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Av. Rovisco Pais, 1049–001 Lisboa, Portugal
cnunes@math.tecnico.ulisboa.pt

Rita Pimentel
– RISE SICS Väster̊as AB,
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Abstract:
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differential equation, whose homogeneous part is a Cauchy–Euler equation. We derive a particular
solution to this equation, presenting explicitly all the coefficients.
The differential–difference equation is motivated by investment decisions addressed in the context
of real options. It appears when the underlying stochastic process follows a jump–diffusion process,
where the diffusion is a geometric Brownian motion and the jumps are driven by a Poisson process.
The solution that we present — which takes into account the geometry of the problem — can be
written backwards, and therefore its analysis is easier to follow.
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1. MOTIVATION AND RELATED WORK

In this paper we present a solution to a second order differential–difference equation.
This equation may appear when one solves an optimal stopping problem in which the state
process follows a jump–diffusion process, where the diffusion is a geometric Brownian motion
and the jumps are driven by a Poisson process. The main difficulty of working with this
type of equation is due to the jump process, which makes the equation not local in one point
— see, for instance, Murto [25]. This characteristic is not universal, i.e., there are optimal
stopping problems involving jump–diffusions processes for which the differential–difference
equation does not exhibit this behavior. Thus, on these cases to find a closed form solution
to the differential–difference equation can be easier. However, as we will see later, this is not
the case when the jumps may lead directly to the stopping region, across the boundary.

The seminal works in financial options — such as the classical work of Black and Scholes
[5], where for the first time a pricing formula was derived — and in real options — as the
seminal book of Dixit and Pindyck [12] — assume that the sample path of the involved state
process is continuous, with probability one.

In recent times investors often need to take decisions facing uncertainty and there is
higher likelihood of financial crashes, which are the climax of the so-called log-periodic power
law signatures associated with speculative bubbles (see Johansen and Sornette [18]). One
example of this occurred in February 2015, when due to a cyber-attack, a high-frequency
trading company started uncontrollably buying oil futures, causing a downward jump in the
oil prices1. Here, a crash is a significant drop in the total value of the market, creating a
situation wherein the majority of investors are trying to flee the market at the same time and
consequently incurring massive losses. Indeed, in the presence of a crash investors likely take
the decision to sell their assets. As the crash means that there is a significant drop, we borrow
the probabilistic terminology and we call it a jump (in the above example, a downward jump).

The sudden changes in the state variable can also be found when one decides about
investments in projects, often addressed in the context of real options. In this context, usually
the temporal term is long, and therefore unexpected events may occur, leading to a disruption
of the market. One example of a disrupt event is the introduction or the abolition of public
subsidies. There are many economical sectors where subsidies play an important role, such
as agriculture.

Due to the interest of the equation that we solve in this paper in the framework of real
options, we mainly focus in problems and questions arising in such context. The following
are examples of decisions regarding investments where investors face the likelihood of sudden
events.

It is well established that agricultural pricing policies (taxes, subsidies) have a sub-
stantial influence on farmer production decisions2. For example, USA has been supporting
farming since early times. But after several decades, these incentive policies have proved to

1https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-

that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
2http://www.pbl.nl/en/publications/the-impact-of-taxes-and-subsidies-on-crop-yields

https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
http://www.pbl.nl/en/publications/the-impact-of-taxes-and-subsidies-on-crop-yields
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be unsuccessful 3. In 2005 Bush administration decided to change the farm incentive policy,
cutting in agricultural subsidies4. Evidently, this decision led to changes in private investment
farming projects.

Another area where subsidies play an important role is the renewable energy (RE)
sector. In an effort to reach the ambitious targets of the EU Strategic Energy Technology
Plan (SET-Plan), EU member states have implemented support mechanisms of various forms
(e.g., price mechanisms, like carbon tax or permit trading schemes) intended to incentive and
accelerate adoption of RE technologies. These climate change policies have introduced a new
factor that has to be included into the investment decision and have become a major source
of uncertainty in energy strategy. The problem is that policies designed to stimulate the
investment in green energies have frequently and unexpectedly been changed for a number
of reasons. For instance, change of governments, collapse of the international cooperation
for reducing GHG emissions, arrival of new information about climate sensitivity, and fiscal
pressure. In the last decade we have seen many studies on the impact of wrong investment
decisions. We refer, for instance, to Boomsma and Linnerud [6], Boomsma et al. [7], and
Hagspiel et al. [14].

These examples show that when taking decisions regarding investments in new projects,
the investor needs to take into account these sudden changes. The area of real options soon
realized the importance of such events, and therefore the interest of real options literature in
problems involving jump–diffusion processes is not new. We refer to Kou [21] for a survey
on jump–diffusion models for finance engineering. In the area of real options, there has been
an increasing interest about jump–diffusion processes in the context of technology adoption
(see, for instance, Hagspiel et al. [16]).

