL0 and ARL1 values com-
puted for the upward MCV chart when p = 2, γ0 = 0.1 and τ = 1.5.

Case
Economic design Economic-statistical design

n α h Cmin ARL0 ARL1 n α h Cmin ARL0 ARL1

1 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9300

2 13 0.0287 2.9321 188.9809 34.8432 1.7783 15 0.0040 2.1137 198.1568 250.0000 2.5281
3 10 0.0294 1.2885 283.8155 34.0136 2.1403 10 0.0040 0.7368 302.8548 250.0000 3.8952

4 11 0.0285 1.7935 174.4656 35.0877 2.0088 13 0.0040 1.2741 188.4030 250.0000 2.9308
5 12 0.0295 2.1823 331.3248 33.8983 1.8689 13 0.0040 1.4282 343.6606 250.0000 2.9308

6 14 0.0316 3.7171 188.3456 31.6456 1.6559 17 0.0040 2.8399 196.3893 250.0000 2.2335
7 9 0.0260 1.0184 283.2810 38.4615 2.4111 10 0.0040 0.6580 303.6778 250.0000 3.8952

8 9 0.0500 1.7034 217.5766 20.0000 1.9849 12 0.0040 1.1850 238.8530 250.0000 3.1912
9 14 0.0154 2.0966 235.8959 64.9351 1.9456 15 0.0040 1.5939 242.7479 250.0000 2.5281

10 11 0.0286 1.8483 217.9094 34.9650 2.0070 13 0.0040 1.3117 231.4024 250.0000 2.9308
11 11 0.0286 1.8833 244.7820 34.9650 2.0070 13 0.0040 1.3367 257.9956 250.0000 2.9308

12 12 0.0322 2.1482 229.2706 31.0559 1.8291 15 0.0040 1.6083 243.6569 250.0000 2.5281
13 13 0.0353 2.4240 231.4296 28.3286 1.6959 17 0.0040 1.9016 246.5326 250.0000 2.2335

14 12 0.0144 1.2457 211.4058 69.4444 2.2442 12 0.0040 0.8688 216.2331 250.0000 3.1912
15 10 0.0500 2.6657 245.8762 20.0000 1.8487 15 0.0040 2.2106 273.8320 250.0000 2.5281

16 15 0.0300 2.4123 219.5414 33.3333 1.6013 20 0.0040 2.1005 231.4886 250.0000 1.9190
17 8 0.0258 1.3946 237.4666 38.7597 2.6647 9 0.0040 0.8917 251.5718 250.0000 4.3840

18 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9308
19 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9308

20 11 0.0286 1.8586 226.3077 34.9650 2.0070 13 0.0040 1.3189 239.7114 250.0000 2.9308
21 11 0.0286 1.8622 228.0051 34.9650 2.0070 13 0.0040 1.3220 241.3983 250.0000 2.9308

22 11 0.0286 1.8618 228.4402 34.9650 2.0070 19 0.0039 1.3214 218.8624 256.4103 2.9308
23 11 0.0286 1.8558 223.7926 34.9650 2.0070 19 0.0039 1.3169 214.4064 256.4103 2.9308

24 11 0.0291 1.8616 225.1268 34.3643 1.9978 19 0.0039 1.3166 215.8458 256.4103 2.9308
25 11 0.0296 1.8989 238.5002 33.7838 1.9889 19 0.0039 1.3383 229.2907 256.4103 2.9308
26 11 0.0290 1.8954 240.2556 34.4828 1.9996 19 0.0039 1.3417 230.8008 256.4103 2.9308

The thirteen input parameters of Lorenzen and Vance [13] cost model can be classified as
expenses related parameters (C0, C1, Y , W , b, c), time related parameters (e, T0, T1, T2) and
process related parameters (λ, ϕ1, ϕ2). For a more effective and systematic way of discussing
the effects of each input parameters on the minimum cost, ARLs and optimal parameters, this
section is organized as follows: Firstly, the effects of expenses related parameters are discussed
in Section 4.1, then those of time related parameters are enumerated in Section 4.2 and finally
that of process related parameters are explained in Section 4.3. Additionally, the effects of
the shift size τ in the process MCV is included in Section 4.3. Lastly, a comparison be-
tween economic and economic-statistical designs of the MCV chart is presented in Section 4.4.

