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1. INTRODUCTION

Finite mixture regression models (FMRM) provide a flexible tool for modeling data
that arise from a heterogeneous population, where a single regression model is not enough for
capturing the complexities of the conditional distribution of the observed sample given the
features. FMRM of Gaussian distributions, using maximum likelihood methods for parameter
estimation, have been extensively used in the literature in different fields like marketing
[11, 12], economics [10, 21], agriculture [36], psychometrics [28], among others.

From a Bayesian perspective, there is a wide range of nonparametric methods, in par-
ticular, methods in which the error follows a mixture of Dirichlet process [27] or a mixture
of Polya trees [22]. However, in comparison with these methodologies, the finite mixture of
regressions presents the advantage of classifying the observations over the components of the
mixture in a natural way. This classification, in a range of applications, is the main topic of
interest and provides for practitioners a clear interpretation of the results, besides facilitating
the implementation.

Extensions of FMRM of Gaussian distributions have been proposed to broaden the
applicability of the model to more general structures like skewed or heavy tailed errors. In
this regard, [4] modified the EM algorithm for normal mixtures, replacing the least squares
criterion in the M step with a robust one. [33] and [41], in turn, implemented an estima-
tion procedure for finite mixture of linear regression models assuming that the error terms
follow a Laplace and a Student-t distribution, respectively. As an attempt to accommodate
asymmetric observations, [29] introduced a FMRM based on skew-normal distributions [1].

More recently, as an attractive way to deal with skewness and heavy tails simultane-
ously, [42] introduced a finite mixture regression model based on scale mixtures of skew-normal
distributions [6, SMSN] as follow:

f(yi|xi,ϑ,η) =
G∑
j=1

ηjg(yi|xi,θj),(1.1)

where the probability density function g(·|xi,θj) comes from the same member of the
SMSN(xiβj + µj , σ

2
j , λj , νj) family, θj = (βj , σ2

j , λj , νj) is the specific parametric vector for
the component j, ηj > 0, j = 1, ..., G,

∑G
j=1 ηj = 1, ϑ and η denote the unknown param-

eters with ϑ = (θ1, ...,θG) and η = (η1, ..., ηG). However, [42] impose the constraints τ2
1 =

··· = τ2
G and ν1 = ··· = νG about the parameters during the estimation procedure in which

τ2
j = σ2

j (1− δ2j ) and δj = λj/(
√

1 + λ2
j ).

The aim of this paper, therefore, is to provide a flexible version for the mixture of regres-
sions based on scale mixtures of skew-normal distributions introduced by [42], relaxing the
restrictions described above and verifying empirically how our ideas improve the estimation
process. Bayesian inference is developed applying ideas like the data augmentation principle,
stochastic representation in terms of a random-effects model [2, 23], standard hierarchical
representation of a finite mixture model [14] and MCMC methods.
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The remainder of the paper is organized as follows. Section 2 is related to the devel-
opment of a flexible methodology for the mixture regression model based on scale mixture
of skew-normal (SMSN-FMRM) distributions from a Bayesian perspective. In order to make
comparisons between the methodology proposed in the present work and the one proposed
by [42] feasible, Sections 3 and 4 present the analysis of a simulation study and a real dataset
respectively. Finally, some concluding remarks and suggestions for future developments are
given in Section 5.

2. MIXTURE REGRESSION MODEL BASED ON SCALE MIXTURE OF
SKEW-NORMAL DISTRIBUTIONS

2.1. The model

Let y = (y1, ..., yn)T given x = (xT1 , ...,x
T
n )T be a random sample from a G-component

mixture model, xi is a p-dimensional vector of explanatory variables, and consider a mixture
regression model in which the random errors follow a scale mixtures of skew-normal distribu-
tions (SMSN-FMRM) as defined by the equation 1.1. Let S = (S1, ...,Sn) be the allocation
vector, i. e., the vector containing the information about in which group the observation yi
of the random variable Yi is. The indicator variable Si = (Si1, ..., SiG)T , with

Sij =

{
1, if Yi belongs to component j
0, otherwise

and
∑G

j=1 Sij = 1. Given the weights vector η, the latent variables S1, ...,Sn are independent
with multinomial distribution

p(Si|η) = ηSi1
1 ηSi2

2 ···(1− η1 − ··· − ηG−1)SiG .