Furthermore, Kwon [22] and Hagspiel et al. [15] consider a combination of a continuous
process with a jump-process, but they do not consider a sequence of innovations arriving over
time. Instead, they assume a one-single innovation opportunity, with other involved options
(like the option to exit the market). Kwon [22] work is generalized in Hagspiel et al. [15],
by considering capacity optimization, and by Matomäki [23], considering different stochastic
processes representing the profit uncertainty.

In another context, Couto et al. [11] and Nunes and Pimentel [26] consider the in-
vestment problem in a high-speed railway service, assuming that both the demand and the
investment cost are modeled by jump–diffusion processes. Although these papers start by as-
suming two sources of uncertainty, they end up with the study of a one-dimensional problem.
This happens because they assume that the value of the firm is homogeneous, and therefore
it is possible to consider a change of variables that will turn the two-dimensional problem in
a one-dimensional one. Murto [25] also consider two stochastic processes, in order to model
technological and revenue uncertainties, motivated by wind power investment. He assumes
that the investment cost depends on the technological progress, driven by a pure Poisson
process, whereas the price of the output is a geometric Brownian motion. As the value of the
project is homogeneous, the same type of approach as in Nunes and Pimentel [26] is proposed.

In all the above examples, it is of the most crucial importance to assess the impact of the
jumps in the decision, and, in particular, in case the jumps anticipate the optimal decision.

3https://grist.org/article/farm_bill2/
4https://www.agpolicy.org/weekpdf/258.pdf

https://grist.org/article/farm_bill2/
https://www.agpolicy.org/weekpdf/258.pdf
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Moreover, the impact of such jumps has to be reflected in the value of the project, which is a
quantitative measure of the value that the firm has as a result of its option to invest. Under
an optimal strategy in terms of the investment timing, such value is, before the investment,
solution of a differential equation (that we will present in section 2). Mathematically, the
possibility of occurrence of jumps leads to this value being solution of particular types of
differential equations.

Our contribution to the state of the art is two-fold: on one side, we provide an analytical
solution to a non-homogeneous differential equation. As it turns out, some optimal stopping
problems found in real options lead to a differential–difference equations that are exactly as
the form of such differential equation, for a subset of the state space. Therefore, one may use
this analytical solution to provide a characterization of the value of a firm, which is given by
a piecewise function.

The paper is organized as follows: in Section 2 we motivate the differential–difference
equation that we address in this paper, presenting also the basic assumptions. In Section 3
we show how we can find a general solution for such equation, using a backwards procedure.
This procedure presents the solution as a piecewise function. For each branch, the function is
the solution of a non-homogeneous differential equation. Therefore, in Section 4 we provide
the particular solution to it. Finally, in Section 5 we conclude.

2. DIFFERENTIAL–DIFFERENCE EQUATION

In order to motivate the meaningfulness of the differential–difference equation solved
in this paper, we consider that we want to derive the value of a firm that has the option to
undertake an investment. As we briefly explain in this section, these type of problems leads
to a variational inequality known as the Hamilton–Jacobi–Bellman (HJB, for short) equation,
where one of the members is a differential–difference equation. To solve such equation, we
also need to be able to find the solution of a differential equation of the following type:

(2.1) x2y′′(x) + axy′(x) + by(x) = Axα(lnx)n,

with x > 0, a, b ∈ R, α, A ∈ R \ {0} and n ∈ N0.

We note that the corresponding homogeneous equation to (2.1) is an Euler–Cauchy
equation and its solution is known. The difficulty lays in the particular solution, consequence
of the non-homogeneous term, Axα(lnx)n.

The result that we provide in this paper is per se interesting, as it provides a contri-
bution to the area of ordinary differential equations (ODE). Besides this contribution, being
able to compute the solution of such equation is also relevant for the applications. Next we
motivate the mathematical problem by an investment problem, using the terminology and
notation of real options.

Real options is a theory on how to make decisions under uncertainty about future
returns. These decisions share the following two characteristics: they are irreversible and can
be postponed.
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One of the most relevant problems in real options regards the characterization of the
optimal time to undertake some investment decision. This leads to an optimal stopping
problem, which is formally defined as follows: given a stochastic process X = {X(t), t > 0},
find V (x) and τ? ∈ T such that

(2.2) V (x) = sup
τ∈T

Ex
[
e−rτg(X(τ))χ{τ<+∞}

]
, x ∈ R+,

with T being the set of all stopping times adapted to the filtration generated by the process X,
r > 0 states for the discount factor and χ{A} represents the indicator function on set A. The
function g is usually called running function, which accounts for the return of the investment.