4.1. Effects of expenses related parameters on Cmin, ARLs and optimal parameters

An increase in the quality cost (due to nonconformities produced) per hour while in-
control, C0 or out-of-control, C1 results in an increase in the minimum cost, Cmin; and
vice-versa (see cases 4–7). Although C1 is larger than C0 (Table 2, cases 4–7), C0 has a more
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noticeable effect on the minimum cost (Cmin) as it results in a larger change in Cmin. It is also
seen that an increase in C0 (see case 5) or a decrease in C1 (see case 6) leads to an increase in
h, as compared to the control case (case 1). Note that a larger sampling interval, h is adopted
when C0 increases so that less frequent sampling is made when the process is in-control in
order to offset the increase in quality cost per hour while the process is in-control. On a
similar note, a decrease in C1 indicates a lower quality cost per hour while the process is
out-of-control, implying that sampling can be made less frequently (with an increase in h) so
that the model remains economically viable. The same explanation applies for a decrease in
h when C0 decreases or C1 increases.

Another cost parameter worthy of discussion is the cost of false alarm, Y . It is found
that increasing (decreasing) Y only results in a slight increase (decrease) in the minimum
cost, Cmin but it substantially increases (decreases) the ARL0 value for the economic design
of the chart (see cases 8 and 9). An increased (decreased) ARL0 value translates into a lower
(higher) false alarm rate, hence a smaller (larger) α value (see case 9 for the economic design).
A larger cost of false alarm (see case 9 in Table 2, where Y = $1954.8 instead of the control
value of $977.4) will reduce the sampling frequency (larger h of 3.0772 instead of the control
value of 2.9112 — see Table 3) for the economic design model. To compensate for the less
frequent sampling, a larger sample size (larger n, increasing from 13 to 15) is adopted (see
cases 1 and 9 for the economic design in Table 3). Note that the effect of changing Y on the
optimal parameters, minimum cost and ARLs under the economic-statistical design model is
less pronounced.

Comparing to Y , varying the cost to locate and remove the assignable cause, W poses
no significant changes to the optimal parameters n, α and h. However, W has a greater
influence on the minimum cost Cmin than Y . As an example, increasing W from $977.4 to
$1954.8 (see case 11 in Table 2) causes Cmin to increase from $226.8698 to $244.7820 (see case
11 for economic design in Table 4) while the same amount of increment in Y (see case 9 in
Table 2) results in a smaller increase in Cmin, i.e. from $226.8698 to $235.8959 (see case 9 for
the economic design in Table 4). Likewise, Cmin decreases at a quicker rate when W decreases
compared to that for the same amount of a decrease in Y . Using another example based on
the economic-statistical design in Table 3, decreasing W and Y to half of their original values
causes Cmin to decrease by $8.9670 (i.e. $217.3567−$208.3897 or the difference between Cmin

of cases 1 and 10) versus $0.6055 (i.e. $217.3567− $216.7512 or the difference between Cmin

of cases 1 and 8), respectively.

The sampling cost is affected by two different parameters, namely the fixed cost per
sample, b and the variable cost per unit sampled, c. The control value of b is $0. When b

increases to $5 and $10, it is found that the minimum cost, Cmin for case 13 is larger than
that for case 12 but the Cmin values for these two cases are larger than the control cost in case
1. In fact, increasing any cost parameter, including the variable cost per unit sampled, c will
always result in an increase in Cmin, as expected. Increasing the cost b and (or) c (see cases
12, 13 and 15) results in a larger optimal sampling interval (larger h) for both economic and
economic-statistical design models and a smaller ARL0 value for the economic design model.
The exact opposite results are observed by decreasing c (case 14 in Table 2), which results
in smaller h, lower Cmin and larger ARLs (see the economic design for both downward and
upward charts in Tables 3 and 4). Note that the ARL0 values in Tables 3 and 4 do not vary
much in the economic-statistical design model in satisfying the constraint ARL0 ≥ 250.
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4.2. Effects of time related parameters on Cmin, ARLs and optimal parameters