The joint density of Y = (Y1, ..., Yn) and S = (S1, ...,Sn) is given by

f(y, s|x,ϑ,η) =
G∏
j=1

n∏
i=1

[ηjg(yi|xi,θj)]Sij .

From the stochastic representation in terms of a random-effects model introduced by
[2] and [23], a random variable drawn from the scale mixture of skew-normal distributions
has a hierarchical representation. Hence, the individual Yi belonging to the j-th component
can be written as

Yi|Sij = 1,xi, wi, ui,θj ∼ N(xiβj + µj + σjδjwi, k(ui)σj
√

1− δ2j ),

Wi|Sij = 1, ui ∼ TN[0,+∞)(0, k(ui)),

Ui|Sij = 1, νj ∼ h(·; νj),

where µj = −
√

2
πm1,jσjδj , m1 = E[U−1/2], which corresponds to the regression model where

the error distribution has zero mean and hence the regression parameters are all comparable.
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Thus, the joint density of Y and the latent variables S, W and U is

f(y, s,w,u|x,ϑ,η) =
G∏
j=1

[
n∏
i=1

[ηjf(yi|θj ,xi, wi, ui)f(wi|ui)f(ui|νj)]Sij

]
.

In this article, k(U) = U−1 is used since it leads to good mathematical properties.
Without loss of generality, the distributions skew normal [1, SN], skew-t [3, ST] and skew-
slash [39, SSL] are considered here, it means that mixing variables are chosen as: U = 1,
U ∼ G(ν2 ,

ν
2 ) and U ∼ Be(ν, 1), where G(·, ·) and Be(·, ·) indicate the gamma and beta dis-

tributions respectively.

As in [17], we introduce a new parameterization in terms of the component-specific pa-
rameters θ∗j = (βj , ψj , τ2

j , νj), where ψj = σjδj and τ2
j = σ2

j (1− δ2j ). The original parametric
vector θj = (βj , σ2

j , λj , νj), on its turn, is recovered through

λj =
ψj
τj
, σ2

j = τ2
j + ψ2

j ,

since ψj/τj = σjδj/(σj
√

1− δ2j ) = λj and τ2
j + ψ2

j = σ2
j (1− δ2j ) + σ2

j δ
2
j = σ2

j .

2.2. Bayesian inference

Performing a Bayesian analysis, an important step is the priors distributions selection.
In the context of finite mixture models, in particular, mixture regression models, a special
attention on these choices is quite relevant since it is not possible to choose an improper prior
because it implies in an improper posterior density [16]. In addition, as pointed by [25], it is
recommended to avoid be as “noninformative as possible” by choosing large prior variances
because the number of components is highly influenced by the prior choices. Consequently,
in order to avoid identifiability problems, it was adopted the hierarchical priors introduced
by [31] for mixtures of normal distributions to reduce sensitivity with respect to choosing the
prior variances.

Hence, considering the parametric vector θ∗j = (βj , ψj , τ2
j , νj) for an arbitrary mixture

component j, the prior set was specified as: η ∼ D(e0, ..., e0), (βj , ψj)|τ2
j ∼ Np+1(b0, τ

2
j B0),

τ2
j |C0 ∼ IG(c0, C0) and C0 ∼ G(h0,H0), where e0, b0 ∈ R(p+1), B0 ∈ R(p+1)×(p+1), c0, h0

and H0 are known hyper parameters, Nq(·, ·), D(·, ..., ·) and IG(·, ·) indicate the q-variate
normal, the Dirichlet and inverse gamma distributions. Considering the parameter ν pri-
ors, p(νj) ∝ νj/(νj + d)31(2,40)(νj) [26] and νj ∼ G(1,40)(α, γ), where α and γ are known hy-
per parameters and GA(·, ·) denotes the truncated gamma on set A, are specified for the
ST-FMRM and SSL-FMRM respectively.