The class of stochastic processes that lead to the type of equations that we study in this
paper — equation (2.1) — is an one-dimensional jump–diffusion, which is the strong solution
of the following stochastic differential equation:

dX(t)
X(t−)

= µdt + σdW (t) + κdN(t),

with initial value X(0) = x > 0, where {W (t), t > 0} is a standard one-dimensional Brownian
motion, and {N(t), t > 0} is a centered time-homogeneous Poisson process, with intensity λ > 0.
Moreover, µ is the drift of the process X, σ > 0 is its volatility and κ is the multiplicative
factor, in case a jump occurs. The notation X(t−) means that whenever there is a jump, the
value of the process before the jump is considered. Motivated by the references mentioned in
Section 1, we assume that the jumps are multiplicative and with constant magnitude.

One way to solve the optimal stopping problem defined in (2.2) is to solve the variational
inequality HJB (we do not provide further details, referring instead to Peskir and Shiryaev
[28]). In this case, the corresponding HJB equation is the following:

(2.3) min {rV (x)− LV (x), V (x)− g(x)} = 0,

where L is the infinitesimal generator of the process X. As X is a jump–diffusion process, it
follows that

(2.4) Lv(x) =
σ2

2
x2v′′(x) + (µ− λκ)xv′(x) + λ (v(x(1 + κ))− v(x)) ,

for v ∈ C1 and x ∈ R+ (see Øksendal and Sulem [27] for more details).

In general, the use of these inequalities leads to a differential equation, which in some
cases may be solved analytically. Besides the possible difficulty to find the analytical solution
to the differential equation, one faces also the problem to find the boundary conditions, as
the set of values where the differential equation holds is also unknown. For this reason the
problem presented in (2.2) when solved by the use of variational inequalities is known in the
literature as a free boundary problem.

Considering an investment problem, the differential equation holds in the region where
it is not optimal to stop (in our case to invest). For that reason, this region is usually called
continuation region, and in opposition its complementary is called stopping region. In some
cases, one can provide a guess for the shape of the continuation set. For example, if g is a non-
decreasing function, the firm takes the decision to invest for large values of x, whereas for small
values of x the firm postpones its investment decision. Thus, the stopping region is of the form
S = [x∗,+∞) and the continuation region is C = (0, x∗), where x∗ is the exercise threshold.
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When X is a jump–diffusion process with positive jumps, the stopping region can be
reached in two different ways:

(i) Either due to a continuous change, caused by the diffusion. In this case the state
process hits the boundary threshold x∗.

(ii) Or due to the occurrence of a jump. In this case the state process crosses the
boundary threshold.

In the literature, the majority of the authors address the case that either there is just
the jump process (for which it is possible to solve the corresponding difference equation, as
there is no differential part) — this is the case of Huisman [17] — or the process is a jump–
diffusion but the jumps always lead to the continuation region — which is the case of Nunes
and Pimentel [26].

Our work is related with Merton [24], who considers a model to price American call
options. He assumes multiplicative independent and identically distributed jumps and g(x) =
max(x−K, 0) (the payoff of an American call option). For this case, he provides in Equation
(16) a semi-analytical result, as it involves a series with infinite number of terms that depend,
each one, on the cumulative distribution of a normal random variable. More recently, Murto
[25] considers a problem with a similar setting as ours. However, in view of the impossi-
bility to derive an analytical solution, he provides solutions only for some particular cases
(namely, if the volatility parameter of the diffusion is zero, or when the jump process is in
fact deterministic, with an exponential decay).

In the current paper, we assume a non-decreasing g function. Then it follows that
on the one hand, in the stopping region V is equal to g, i.e. V (x) = g(x) for x ≥ x?. On
the other hand, in the continuation region the value function V must be the solution of the
left-hand side of the HJB Equation (2.3), which combined with Equation (2.4), leads to the
following equation:

(2.5) x2V ′′(x) + a xV ′(x) + b V (x)− c V (x(1 + k)) = 0,

where a = 2(µ−λk)
σ2 , b = −2(r+λ)

σ2 and c = −2λ
σ2 . This is called in the literature mixed partial

differential–difference equation, and it is known to be difficult to solve (see Merton [24]).

3. BACKWARDS ANALYSIS

In this section we provide a backwards procedure that can be used to solve the Equation
(2.5). This procedure is motivated by the geometry of the stopping/continuation regions
previously presented, when g is non-decreasing.

Firstly, we note that the homogeneous part of Equation (2.5) has an analytical solution,
hereby denoted by Vh, which is given by

(3.1) Vh(x) = δ1x
β1 + δ2x

β2 ,

where β1 and β2 are the roots of the characteristic polynomial

(3.2) Q(β) = β (β − 1) + aβ + b.
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In our case, given that b < 0, there are two distinct real roots:

β1 =
1
2

[
1− a +

√
(1− a)2 − 4b

]
> 0;(3.3)

β2 =
1
2

[
1− a−

√
(1− a)2 − 4b

]
< 0.(3.4)

As presented before, V (x) = g(x) for x ∈ [x?,+∞). Therefore, one needs to solve the
problem for 0 < x < x?. For that, we start by considering x ∈

[
x?

