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1. INTRODUCTION

In 1964, Lukacs and Laha defined the matrix variate gamma (MG) distribution. In mul-
tivariate statistical analysis, the MG distribution has been the subject of considerable interest,
study, and applications for many years. For example, the Wishart distribution, which is the
distribution of the sample variance covariance matrix when sampling from a multivariate nor-
mal distribution, is a special case of the MG distribution. Applications of the MG distribution
have included: damping modeling (Adhikari [1]); models for stochastic upscaling for inelas-
tic material behavior from limited experimental data (Das and Ghanem [7], [8]); models for
fusion yield [15]; models for uncertainty quantification (Pascual and Adhikari [31]); charac-
terizing the distribution of anisotropic micro-structural environments with diffusion-weighted
imaging (Scherrer et al. [32]); models for magnetic tractography (Chamberland et al. [4]);
models for diffusion compartment imaging (Scherrer et al. [33]); models for image classification
(Luo et al. [24]); models for accurate signal reconstruction (Jian et al. [22], Bates et al. [3]).
Two recent applications of the Wishart distribution can be found in Arashi et al. [2] and
Ferreira et al. [13].

However, generalizations of the MG distribution have been neglected and there is no
account on this matter in the literature. The only extension that we are aware of is the
inverted matrix variate gamma distribution due to Iranmanesh et al. [17]: if X has the MG
distribution then X−1 has the inverted matrix variate gamma distribution. A generalization
of the MG distribution must contain the MG distribution as a particular case. See also
Iranmanesh et al. [18] and references there in for more details.

The goal of this paper is to give the first generalization to the MG distribution, where
its kernel includes zonal polynomials (Takemura [34]). The generalization proposed has two
shape parameters. One of the shape parameters acts on the determinant of the data while
the other acts on the trace of the data. The MG distribution has only one shape parameter
acting on the determinant of the data. The proposed generalization can be more flexible for
data modeling:

i) if both trace and determinant are significant (that is, the empirical distribution
of the data has significant patterns involving both the trace and determinant);

ii) if trace is significant but determinant is not (that is, the empirical distribution of
the data has significant patterns involving only the trace);

iii) if trace is more significant than determinant is (that is, the empirical distribution
of the data has more significant patterns involving the trace).

For our purpose, we first provide the reader with some preliminary definitions and
lemmas. Most of the following definitions and results can be found in Gupta and Nagar [14],
Muirhead [27], and Mathai [26].
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2. PRELIMINARIES

In this section we state certain well known definitions and results. These results will
be used in subsequent sections.

Let A = (aij) be a p× p matrix. Then, A′ denotes the transpose of A; tr(A) = a11 +
···+ app; etr(A) = exp (tr(A)); det(A) = determinant of A; norm of A = ‖A‖ = maximum
of absolute values of eigenvalues of the matrix A; A1/2 denotes a symmetric positive definite
square root of A; A > 0 means that A is symmetric positive definite and 0 < A < Ip means
that the matrices A and Ip −A are symmetric positive definite. The multivariate gamma
function which is frequently used in multivariate statistical analysis is defined by

Γp(a) =
∫

X>0
etr(−X) det(X)a−(p+1)/2 dX

= πp(p−1)/4
p∏

i=1

Γ
(
a− i− 1

2

)
, Re(a) >

p− 1
2

.(2.1)

Let Cκ(X) be the zonal polynomial of p×p complex symmetric matrix X corresponding
to the ordered partition κ = (k1, ..., kp) , k1 ≥ ··· ≥ kp ≥ 0, k1 + ···+ kp = k and

∑
κ denotes

summation over all partitions κ of k. The generalized hypergeometric coefficient (a)κ used
above is defined by

(a)κ =
p∏

i=1

(
a− i− 1

2

)
ki

,

where (a)r = a(a+ 1) ··· (a+ r − 1), r = 1, 2, ... with (a)0 = 1.

Lemma 2.1. Let Z be a complex symmetric p× p matrix with Re(Z) > 0, and let Y

be a symmetric p× p matrix. Then, for Re(a) > (p− 1)/2, we have

(2.2)
∫

X>0
etr (−XZ) (det X)a−(p+1)/2Cκ (XY ) dX = (a)κ Γp(a) (det Z)−aCκ

(
Y Z−1

)
.

Lemma 2.2. Let Z be a complex symmetric p× p matrix with Re(Z) > 0, and let Y

be a symmetric p× p matrix. Then, for Re > (p− 1)/2, we have

(2.3)
∫
X>0

etr(−XZ) (det X)a−(p+1)/2
[
tr(XY )

]k
dX = Γp(a) (det Z)−a

∑
κ

(a)κCκ(Y Z−1) .