The Bayesian approach for estimating the parameters uses the data augmentation prin-
ciple [35], which considers W,U and S as latent unobserved variables. The joint posterior
density of parameters and latent variables can be written as

p(ϑ∗,η,w,u, s|y,x) ∝


G∏
j=1

[ n∏
i=1

[
ηjf(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij

]
p(θ∗j )

 p(η),
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where p(θ∗j ) = p(βj , ψj |τ2
j )p(τ2

j |C0)p(C0)p(νj) and ϑ∗ = (θ∗1, ...,θ
∗
G). In light of the data aug-

mentation technique, conditional on the allocation vector S, the parameters estimation may
be executed independently for each parametric component θ∗j and for the weights distribu-
tion η. As a consequence, the full conditionals of the parameters and the latent unobserved
variables for the mixture regression models based on the SMSN distributions are written as
follows:

p(η|s) ∝ p(s|η)p(η)(2.1)

p(wi|Sij = 1, ···) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)

]Sij ,(2.2)

p(ui|Sij = 1, ···) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij ,(2.3)

p(βj , ψj |···) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(βj , ψj |τ2
j ),(2.4)

p(τ2
j |···) ∝

∏
{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(τ2
j |C0),(2.5)

p(C0|···) ∝
G∏
j=1

p(τ2
j |C0)p(C0),(2.6)

p(νj |···) ∝
∏

{i:Sij=1}

f(ui|νj)p(νj).(2.7)

Additional details about the derivations of the full conditionals are available in Appendix
A.1.

In furtherance of making Bayesian analysis feasible for parameter estimation in the
SMSN-FMRM class of models, random samples from the posterior distributions of (ϑ,η,w,u,s)
given (y,x) are drawn through Monte Chain Monte Carlo simulation methods. Algorithm 1
describes the sampling scheme from the full conditionals distributions of the parameters and
the latent unobserved variables.

Algorithm 1. MCMC for finite mixture of scale mixtures of skew-normal.

1. Set k = 1 and get starting values for S(0), (θ∗(0)1 , ...,θ
∗(0)
G ), η(0), w(0) and u(0);

2. Parameter simulation conditional on the classification S(k−1):

2.1. Sample η(k) from p(η|s(k−1));

2.2. Sample the component latent variables w(k)
i and u(k)

i , i = 1, ..., n, from the full
conditionals (2.2)–(2.3) and the component parameters β

(k)
j , ψ

(k)
j , τ2(k)

j , ν
(k)
j ,

j = 1, ..., G, from the full conditionals (2.4)–(2.7).

3. Sample S(k)
i independently for each i = 1, ..., n from

Pr(Sil = 1|yi,xi,ϑ∗) =
g(yi|xi,θ∗l ) Pr(Sil = 1|ϑ∗)∑G
j=1 g(yi|xi,θ

∗
j ) Pr(Sij = 1|ϑ∗)

.

4. Set k = k + 1 and repeat the steps 2, 3 and 4 until convergence is achieved.
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Introduced by [30] into the mixture models background, the term label switching refers
to the invariance of the mixture likelihood function under relabeling the components. Consid-
ering the maximum likelihood estimation, where we are looking for the corresponding modes
of the likelihood function, label switching is not an object of interest. From the Bayesian point
of view, however, it is a topic of concern because the labeling of the unobserved categories
changes during the sample process of the mixture posterior distribution. Post-processed the
MCMC, in order to deal with the label switching problem, the Kullback–Leibler algorithm
[34] is applied over this paper.

3. SIMULATION STUDY

In this section, a simulated scenario is considered for three purposes:

(i) verifying if the true parameter values are recovered accurately by using the
methodology described on Section 2;

(ii) comparing the estimation performance of the unconstrained and constrained
models;

(iii) formulating a sensitivity analysis study to the hyperparameters specification.

To that end, datasets are artificially generated as follow:{
Yi = xiβ1 + ε1, Si1 = 1,
Yi = xiβ2 + ε2, Si2 = 1,

where Sij is a component indicator of Yi with Pr(Sij = 1) = ηj , j = 1, 2, xi = (1, xi1), i =
1, ..., n. Finally, ε1 and ε2 follow a distribution in the SMSN family. According to this
procedure, 100 random samples of size n = 500 are generated from the SN-FMRM, ST-FMRM
and SSL-FMRM models with the following parameter values: β1 = (β01, β11)T = (20, 0)T ,
β2 = (β02, β12)T = (−4, 3)T , σ2

1 = 1, σ2
2 = 4, λ1 = 0, λ2 = 5, η1 = 0.4, η2 = 0.6. In addition,

for the ST-FMRM and SSL-FMRM models, ν = (ν1, ν2) = (8, 3) and ν = (6, 2), respectively.