1+κ , x?
)
, meaning that

x(1 + κ) ≥ x?. So, the interval
[

x?

1+κ , x?
)

is the set of values of x where stopping will surely
happen if a jump occurs. Thus V (x(1 + κ)) = g(x(1 + κ)). In this case Equation (2.5) can
be re-written as

x2V ′′(x) + a xV ′(x) + b V (x) = c g(x(1 + κ)).

and therefore its solution, hereby denoted by V1, is given by

(3.5) V (x) := V1(x) = Vh(x) + V 1
p (x) = δ1x

β1 + δ2x
β2 + f1

g (x),

Note that the superscript in V 1
p and f1

g represents how many jumps we are away from the stop-
ping region5 (see Figure 1 for an illustration). Moreover, the bottom index in f1

g emphasizes
that this function depends explicitly on g.
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and therefore its solution, hereby denoted by V1, is given by

(3.3) V (x) := V1(x) = Vh(x) + V 1
p (x) = δ1x

β1 + δ2x
β2 + f1

g (x),

Note that the superscript in V 1
p and f1

g represents how many jumps we are away
from the stopping region5 (see Figure 1 for an illustration). Moreover, the bottom
index in f1

g emphasizes that this function depends explicitly on g.

x

SC

x?

1+κ
x?

g(x)g(x)V1(x)

Figure 1: Representation of V in the last interval before stopping.

Next we derive the value of V when we are two jumps away from the
stopping region. Following the same notation, we denote this function by V2,

defined for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
. In this case x(1+κ) ∈

[
x?

1+κ , x
?
)

, so V (x(1+κ)) =

V1(x(1 + κ)). This means that (2.5) can be re–written as follows

x2V ′′(x) + a xV ′(x) + b V (x) = c V1(x(1 + κ)).

The homogeneous part of the previous equation is the same as before, and thus
the solution is provided in (3). We just need to take into account the particular
solution, which we denote by V 2

p . This particular solution depends on V 1
p (and

thus depends on g) but also depends on Vh (then also depends on the roots of
Q, β1 and β2), as V1 is given by (3.3). Therefore, both the homogeneous and the
particular solution for this case share the powers β1 and β2. Using Theorem 3.5
of Sabuwala and De Leon [29], we end up with the following particular solution

V 2
p (x) = η2

1 lnx xβ1 + η2
2 lnx xβ2 + f2

g (x).

We write f2
g to denote the part of the solution that depends strictly on g (following

the same reasoning as for f1
g ), whereas η2

1 and η2
2 depend on the parameters

from the homogeneous solution. So, for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
(see Figure 2 for an

illustration), we have

(3.4) V (x) := V2(x) = δ1x
β1 + δ2x

β2 + η2
1 lnx xβ1 + η2

2 lnx xβ2 + f2
g (x).

Figure 1: Representation of V in the last interval before stopping.

Next we derive the value of V when we are two jumps away from the stopping region.
Following the same notation, we denote this function by V2, defined for x ∈

[
x?

(1+κ)2
, x?

1+κ

)
.

In this case x(1 + κ) ∈
[

x?

1+κ , x?
)
, so V (x(1 + κ)) = V1(x(1 + κ)). This means that (2.5) can

be re-written as follows:

x2V ′′(x) + a xV ′(x) + b V (x) = c V1(x(1 + κ)).

The homogeneous part of the previous equation is the same as before, and thus the solution is
provided in (3.1). We just need to take into account the particular solution, which we denote
by V 2

p . This particular solution depends on V 1
p (and thus depends on g) but also depends on

Vh (then also depends on the roots of Q, β1 and β2), as V1 is given by (3.5). Therefore, both
the homogeneous and the particular solution for this case share the powers β1 and β2. Using
Theorem 3.5 of Sabuwala and De Leon [29], we end up with the following particular solution:

V 2
p (x) = η2

1 lnx xβ1 + η2
2 lnx xβ2 + f2

g (x).

5We use this type of notation for all particular solutions.
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We write f2
g to denote the part of the solution that depends strictly on g (following the same

reasoning as for f1
g ), whereas η2

1 and η2
2 depend on the parameters from the homogeneous

solution. So, for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
(see Figure 2 for an illustration), we have

(3.6) V (x) := V2(x) = δ1x
β1 + δ2x

β2 + η2
1 lnx xβ1 + η2

2 lnx xβ2 + f2
g (x).

The solution to a differential–difference equation 11

x

SC

x?