For Z = Y in (2.3), we get∫
X>0

etr(−XY ) (det X)a−(p+1)/2
[
tr(XY )

]k
dX = Γp(a) (detY )−a

∑
κ

(a)κCκ(Ip)

= Γp(a) (ap)k (detY )−a .(2.4)

The above result was derived by Khatri [23].
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Davis [9, 10] introduced a class of polynomials Cκ,λ
φ (X,Y ) of p×p symmetric matrix ar-

guments X and Y , which are invariant under the transformation (X,Y ) → (HXH ′,HYH ′),
H ∈ O(p). For properties and applications of invariant polynomials we refer to Davis [9, 10],
Chikuse [5] and Nagar and Gupta [28]. Let κ, λ, φ and ρ be ordered partitions of non-negative
integers k, `, f = k + ` and r, respectively, into not more than p parts. Then

Cκ,λ
φ (X,X) = θκ,λ

φ Cφ(X) , θκ,λ
φ =

Cκ,λ
φ (Ip, Ip)

Cφ(Ip)
,(2.5)

Cκ,λ
φ (X, Ip) = θκ,λ

φ

Cφ(Ip) Cκ(X)
Cκ(Ip)

, Cκ,λ
φ (Ip,Y ) = θκ,λ

φ

Cφ(Ip) Cλ(X)
Cλ(Ip)

,(2.6)

Cκ,0
κ (X,Y ) ≡ Cκ(X) , C0,λ

λ (X,Y ) ≡ Cλ(Y )

and

Cκ(X)Cλ(Y ) =
∑

φ∈κ·λ
θκ,λ
φ Cκ,λ

φ (X,Y ) ,(2.7)

where φ ∈ κ · λ signifies that irreducible representation of Gl(p,R) indexed by 2φ, occurs in
the decomposition of the Kronecker product 2κ⊗2λ of the irreducible representations indexed
by 2κ and 2λ. Further,∫

R>0
etr(−CR) det(R)t−(p+1)/2Cκ,λ

φ

(
ARA′,BRB′) dR =

= Γp(t, φ) det(C)−tCκ,λ
φ

(
AC−1A′,BC−1B′) ,(2.8)

∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ (R, Ip−R) dR =

=
Γp(t, κ) Γp(u, λ)

Γp(t+ u, φ)
θκ,λ
φ Cφ(Ip)(2.9)

and ∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ (AR,BR) dR =

=
Γp(t, φ) Γp(u)
Γp(t+ u, φ)

Cκ,λ
φ (A,B) .(2.10)

In expressions (2.8), (2.9) and (2.10), Γp(a, ρ) is defined by

Γp(a, ρ) = (a)ρ Γp(a) .(2.11)

Note that Γp(a, 0) = Γp(a), which is the multivariate gamma function.
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Let A, B, X and Y be p× p symmetric matrices. Then∫
H∈O(p)

Cκ,λ
φ

(
AH ′XH,BH ′Y H

)
[dH] =

Cκ,λ
φ (A,B)Cκ,λ

φ (X,Y )

θκ,λ
φ Cφ(Ip)

,(2.12)

where [dH] is the unit invariant Haar measure. The above result is a generalization of Davis
[10, Eq. 5.4] and is due to Dı́az-Garćıa [11]. Finally, using (2.9) and (2.12), it is straightforward
to see that∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ

(
AR,B (Ip−R)

)
dR =

=
Γp(t, κ) Γp(u, λ)

Γp(t+ u, φ)
Cκ,λ

φ (A,B) .(2.13)

Definition 2.1. The n× p random matrix X is said to have a matrix variate normal
distribution with n× p mean matrix M and np× np covariance matrix Ω⊗Σ, denoted by
X ∼ Nn,p (M ,Ω⊗Σ), if its probability density function (p.d.f) is given by (Gupta and Nagar
[14])

(2π)−np/2 det(Ω)−p/2 det(Σ)−n/2 exp
{
−1

2
tr
[
Ω−1(X−M)Σ−1(X−M)′

]}
,

X ∈ Rn×p, M ∈ Rn×p ,

where Σ(p×p) > 0 and Ω(n×n) > 0.

If X∼ Nn,p (M ,Ω⊗Σ), then the characteristic function of X is

φX(Z) = E
[
exp

(
tr
(
ιZ ′X

))]
= exp

[
tr
(
ιZ ′M − 1

2
Z ′ΩZΣ

)]
, Z ∈ Rn×p , ι =

√
−1 .

The present paper has been organized in the following sections. In Section 3, a new
generalized matrix gamma (GMG) distribution has been defined. Some important properties
of this newly defined distribution are given in Section 4. In Section 5, using the conditioning
approach for the matrix variate normal distribution, a new matrix t type family of distribu-
tions is introduced. Some important statistical characteristics of this family are studied in
Section 6. A Bayesian application is given in Section 7. The paper is concluded in Section 8.

3. GENERALIZED MATRIX GAMMA DISTRIBUTION

Recently, Nagar et al. [30] defined a generalized matrix variate gamma distribution by
generalizing the multivariate gamma function. We also refer to Nagar et al. [29] for further
generalizations. In this paper, by incorporating an additional factor in the p.d.f, we give a
generalization of the matrix variate gamma distribution (Das and Dey [6], Iranmanesh et al.

[17]).
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In the following we provide the reader with the definition of the generalized matrix
variate gamma distribution.