During the estimation process for the SMSN-FMRM models, the unconstrained version
proposed in this paper and the constrained version of [42] were considered and it was adopted
the four different hyperparameters specifications described in Table 1 for both. For each
sample, 20000 iterations from Algorithm 1 were conducted. The first 10000 were discarded
as a burn-in period. In order to reduce the autocorrelation within the successive values of
the simulated chain, it was required a thin equals to 10. Finally, based on 1000 records, the
posterior mean were obtained.

Table 1: Prior sets hyperparameters specifications.

Specification e0 b0 B0 c0 h0 H0 d α γ

P1 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P2 4 (0,0,0) Diag(10,10,10) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P3 4 (0,0,0) Diag(100,100,100) 2.5 0.75 0.75
0.5s2

y
4/(1 +

√
2) 6 1

P4 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 9/(1 +
√

2) 4 1
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Table 2: MSE and coverage percentage in parenthesis for the MCMC
estimates based on the 100 samples from the SMSN-FMRM.

Parameters
SN-FMRM ST-FMRM SSL-FMRM

τ2
1 6=τ2

2 τ2
1 =τ2

2 τ2
1 6=τ2

2 , ν1 6=ν2 τ2
1=τ2

2 , ν1=ν2 τ2
1 6=τ2

2 , ν1 6=ν2 τ2
1=τ2

2 , ν1=ν2

β0,1

P1 0.0143(1.00) 0.0148(0.99) 0.0221(0.99) 0.0271(0.96) 0.0234(1.00) 0.0458(0.97)
P2 0.0222(0.98) 0.0225(0.97) 0.0311(0.98) 0.0293(1.00) 0.0426(0.98) 0.0497(0.97)
P3 0.0253(1.00) 0.0272(0.98) 0.0286(0.99) 0.0364(0.94) 0.0312(0.99) 0.0434(0.97)
P4 — — 0.0228(0.99) 0.0284(0.98) 0.0378(0.99) 0.0499(0.97)

β1,1

P1 0.0000(0.97) 0.0001(0.98) 0.0001(0.96) 0.0001(0.96) 0.0001(0.93) 0.0001(0.94)
P2 0.0001(0.95) 0.0001(0.93) 0.0002(0.95) 0.0002(0.92) 0.0002(0.95) 0.0002(0.92)
P3 0.0001(0.94) 0.0001(0.89) 0.0002(0.95) 0.0002(0.95) 0.0001(0.97) 0.0001(0.94)
P4 — — 0.0001(0.99) 0.0001(0.94) 0.0002(0.91) 0.0002(0.92)

β0,2

P1 0.0142(0.94) 0.0170(0.97) 0.0454(0.84) 0.0545(0.84) 0.1869(0.91) 0.1932(0.84)
P2 0.0156(0.94) 0.0204(0.99) 0.0351(0.94) 0.0697(0.83) 0.1461(0.91) 0.2866(0.65)
P3 0.0157(0.93) 0.0163(0.96) 0.0369(0.91) 0.0477(0.90) 0.1502(0.91) 0.1502(0.90)
P4 — — 0.0316(0.90) 0.0429(0.88) 0.1708(0.96) 0.1170(0.95)

β1,2

P1 0.0000(0.94) 0.0001(0.96) 0.0001(0.97) 0.0001(0.99) 0.0001(0.90) 0.0001(0.92)
P2 0.0000(0.96) 0.0001(0.95) 0.0001(0.97) 0.0001(0.99) 0.0001(0.99) 0.0001(0.99)
P3 0.0000(0.95) 0.0000(0.98) 0.0001(0.97) 0.0001(0.96) 0.0001(0.98) 0.0001(0.99)
P4 — — 0.0001(0.90) 0.0001(0.98) 0.0001(0.95) 0.0001(0.96)

σ2
1

P1 0.0956(0.95) 0.9566(0.34) 0.0523(0.99) 0.0756(0.98) 0.0943(0.99) 0.4890(0.77)
P2 0.1233(0.37) 0.0823(0.89) 0.2337(0.17) 0.0335(0.98) 0.1374(0.42) 0.0612(0.96)
P3 0.1385(0.90) 0.8905(0.29) 0.0600(0.99) 0.1026(0.95) 0.1015(0.98) 0.4174(0.84)
P4 — — 0.0593(0.98) 0.1311(0.95) 0.0348(1.00) 0.2948(0.89)