(1+κ)2
x?

1+κ
x?

g(x)V1(x)V2(x)

Figure 2: Representation of V in the last two intervals before stopping.

Proceeding one step back, we determine the value of V when we are three

jumps away from the stopping region, which we call V3. When x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
,

then x(1 + κ) ∈
[

x?

(1+κ)2
, x?

1+κ

)
and V (x(1 + κ)) = V2(x(1 + κ)). Then, Equation

(2.5) is re-written as

(3.5) x2V ′′(x) + a xV ′(x) + b V (x) = c V2(x(1 + κ)).

As before, the homogeneous equation is the same and therefore Vh is part of the
solution of this equation. Once more, the problem is reduced to the derivation of
a particular solution, which is not trivial, as the function V2 involves polynomials
of power β1 and β2 multiplied by a logarithm (see Equation (3.4)). After some
calculations, one may find that the particular solution of (3.5) is of the following
form

V 3
p (x) = η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + f3

g (x).

Also here f3
g stands for the part of the solution that depends strictly on g whereas

η3
1, η

3
2, η

3
3 and η3

4 depend on the parameters from the homogeneous solution. As

previously, for x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
, we have

V (x) := V3(x) = δ1x
β1 + δ2x

β2 + η3
1 lnx xβ1 + η3

2 lnx xβ2

+η3
3 (lnx)2 xβ1 + η3

4 (lnx)2 xβ2 + f3
g (x).

A similar reasoning applies for other intervals of x. When we are i (with
i ∈ N) jumps away from the stopping region, we have x?

(1+κ)i ≤ x < x?

(1+κ)i−1 and

V is represented by Vi, which may be obtained using a similar procedure as the
one used for V1, V2 and V3. Indeed, V is a piecewise function, given by

V (x) =

{
Vi(x) if x?

(1+κ)i ≤ x < x?

(1+κ)i−1

g(x) if x ≥ x?
,

where
Vi(x) = δ1x

β1 + δ2x
β2 + V i

p (x)

5We use this type of notation for all particular solutions.

Figure 2: Representation of V in the last two intervals before stopping.

Proceeding one step back, we determine the value of V when we are three jumps away
from the stopping region, which we call V3. When x ∈

[
x?

(1+κ)3
, x?

(1+κ)2

)
, then x(1 + κ) ∈[

x?

(1+κ)2
, x?

1+κ

)
and V (x(1 + κ)) = V2(x(1 + κ)). Then, Equation (2.5) is re-written as

(3.7) x2V ′′(x) + a xV ′(x) + b V (x) = c V2(x(1 + κ)).

As before, the homogeneous equation is the same and therefore Vh is part of the solution of
this equation. Once more, the problem is reduced to the derivation of a particular solution,
which is not trivial, as the function V2 involves polynomials of power β1 and β2 multiplied by
a logarithm (see Equation (3.6)). After some calculations, one may find that the particular
solution of (3.7) is of the following form:

V 3
p (x) = η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + f3

g (x).

Also here f3
g stands for the part of the solution that depends strictly on g whereas η3

1, η
3
2, η

3
3

and η3
4 depend on the parameters from the homogeneous solution. As previously, for x ∈[

x?

(1+κ)3
, x?

(1+κ)2

)
, we have

V (x) := V3(x) = δ1x
β1 + δ2x

β2 + η3
1 lnx xβ1 + η3

2 lnx xβ2

+η3
3 (lnx)2 xβ1 + η3

4 (lnx)2 xβ2 + f3
g (x).

A similar reasoning applies for other intervals of x. When we are i (with i ∈ N) jumps
away from the stopping region, we have x?

(1+κ)i ≤ x < x?

(1+κ)i−1 and V is represented by Vi,
which may be obtained using a similar procedure as the one used for V1, V2 and V3. Indeed,
V is a piecewise function, given by

V (x) =

{
Vi(x) if x?

(1+κ)i ≤ x < x?

(1+κ)i−1

g(x) if x ≥ x?
,

where
Vi(x) = δ1x

β1 + δ2x
β2 + V i

p (x)
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with

V 1
p (x) = f1

g (x) and

V i
p (x) =

i−1∑
j=1

[
ηi
2j−1 xβ1 + ηi

2j xβ2

]
(lnx)j + f i

g(x), for i ∈ N \ {1} .(3.8)

Clearly, one needs to find functions that are solutions of certain differential equations,
that depend intrinsically on the function g, considered in the definition of the problem.

For example, for

(3.9) g(x) = ρxθ − I

we obtain the following particular solutions V i
p , for i = 1, 2, 3:

V 1
p (x) =ξ1

1x
θ + ξ1

2 , with ξ1
1 =

cρ(1 + κ)θ

Q(θ)
, ξ1

2 = −cI

b
.