Besides the expenses related parameters, Lorenzen and Vance’s [13] cost model also
includes the time related parameters, namely e, T0, T1 and T2. Other than the time to
sample and interpret one unit (e), the remaining time related parameters have minimal effect
on the optimal parameters, Cmin, ARL0 and ARL1 values (see cases 18–23). An increase
(decrease) in e causes the minimum cost, Cmin to increase (decrease) (see cases 16 and 17).
As e increases (from 0.083 hours to 0.166 hours), smaller sample sizes (for example, see case
17, where n = 11 in Table 3 and n = 8 in Table 4 for the economic design) are adopted
to offset the increase in Cmin. Consequently, shorter sampling intervals (see case 17, where
h = 2.7917 hours in Table 3 and h = 1.3946 hours in Table 4 for the economic design) are
adopted as more frequent samplings are needed to compensate for the smaller sample sizes
used. In addition, increasing (decreasing) the value of e leads to a larger (smaller) ARL1 value
(see cases 16 and 17). Using an example from the economic-statistical design, increasing e

causes ARL1 to increase from 1.2426 to 1.4009 for the downward MCV chart (see case 17
in Table 3) and from 2.9300 to 4.3840 for the upward MCV chart (see case 17 in Table 4).
In addition, decreasing e causes ARL1 to decrease from 1.2426 to 1.1865 for the downward
MCV chart (see case 16 in Table 3) and from 2.9300 to 1.9190 for the upward MCV chart
(see case 16 in Table 4).

4.3. Effects of process related parameters on Cmin, ARLs and optimal parameters

The rate of occurrence of assignable cause, λ has a significant effect on the optimal
sample size, n, optimal sampling interval, h and minimum cost, Cmin (see cases 2 and 3).
For example, when λ decreases from 0.02 to 0.01 (see cases 1 and 2), Cmin decreases from
$206.7028 to $173.8845 (see case 2 for the economic design in Table 3) because the process
failure rate decreases. In contrast, when λ increases from 0.02 to 0.04 (see cases 1 and 3),
Cmin increases from $206.7028 to $258.1688 (see case 3 for the economic design in Table 3).
To enable this undesirable condition (an increase in λ) to be detected quickly by the MCV
chart, more frequent samplings (decreasing h) are needed while smaller sample sizes (decreas-
ing n) are adopted in order to remain economically favourable (see cases 1 and 3 in Tables 3
and 4, for both economic and economic statistical designs).

The parameters ϕ1 and ϕ2 determine whether the process continues or stops during
search and repair, respectively. As shown in Table 1, ϕ1 (ϕ2) has:

(i) the value 1 if the process continues while searching for the assignable cause
(repairing following the occurrence of an assignable cause);

(ii) the value 0 if the process stops during search (repair).

By comparing cases 1, 24, 25 and 26, it is observed that case 24 (where (ϕ1, ϕ2 = (0, 0)) has
the lowest minimum cost, Cmin (see Tables 3 and 4). This is expected because when the
process stops during both search and repair, the cost will be minimized. For example, for the
economic design in Table 3, Cmin ∈ {$205.0555, 206.7028, 218.5185, 220.1732} for (ϕ1, ϕ2) ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}, where the lowest Cmin (= $205.0555) occurs at (ϕ1, ϕ2) = (0, 0),
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i.e. when the process stops during both search and repair. On the contrary, case 26, i.e. the pro-
cess continues during both search and repair ((ϕ1,ϕ2)=(1,1)) undoubtedly results in the high-
est minimum cost, Cmin. Note that the effect of the same pair of (ϕ1,ϕ2) values on Cmin is similar
for both economic and economic-statistical designs of the downward and upward MCV charts.