σ2
2

P1 0.1760(0.91) 0.5010(0.62) 1.3980(0.84) 0.7495(0.86) 2.5937(0.84) 1.5439(0.85)
P2 0.2358(0.82) 1.9505(0.09) 0.7075(0.90) 0.5111(0.94) 2.3527(0.72) 1.8668(0.74)
P3 0.2076(0.89) 0.5872(0.55) 0.9655(0.87) 0.7671(0.85) 2.3347(0.80) 1.3687(0.88)
P4 — — 0.9523(0.91) 0.7049(0.88) 1.4102(0.92) 0.9150(0.88)

λ1

P1 0.0648(1.00) 2.4698(0.54) 0.0622(1.00) 0.6500(0.85) 0.1128(1.00) 1.7950(0.62)
P2 0.0122(1.00) 0.0820(1.00) 0.0128(1.00) 0.0589(1.00) 0.0142(1.00) 0.0965(1.00)
P3 0.1465(1.00) 2.3544(0.48) 0.0781(0.99) 0.6287(0.89) 0.1241(1.00) 1.2843(0.78)
P4 — — 0.0620(1.00) 0.7134(0.83) 0.0547(1.00) 1.3541(0.72)

λ2

P1 1.6120(0.96) 6.1614(0.00) 3.1617(0.98) 6.3709(0.00) 2.3855(0.94) 4.1220(0.04)
P2 1.8628(0.52) 14.1231(0.00) 0.7802(0.92) 10.7803(0.00) 0.5909(0.94) 8.9064(0.00)
P3 1.0375(0.86) 6.6829(0.00) 0.9961(0.96) 6.6883(0.01) 0.7847(0.97) 4.6046(0.02)
P4 — — 3.2051(0.96) 6.4518(0.00) 1.8351(1.00) 4.7205(0.01)

η1

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 — — 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

η2

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 — — 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

ν1

P1

— —

3.6146(0.97) 19.8156(0.14) 1.3108(1.00) 7.2708(0.73)
P2 11.0161(1.00) 14.5225(0.25) 1.9544(1.00) 3.2971(0.89)
P3 5.1347(0.96) 20.0174(0.12) 1.7550(1.00) 8.0294(0.66)
P4 5.9129(0.97) 19.0113(0.16) 4.9511(0.97) 10.5920(0.46)

ν2

P1

— —

1.0621(1.00) 0.9324(0.92) 3.3490(0.86) 4.7921(0.65)
P2 1.7930(0.95) 3.4168(0.63) 4.4666(0.69) 14.4817(0.18)
P3 1.0371(0.99) 1.3937(0.92) 3.0896(0.79) 3.7640(0.67)
P4 1.9016(0.95) 2.2195(0.91) 1.0183(0.96) 1.7100(0.84)
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Table 2 shows the mean squared error (MSE) and coverage percentage for the MCMC
estimates based on the 100 samples, in which the coverage percentage is the proportion of
the time that the credibility interval contains the true value of interest. The first impor-
tant fact that is possible to observe from the table is that with high probability the true
parameter values are recovered, particularly if the unconstrained methodology is considered.
Comparing the unconstrained methodology proposed in this work with the restricted version,
there is a significant improvement on the MSE and coverage percentage, specially for the
scale, symmetry and kurtosis parameters. Taking λ2, for example, the coverage percentage is
zero or almost zero in all cases and the MSE is more than ten times greater in specific cases.

Taking the hyperparameters specification P1 as a baseline, a sensitivity analysis study is
built. The specification P2 consists in reducing the values of B0, and almost no impact on the
results of β1 and β2 is observed, however, looking to the unconstrained model, a significant
decrease in the coverage percentage for the scale and symmetry parameters is noticed. The
specification P3 follows [31], the results are similar compared with the P1 ones, but there is
a gain on the MSE for λ2 in the heavy tailed distributions and unconstrained model. Lastly,
a degradation on the MSE for ν is noted when the changes made in P4 for d, α and γ are
assumed.