V 2
p (x) =η2

1 lnx xβ1 + η2
2 lnx xβ2 + ξ2

1x
θ + ξ2

2 , with

η2
1 = δ1

c(1 + κ)β1

Q′(β1)
, η2

2 = δ2
c(1 + κ)β2

Q′(β2)
,

ξ2
1 = ρ

[
c(1 + κ)θ

Q(θ)

]2

, ξ2
2 = −

(c

b

)2
I.

V 3
p (x) =η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + ξ3

1x
θ + ξ3

2 , with

η3
1 = δ1

c(1 + κ)β1

Q′(β1)

[
1 +

c(1 + κ)β1

Q′(β1)

(
ln(1 + κ)− 1

Q′(β1)

)]
,

η3
2 = δ2

c(1 + κ)β2

Q′(β2)

[
1 +

c(1 + κ)β2

Q′(β2)

(
ln(1 + κ)− 1

Q′(β2)

)]
,

η3
3 =

δ1

2

[
c(1 + κ)β1

Q′(β1)

]2

, η3
4 =

δ2

2

[
c(1 + κ)β2

Q′(β2)

]2

,

ξ3
1 = ρ

[
c(1 + κ)θ

Q(θ)

]3

, ξ3
2 = −

(c

b

)3
I.

For simplicity, in the above calculations we assume that θ is not a root of the char-
acteristic polynomial Q. This example is motivated by the relevance of this analysis in real
options context. In fact, functions such that the one presented in (3.9) are frequently used
in this context and describe the profit of a firm. This function is called in the literature an
iso-elastic demand function (see, for instance, Nunes and Pimentel [26]).

This example also shows that a more systematic way to find the solution to the non-
homogeneous differential Equation (2.1) is quite valuable. We address this issue in the next
section.
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4. MAIN RESULTS

We want to find a particular solution to the Equation (2.1). The type of solution is
understandable from the special case solved at the end of the previous section. However, a
systematic way to obtain all the coefficients is not so easy to develop.

We start deriving a recursive expression for the particular solution of (2.1). Later,
using this result, we will be able to present explicit expressions for the involved coefficients.

Theorem 4.1 (recursive). Consider the second order ODE presented in (2.1), with

the corresponding characteristic polynomial Q given by (3.2). Then the following cases occur:

• If α is not a root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑

i=0

ci (lnx)i ,

where cn = A
Q(α) , cn−1 = −nA Q′(α)

Q(α)2
and ci = − i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2]
for i = 0, 1, 2, ..., n− 2.

• If α is a simple root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑

i=0

ci (lnx)i+1 ,

where cn = A
(n+1)Q′(α) and ci = − i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1.

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is

yp(x) = xαcn (lnx)n+2 ,

where cn = A
(n+1)(n+2) .

Proof: We start by proposing that the particular solution of Equation (2.1) is of the
form yp(x) = xαP (x). Calculating first and second derivatives, we obtain

y′p(x) = xα−1
[
xP ′(x) + αP (x)

]
y′′p(x) = xα−2

[
x2P ′′(x) + 2αxP ′(x) + α(α− 1)P (x)

]
,

from where

x2y′′p(x) + axy′p(x) + byp(x) = xα
[
x2P ′′(x) +

(
Q′(α) + 1

)
xP ′(x) + Q(α)P (x)

]
.

Thus P (x) is such that

(4.1) x2P ′′(x) +
(
Q′(α) + 1

)
xP ′(x) + Q(α)P (x) = A(lnx)n.
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Taking into account whether Q(α) is null or not, we end up with different cases, described
hereafter:

1. If α is not a root of Q, then P (x) =
∑n

i=0 ci (lnx)i, as we prove next. For that,
we compute the first and second derivatives:

P ′(x) =
1
x

n∑
i=1

ici (lnx)i−1

P ′′(x) =
1
x2

[
n∑

i=2

i(i− 1)ci(lnx)i−2 −
n∑

i=1

ici(lnx)i−1

]
.

Thus, x2P ′′(x) + (Q′(α) + 1) xP ′(x) + Q(α)P (x) is given by

n−2∑
i=0

[
(i + 2)(i + 1)ci+2 + Q′(α)(i + 1)ci+1 + Q(α)ci

]
(lnx)i

+
[
Q′(α)ncn + Q(α)cn−1

]
(lnx)n−1 + Q(α)cn(lnx)n.

Therefore, (4.1) holds if Q(α)cn = A, Q′(α)ncn + Q(α)cn−1 = 0 and (i+2)(i+1)ci+2

+ Q′(α)(i + 1)ci+1 + Q(α)ci = 0, for i = 0, 1, ..., n− 2, which leads to the result.