Another interesting observation obtained is the influence of the shift, τ (= γ1/γ0) on
the minimum cost, Cmin. Table 3 deals with a 50% decreasing shift in the process MCV while
Table 4 involves an increasing shift of 50%, hence, the size of shifts in both tables is the same.
It is found that for the same size of shift in the process MCV, generally, the upward MCV chart
incurs a higher Cmin than that of the downward MCV chart. As an example, for the economic-
statistical design in Table 3, Cmin ∈ {$217.3567, 180.1477, 275.8835, 164.9246, 321.9959} while
in Table 4, Cmin ∈ {$240.2701, 198.1568, 302.8548, 188.4030, 343.6606} for cases 1, 2, 3, 4 and 5,
respectively. This example clearly shows that Cmin for the upward MCV chart is higher than
the corresponding one for the downward MCV chart. It is noteworthy that a larger Cmin for
the upward MCV chart corresponds to detecting an increasing shift (τ = 1.5) in the process
MCV, which simply means process deterioration. In contrast, a smaller Cmin incurred by the
downward MCV chart is associated with the detection of a decreasing MCV shift (τ = 0.5)
or simply process improvement. As Cmin incurred by the upward MCV chart is higher,
smaller sample sizes, n must be adopted by this chart to offset the increase in cost. This
is evident as n in Table 4 is generally lower than the corresponding one in Table 3. For
example, based on the economic-statistical design in cases 1, 2, 3, 4 and 5, it is noticed that
n ∈ {19, 20, 17, 19, 19} and n ∈ {13, 15, 10, 13, 13} in Tables 3 and 4, respectively, where it is
obvious that the sample sizes in Table 4 are lower than the corresponding ones in Table 3.
Consequently, to compensate for the smaller sample sizes adopted by the upward MCV chart
in Table 4, samples must be taken more frequently, hence a smaller sampling interval, h is
adopted. For the same example, h ∈ {1.3199, 2.1137, 0.7368, 1.2741, 1.4282} are adopted for
cases 1–5 in Table 4 while h ∈ {2.8236, 4.1215, 1.8151, 2.7275, 3.0500} are employed for the
same cases in Table 3. Evidently, the h values in Table 4 are smaller than that in Table 3.

4.4. Comparisons between economic and economic-statistical designs

It is shown in Tables 3 and 4 that imposing statistical constraints in the economic design
of the MCV chart significantly improves the statistical performance of the chart as it results
in larger ARL0 values at the expense of slight increases in the minimum cost (Cmin) and ARL1

values. For a better analysis, Table 5 shows the percentage of increase in the ARL0 value
for each of the 26 cases in Table 2 when the economic-statistical design is used in place of
the economic design. Additionally, Table 5 shows the percentage of the slight increase in the
minimum cost (Cmin) and ARL1 values as a result of adding the statistical constraints (in the
economic-statistical design). In Table 5, p = 2 and γ0 = 0.1 are considered for the downward
(τ = 0.5) and upward (τ = 1.5) MCV charts. It is found in Table 5 that by employing the
economic-statistical design model, the ARL0 value increases by at least 305.13% (case 9)
and 260% (case 14), for the downward and upward MCV charts, respectively. In contrast,
the chart’s performances in terms of Cmin and ARL1 criteria only deteriorate slightly. For
example, Cmin increases by at most 8.79% (case 15) for the downward MCV chart and 11.42%
(case 15) for the upward MCV chart. On similar lines, the ARL1 increases by at most 16.47%
(case 3) and 81.99% (case 3) for the downward and upward MCV charts, respectively.
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Table 5: Percentages of increase in the minimum cost (Cmin), ARL0 and ARL1 values
by using economic-statistical design in place of economic design for the
downward and upward MCV charts when p = 2 and γ0 = 0.1.