4. EMPIRICAL ANALYSIS

In order to explore the interval memory hypothesis and the partial matching hypothesis,
[9] designed an experiment in which a pure fundamental tone with electronically generated
overtones added was played to a trained musician. The overtones were determined by a
stretching ratio, corresponding to the harmonic pattern usually heard in traditional definite
pitched instruments. The musician was asked to tune an adjustable tone to the octave above
the fundamental tone and 150 trials were recorded as the ratio of the adjusted tone to the
fundamental.

This dataset has been analysed in many articles which explored the mixture of linear
regression framework [13, 38, 24]. More recently, [41] fitted a robust mixture regression
model using the t-distribution and [42], a robust mixture regression based on the SMSN
class of distributions. Conducive to make comparisons with the results in [42] possible, the
methods proposed in this paper are applied to the tone perception data.
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Figure 1: Tone perception data scatterplot and histogram.
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Considering the estimation process for the SN-FMRM, ST-FMRM and SSL-FMRM,
the hyperparameters specification P3 presented in Table 1 was chosen. From the MCMC
scheme described in Section 2.2, 20000 iterations were drawn. The first 10000 draws were
discarded as a burn-in period. In order to reduce the autocorrelation between successive
values of the simulated chain, only every 10th values of the chain were stored and from the
resulting 1000 we calculated the posterior estimates. It is worth mentioning that, because of
the two well defined components, the label switching problem was not identified.

Table 3: Estimation results for fitting the SMSN-FMRM under analysis to the tone data.
First row: maximum a posteriori. Second row: 95% high posterior density credi-
bility interval. Third row: convergence test Z-scores.

Parameters N-FMRM T-FMRM SL-FMRM SN-FMRM ST-FMRM SSL-FMRM

β0,1

1.9107 1.9325 1.9167 1.9044 1.9291 1.9147
(1.8586,1.9569) (1.8832,1.9771) (1.8703,1.9689) (1.8532,1.9664) (1.8757,1.9846) (1.8679,1.9703)

−1.2777 0.0250 −0.0878 −0.7281 0.2527 −0.2157

β1,1

0.0457 0.0387 0.0425 0.0447 0.0365 0.0431
(0.0243,0.0688) (0.0175,0.0595) (0.0196,0.0649) (0.0205,0.0672) (0.0151,0.0618) (0.0202,0.0641)

1.0459 −0.2666 −0.2561 0.4088 −0.2404 1.1750

β0,2

−0.0188 0.0153 0.0477 0.0208 0.0136 0.0194
(−0.2054,0.2059) (−0.0186,0.0704) (−0.0317,0.1359) (−0.2457,0.2495) (−0.0358,0.0849) (−0.1075,0.1276)

−0.7409 1.2719 −0.6623 −0.1860 −0.9211 −1.1195

β1,2

0.9893 0.9928 0.9745 0.9796 0.9869 0.9729
(0.9070,1.0802) (0.9669,1.0079) (0.9304,1.0061) (0.8899,1.0971) (0.9615,1.0141) (0.9228,1.0212)

0.3946 −1.5883 1.0861 0.3949 0.0831 1.7043

σ2
1

0.0027 0.0020 0.0019 0.0028 0.0021 0.0022
(0.0019,0.0036) (0.0012,0.0029) (0.0014,0.0029) (0.0019,0.0042) (0.0013,0.0035) (0.0015,0.0034)

−0.4449 1.7121 −1.5685 0.6334 0.4865 1.8521

σ2
2

0.0173 0.0005 0.0011 0.0269 0.0009 0.0032
(0.0105,0.02676) (0.0002,0.0010) (0.0004,0.0026) (0.0127,0.0621) (0.0003,0.0024) (0.0008,0.0141)

0.1553 1.5999 −0.9927 1.1119 0.2782 −0.2783

λ1

0.0800 −0.0972 0.0186
— — — (−0.7634,0.7341) (−0.8113,0.5411) (−0.7843,0.5725)

−0.3516 −1.6838 0.1532

λ2

1.0045 −0.3676 −1.2264
— — — (−1.7427,2.7095) (−1.3333,0.0821) (−2.6623,0.3076)