2. If α is a root of Q with multiplicity one, then P (x) =
∑n

i=0 ci (lnx)i+1. In fact,
calculating first and second derivatives, we obtain

P ′(x) =
1
x

n∑
i=0

(i + 1)ci (lnx)i ,

P ′′(x) =
1
x2

[
n∑

i=1

(i + 1)ici(lnx)i−1 −
n∑

i=0

(i + 1)ci(lnx)i

]
.

Given that Q(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) + Q(α)P (x) is given by∑n−1
i=0 [(i + 2)ci+1 + Q′(α)ci] (lnx)i + Q′(α)(n + 1)cn(lnx)n.

Assuming that α has multiplicity one we have Q′(α) 6= 0. Thus, in order to have
(4.1), we need to set that Q′(α)(n + 1)cn = A and (i + 2)ci+1 + Q′(α)ci = 0, for
i = 0, 1, ..., n− 1, and the result follows.

3. If α is a root of Q with multiplicity two, then P (x) = cn (lnx)n+2 as

P ′(x) =
1
x

cn(n + 2) (lnx)n+1 ,

P ′′(x) =
1
x2

cn(n + 2)
[
(n + 1)(lnx)n − (lnx)n+1

]
.

Since Q(α) = 0 and Q′(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) + Q(α)P (x) is
given by cn(n + 2)(n + 1)(lnx)n. Finally, in order to have (4.1) we conclude that
cn = A

(n+1)(n+2) .

This theorem is useful in two ways: first it provides a way to compute (recursively) the
particular solution of the differential equation (2.1). Second, it provides the tool to derive
explicit expressions for the involved coefficients. In the following theorem we present such
result.
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Theorem 4.2 (non-recursive). Consider the second order ODE presented in (2.1),
with the corresponding characteristic polynomial Q given by (3.2).

• If α is not a root of Q, the particular solution of (2.1) is given by yp(x) =
xα

∑n
i=0 ci (lnx)i, with

ci = (−1)n−i n!
i!

A

Q(α)n−i+1

n−i
2∑

j=0
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,(4.2)

for i = 0, 1, 2, ..., n, where
(
k
r

)
= k!

r!(k−r)! , with k ≥ r ≥ 0.

• If α is a simple root of Q, the particular solution of (2.1) is yp(x) =
xα

∑n
i=0 ci (lnx)i+1, with

ci = (−1)n−i n!
(i + 1)!

A

Q′(α)n−i+1
, for i = 0, 1, 2, ..., n.(4.3)

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is yp(x) =
xαcn (lnx)n+2, with cn = A

(n+1)(n+2) .

Proof: The last case coincides with the one presented in Theorem 4.1. For the other
two cases, we use backwards mathematical induction to prove it, taking advantage of the
recursive solutions presented in Theorem 4.1.

1. If α is not a root of Q, we already know that, the particular solution is of the form
yp(x) = xα

∑n
i=0 ci (lnx)i, where cn = A

Q(α) , cn−1 = −nA Q′(α)
Q(α)2

and ci =
− i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2] for i = 0, 1, 2, ..., n− 2. We want to prove that,
for i = 0, 1, 2, ..., n, the coefficients ci can be written in the general form presented
in (4.2).
Using backwards mathematical induction we have two base cases to be verified,
cn and cn−1, which we know from Theorem 4.1 that are A

Q(α) and −nA Q′(α)
Q(α)2

,
respectively. Taking into account (4.2), we have

cn = (−1)0
n!
n!

A

Q(α)
(−1)0

(
0
0

)
Q′(α)0 Q(α)0 =

A

Q(α)
,

cn−1 = (−1)
n!

(n− 1)!
A

Q(α)2
(−1)0

(
1
0

)
Q′(α)1 Q(α)0 = −nA

Q′(α)
Q(α)2

,

which means that the base cases are verified. For the inductive step, we assume
that, for i = 0, 1, 2, ..., n− 2, ci+1 and ci+2 are given by (4.2), and we want to prove
that ci is also given by (4.2).
From Theorem 4.1, we know that ci = − i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2] for i =
0, 1, 2, ..., n− 2. Plugging the expressions of ci+1 and ci+2, which are defined by
(4.2), in the expression of ci we obtain

− i + 1
Q(α)

Q′(α)(−1)n−i−1 n!
(i + 1)!

A

Q(α)n−i

n−i
2
− 1

2∑
j=0
j∈N0

(−1)j

(
n− i− j − 1

j

)
Q′(α)n−i−2j−1Q(α)j

+(i + 2)(−1)n−i−2 n!
(i + 2)!