Downward MCV chart Upward MCV chart

Case % increase % increase % increase % increase % increase % increase
in Cmin in ARL0 in ARL1 in Cmin in ARL0 in ARL1

1 5.15 653.85 5.81 5.91 615.00 45.99

2 3.60 553.85 3.36 4.86 617.50 42.16
3 6.86 762.50 16.47 6.71 635.00 81.99

4 7.33 653.85 5.81 7.99 612.50 45.90
5 3.01 656.41 5.88 3.72 637.50 56.82

6 3.01 584.62 4.12 4.27 690.00 34.88
7 7.93 722.50 15.30 7.20 550.00 61.55

8 8.31 1510.25 4.02 9.79 1255.00 64.56
9 2.60 305.13 4.63 2.90 285.00 29.94

10 5.44 653.85 5.81 6.19 615.00 46.03
11 4.64 656.41 5.88 5.40 615.00 46.03

12 5.15 692.31 6.77 6.27 705.00 38.22
13 5.15 728.20 7.60 6.53 782.50 31.70

14 2.64 335.00 13.80 2.28 260.00 42.20
15 8.79 1325.64 2.67 11.42 1342.50 42.08

16 3.64 564.10 3.62 5.44 650.00 19.84
17 7.64 860.00 11.69 5.94 545.00 64.52

18 5.15 653.85 5.81 5.91 615.00 46.03
19 5.15 653.85 5.81 5.91 615.00 46.03

20 5.17 653.85 5.81 5.92 615.00 46.03
21 5.12 656.41 5.88 5.87 615.00 46.03

22 5.15 653.85 5.81 5.90 615.00 46.03
23 5.17 653.85 5.81 5.92 615.00 46.03

24 5.26 661.54 6.01 6.04 627.50 46.70
25 4.93 669.23 6.21 5.74 640.00 47.36
26 4.83 661.54 6.01 5.61 625.00 46.57

Average 5.26 697.55 6.78 5.99 653.65 46.59

The last row in Table 5 shows the average percentages of increase in Cmin, ARL0 and
ARL1 values when the economic-statistical design is used instead of the economic design.
For the downward MCV chart, it is found that there is a huge average increase in the ARL0

value, i.e. 697.55% as compared to significantly smaller average increase in Cmin and ARL1

values, i.e. at only 5.26% and 6.78%, respectively. Similarly, for the upward MCV chart, a
large average increase in ARL0, i.e. 653.65% is obtained at the expense of enormously smaller
average increases in Cmin (5.99%) and ARL1 (46.59%) values. It is obviously seen in Table 5
that when the economic-statistical design is adopted in lieu of the economic design, the
downward MCV chart (average increase of 6.78%) results in a smaller increase in the value
compared to the upward MCV chart (average increase of 46.59%).

Additional analyses are conducted for the number of correlated variables, p ≥ 3, where
the same trends as that for p = 2 are observed. Thus, the results for p ≥ 3 are not given here
so as not to increase the length of this manuscript unnecessarily.
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5. CONCLUSIONS

The MCV chart is used in the monitoring of the process MCV. The use of the MCV
chart in process monitoring requires not only the statistical consideration in assessing its
performance but also from a cost point of view. In line with this requirement, this research
studies the economic and economic-statistical designs of the MCV chart. The economic
design takes into account of minimizing the cost, but it ignores the statistical evaluation
of the chart. Therefore, the economic design exposes the MCV chart to a poor statistical
performance, resulting in an undesirable Type-I error rate. To circumvent this setback,
statistical constraints, in terms of the ARL0 and ARL1 considerations, are imposed on the
cost minimization model, resulting in the economic-statistical design of the chart. The effects
of changes in the input parameters on the minimum cost and the corresponding optimal
parameters of the MCV chart, as well as the char’s ARL0 and ARL1 values are enumerated.
Additionally, this work also compares the impact of adding statistical constraints on the
performance of the MCV chart. It is found that the economic-statistical design significantly
improves the ARL0 performance of the MCV chart at the expense of slight increases in
minimum cost (Cmin) and ARL1 values.
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