−0.7809 −1.3453 0.4094

η1

0.6908 0.5606 0.5805 0.7045 0.5691 0.6296
(0.6030,0.7733) (0.4700,0.6516) (0.4820,0.6876) (0.6103,0.7901) (0.4538,0.6564) (0.5223,0.7383)

−0.2578 1.6709 1.7261 0.3072 0.4209 −0.6418

η2

0.3091 0.4393 0.4194 0.2954 0.4308 0.3703
(0.2266,0.3969) (0.3483,0.5299) (0.3123,0.5179) (0.2098,0.3896) (0.3435,0.5461) (0.2616,0.4776)

0.2578 −1.6709 −1.7261 −0.3072 −0.4209 0.6418

ν1

3.0280 5.8212 5.5252 6.2337
— (2.0015,24.7743) (2.1481,11.7897) — (2.0678,21.7135) (3.1571,11.5048)

0.7383 −1.0693 1.5870 1.4383

ν2

2.1162 1.4630 2.1281 1.5494
— (2.0001,2.6451) (1.4000,1.7509) — (2.0000,2.6977) (1.4000,3.0780)

0.8492 0.9953 −1.8332 −0.3276

WAIC1 −263.9868 −349.6941 −301.1313 −253.9442 −329.4679 −283.6500
WAIC2 −288.2918 −372.0548 −329.3142 −290.7716 −361.6124 −330.5183

Table 3 contains the maximum a posteriori estimation of the parameters of the models
under analysis: SN-FMRM, ST-FMRM and SSL-FMRM in addition to their corresponding
95% high posterior density credibility interval and the Z-scores for the convergence test intro-
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duced by [20]. Additionally, in order to compare the fit of the different models, two versions
proposed by [19] of the Watanabe–Akaike Information Criterion [40, WAIC] were computed,
indicating that the T-FMRM has the best fitting, conclusion that goes in opposition to
the ST-FMRM model observed by [42]. More details about these criteria are available in
Appendix A.2. Figure 2 illustrates the scatterplots of the dataset with the six fitted models
and the equivalent 95% high posterior density credibility intervals.
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Figure 2: Tone perception data scatterplot and the fitted SMSN-FMRM models.

In comparison with [42], the coefficients β estimates are quite similar. However, for the
parameters λ and ν, in line with the results observed on the previous section, the estimates
diverge. [42] outcomes point to the presence of asymmetry for at least of one the components
when the SN-FMRM, ST-FMRM and SSL-FMRM are considered. Nevertheless, as Figure 3
illustrates, when the flexible version proposed in this paper is applied, it is possible to verify
that the introduction of a skewness parameter is not effective considering the dataset under
analysis.
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Figure 3: Skewness parameters posterior samples.

5. CONCLUSION

In this work a flexible Bayesian methodology is developed for the mixture regression
models based on scale mixtures of skew-normal distributions proposed by [42] with the aim of
understanding the possible effects caused by the restrictions commonly imposed in the context
of robust mixture regression modeling. The tone perception data and an artificial dataset
are analysed in order to verify the advantages that the additional flexibility introduced by
the methodology developed in this article has. In fact, this paper presents divergent results
in comparison with [42] and the empirical analysis illustrates the possible effects of imposing
constraints for this class of models.

Extensions of the contributions made in this article are possible. First, the number
of components might be consider as an unknown quantity of interest, estimating it in a full
Bayesian framework. Also the proposed methods may be extended to multivariate settings,
such as the recent proposals of [18] for mixtures of multivariate Student-t distributions and to
models capable to deal with longitudinal data as discussed in [37]. Contemplating extensions
able to deal with nonlinear effects of the covariates [7, 8, 5] is also a stimulating topic for
further research.
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A. APPENDIX

A.1. Mixture regression based on scale mixtures of skew-normal full conditional
distributions

Considering the SN-FMRM model and assuming Fn×(p+1) = (x w), for each j = 1, ..., G,
construct a matrix Fj ∈ RNj×(p+1), Nj =

∑n
i=1 Sij . Similarly, construct an observation ma-

trix yj ∈ RNj×1. Hence, by the Bayes theorem, the full conditionals are:

• η|s ∼ D(e0 +N1, ..., e0 +NG);

• (βj , ψj)|s,y,w, τ2
k ∼ Np+1(bj ,Bj),

Bj =
(

1
τ2
j
B−1

0 + 1
τ2
j
(FjTFj)