A

Q(α)n−i−1

n−i
2
−1∑

j=0
j∈N0

(−1)j

(
n− i− j − 2

j

)
Q′(α)n−i−2j−2Q(α)j

 .
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Rearranging the terms and changing the variable in the second sum, we get

(−1)n−i n!
i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=0
j∈N0

(−1)j

(
n− i− j − 1

j

)
Q′(α)n−i−2j Q(α)j

+

n−i
2∑

j=1
j∈N0

(−1)j

(
n− i− j − 1

j − 1

)
Q′(α)n−i−2j Q(α)j

 .

Joining the two sums and taking into account some permutation’s properties, we
end up with the following expression:

(−1)n−i n!
i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=1
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j

+ Q′(α)n−i + (−1)
n−i
2 Q(α)

n−i
2 χ{n−i is even}

]
.

Finally, we conclude that

ci = (−1)n−i n!
i!

A

Q(α)n−i+1

n−i
2∑

j=0
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,

which coincides with the expression given by (4.2). Thus the proof for the first case
is finished.

2. If α is a root of Q with multiplicity one, as we proved before, the particular so-
lution is of the form yp(x) = xα

∑n
i=0 ci (lnx)i+1, where cn = A

(n+1)Q′(α) and ci =
− i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1. We want to prove that we can write the coeffi-
cients ci in the general way presented in (4.3).
As before, we use backwards mathematical induction. Starting with the base case
and taking into account (4.3), we have

cn = (−1)0
n!

(n + 1)!
A

Q′(α)
=

A

(n + 1)Q′(α)
,

which coincides with the expression given by Theorem 4.1. Thus, the base case is
verified. To prove the induction step, for i = 0, 1, 2, ..., n− 1, we assume that ci+1

is given by (4.3) and we want to prove that ci is also given by (4.3).
From Theorem 4.1, we know that ci = − i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1. Plugging
in ci the expression of ci+1, which is given by (4.3), we obtain

ci = − i + 2
Q′(α)

(−1)n−i−1 n!
(i + 2)!

A

Q′(α)n−i
= (−1)n−i n!

(i + 1)!
A

Q′(α)n−i+1
,

and therefore the induction step is proved. With this we conclude the proof.
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A special case of the previous theorem is when n = 0. In this case the Equation (2.1)
is simply

x2y′′(x) + axy′(x) + by(x) = Axα.

Using the results proved before, the corresponding particular solution is given by

yp(x) = ϕ xα (lnx)r ,

where ϕ = A
Q(r)(α)

6, with r7 being the multiplicity of α as a root of Q.

In the following corollary, we use the results presented in Theorem 4.2 for the case that
the non-homogeneous part of the differential equation is a sum of power and log functions
(as it is the case, for example, of (3.8)).

Corollary 4.1. Consider the following second order differential equation:

(4.4) x2y′′(x) + axy′(x) + by(x) =
m∑

k=1

Akx
αk (lnx)nk ,

with x > 0, a, b ∈ R, αk, Ak ∈ R \ {0} and nk ∈ N0, for k = 1, 2, ...,m, with m ∈ N. Then the

particular solution of (4.4) is of the form yp(x) =
∑m

k=1 ypk
(x)8, where ypk

(x) is the solution

of the equation

x2y′′k(x) + axy′k(x) + byk(x) = Akx
αk (lnx)nk ,

which is presented in Theorem 4.2.

Proof: The result follows from the superposition principle.

5. CONCLUSIONS

In this paper we provide a solution to a differential–difference equation that can be
found, for instance, when one studies an investment problem with the underlying following
a jump–diffusion process. This problem is particularly important from the point of view of
the application, as nowadays the prices and demand are often subject to external shocks that
cause a disruptive behavior on the state variables. Analytical solutions or quasi-analytical
solutions are scarce or even non-existent. Our results contribute to the state of the art in this
area.

As our results show, the solution to the differential–difference equation is a piecewise
function, where each branch depends on the next one. Therefore, to find the expression for
each branch a non-homogeneous ODE needs to be solved. In this paper we also provide the
expression for each coefficient involved in the particular solution of this family of ODEs.

6Q(r)(α) is the derivative of order r of Q w.r.t. α. In particular, if r = 0 we consider that Q(r)(α) is exactly
Q(α).

7r can take the values 0, 1 or 2. We consider r = 0 when α is not a root of Q.
8Note that yp has at least m parcels and at most m +

Pm
k=1 nk parcels. When α1 = α2 = ... = αm are roots

of Q all with multiplicity two, yp has m parcels. Oppositely, when none of the αk (with k = 1, 2, ..., m) has
multiplicity two, yp has m +

Pm
k=1 nk parcels.
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As future work, we want to apply these results to solve the original optimal stopping
problem. We highlight that this is a challenging question, as in order to find the optimal
value function, we need to use enough conditions to define all the unknown parameters of
the solution. Indeed, the expressions that we provide in this paper define classes of solutions,
and only considering the boundary and initial conditions we are able to derive the solution.
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