)−1

,

bj = Bj

(
1
τ2
j
B−1

0 b0 + 1
τ2
j
(FjT (yk − µk))

)
;

• τ2
j |s,y,w, C0,βj , ψj ∼ IG(cj , Cj),

cj = c0 + Nj

2 + 1
2 ,

Cj = C0 +
(yj−Fjβ

∗
j−µj)

T (yj−Fjβ
∗
j−µj)+(β∗

j−b0)T B−1
0 (β∗

j−b0)

2 ;

• C0|τ2
1 , ..., τ

2
G ∼ G(h,H),

h = h0 +Gc0,

H = H0 +
∑G

j=1
1
τ2
j
;

where β∗
j = (βj ψj)T . Considering now the latent variable W:

• Wi|Sij = 1, yi,βj , ψj , τ2
j ∼ TN[0,+∞)(a,A),

a =
(yi−xiβj−µj)ψj

τ2
j +ψ2

j
,

A =
τ2
j

τ2
j +ψ2

j
.

For the ST-FMRM and the SSL-FMRM models the full conditionals are almost the
same, the difference is that F is replaced by Fwn×(p+1) = (

√
ux

√
uw) and y, by yw =

√
uy,

where
√

u is the square root element by element. Considering now the latent variable W:

• Wi|Sij = 1, yi, ui,βj , ψj , τ2
j ∼ TN[0,+∞)(a,A/ui).

Lastly, for the latent variable U and the parameters ν:

• Skew-t:

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ2
j ∼ G

(
νj

2 + 1, νj

2 +
(yi−µj−xiβj−ψjwi)

2

2τ2
j

+ w2
i

2

)
;

• Skew-slash:

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ2
j ∼ G(0,1)

(
νj + 1,

(yi−µj−xiβj−ψjwi)
2

2τ2
j

+ w2
i

2

)
,

νj |s,u ∼ G(2,40)(α+Nj , γ −
∑

i:Sij=1 ui).
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For the degrees of freedom in skew-t is not possible to find a closed form to the full condi-
tionals, so a Metropolis–Hastings step is required. To sample νj , j = 1, ..., G a normal log
random walk proposal was used

log(νnewj − 2) ∼ N(log(νj − 2), cνj )(A.1)

with adaptive width parameter cνj [32]. The proposal was shifted away from 0, as it is
advisable to avoid values for νj that are close to 0, see [15].

A.2. Watanabe–Akaike information criterion

Define the predictive accuracy of the fitted model to data as

p(y) =
n∑
i=1

log
∫
f(yi|θ)p(θ|y)dθ.

To compute this predictive density, it is possible to evaluate the expectation using draws from
the usual posterior simulations:

p(y) =
n∑
i=1

log

(
1
T

T∑
t=1

f(yi|θ(t))

)
.

Introduced by [40], the Watanabe–Akaike information criterion (WAIC) consists on the
posterior predictive density in addition to a correction for effective number of parameters to
adjust for overfitting. [19] describes two adjustments. The first one is a difference:

WAIC∗
1 = 2

n∑
i=1

(
log
(
E(θ|y)f(yi|θ)

)
− E(θ|y) (log(f(yi|θ))

)
,

which can be computed from simulations by replacing the expectations by averages over the
posterior draws, it means,

WAIC∗
1 = 2

n∑
i=1

(
log

(
1
T

T∑
t=1

f(yi|θ(t))

)
− 1
T

T∑
t=1

log f(yi|θ(t))

)
.

The second is based on the variance of individual terms in the log predictive density summed
over the n data observations:

WAIC∗
2 =

n∑
i=1

var(θ|y) (log f(yi|θ)) .

In practice, the posterior variance of the log predictive density for each data point yi, that is,
V T
t=1 log f(yi|θ(t)), where V T

t=1 is the sample variance, V T
t=1a(t) = 1

T−1

∑T
t=1(a(t) − ā)2. Sum-

ming over all the data observations, the effective number of parameters is:

WAIC∗
2 =

n∑
i=1

V T
t=1

(
log f(yi|θ(t))

)
.

Finally, either WAIC∗
1 or WAIC∗

2 are applied as a bias correction:

WAICq = −2(p(y)−WAIC∗
q ).(A.2)
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