Definition 3.1. A random symmetric matrix X of order p is said to have a gener-
alized matrix gamma (GMG) distribution with parameters α, β, k, Σ and U , denoted by
X∼ GMGp (α, β, k,Σ,U), if its p.d.f is given by

C(α, β, k,Σ,U) etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k , X > 0 ,(3.1)

where α > (p− 1)/2, β > 0, Σ > 0, U > 0, k ∈ N0 and C (α, β, k,Σ,U) is the normalizing
constant.

By integrating the p.d.f of X over its support set, the normalizing constantC(α,β,k,Σ,U)
can be evaluated as[

C(α, β, k,Σ,U)
]−1 =

∫
X>0

etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k
dX

= βpα+k Γp(α) det(Σ)α
∑

κ

(α)κCκ(UΣ) ,(3.2)

where the last line has been obtained by using (2.3).

The distribution given by the p.d.f (3.1) is a generalization of the matrix variate gamma
distribution (Das and Dey [6], Iranmanesh et al. [17]). For U = Σ−1, the p.d.f in (3.1)
simplifies to

etr
(
−Σ−1X/β

)
det(X)α−(p+1)/2

[
tr
(
Σ−1X

)]k
βαp+k(αp)k Γp(α) det(Σ)α

, X > 0 .(3.3)

Further, for U = 0 or k = 0 the p.d.f (3.1) reduces to the matrix variate gamma p.d.f given
by

etr
(
−Σ−1X/β

)
det(X)α−(p+1)/2

βαp Γp(α) det(Σ)α
, X > 0 .(3.4)

By suitably choosing β we can derive a number of special cases of (3.3). If we choose α = n/2
and β = 2, then X has a generalized Wishart distribution with p.d.f

etr
(
−Σ−1X/2

)
det(X)n/2−(p+1)/2

[
tr
(
Σ−1X

)]k
2np/2+k Γp(n/2) (np/2)k det(Σ)n/2

, X > 0 .(3.5)

Note that n is a positive integer, generally considered as the sample size. If we choose Σ = Ip,
β = 2 and p = 1 in (3.3), then the scalar variable X follows a chi-square distribution with
n+ 2k degrees of freedom. Further, if we take p = 1 and β = 1 in (3.3), then the scalar
variable X follows a univariate gamma distribution with shape parameter α+ k and scale
parameter σ. Finally, for Σ = Ip and p = 1, the scalar variable X follows a univariate gamma
distribution with shape parameter α+ k and scale parameter β.

Definition 3.2. If X∼ GMGp (α, β, k,Σ,U) then X−1 is said to have an inverted
generalized matrix gamma (IGMG) distribution with parameters α, β, k, Σ−1 and U , denoted
by X−1∼ IGMGp

(
α, β, k,Σ−1,U

)
.
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In the following theorem, the p.d.f of the IGMG distribution is derived.

Proposition 3.1. Let X∼ GMGp (α, β, k,Σ,U). Then, Y = X−1∼ IGMGp(α, β, k,
Σ−1,U) has the p.d.f given by

(3.6) C
(
α, β, k,Σ−1,U

)
etr
(
− 1
β

ΣY −1

)
det(Y )−α−(p+1)/2

[
tr
(
Y −1U

)]k
, Y > 0 ,

where α > (p− 1)/2, β > 0, Σ > 0, U > 0, k ∈ N0 and C
(
α, β, k,Σ−1,U

)
is the normalizing

constant.

Proof: The proof follows from the fact that the Jacobian of the transformation Y =
X−1 is given by J (X → Y ) = det(Y )−(p+1).

By taking U = Σ, α = n/2 and β = 2 in (3.6), the inverted generalized Wishart p.d.f
can be obtained as

(3.7)
etr
(
−ΣY −1/2

)
det(Y )−n/2−(p+1)/2

[
tr
(
ΣY −1

)]k
2np/2+k Γp(n/2) (np/2)k det(Σ)−n/2

, Y > 0 .

4. PROPERTIES OF GMG AND IGMG DISTRIBUTIONS

In this section, various properties of the GMG and IGMG distributions are derived.

Proposition 4.1. Let X∼GMGp (α, β, k,Σ,U). Then, the Laplace transform of X is

(4.1) ϕX(T ) = det(Ip + βΣT )−α

∑
κ(α)κCκ

(
U
(
βT + Σ−1

)−1
)

∑
κ(α)κCκ(UΣ)

,

where T is a complex symmetric matrix of order p with Re(T ) > 0.

Proof: By definition, we have

ϕX(T ) = E
[
exp
(
− tr(TX)

)]
= C (α, β, k,Σ,U)

∫
X>0

etr
[
−X

(
T +

1
β

Σ−1

)]
det(X)α−(p+1)/2

[
tr(XU)

]k
dX .

Now, evaluating the above integral by using (3.2) and simplifying the resulting expression,
we get the desired result.
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Corollary 4.0.1. Let X∼ GMGp (α, β, k,Σ,U). Then the characteristic function of

X is

(4.2) ψX(T ) = det(Ip − ι βΣT )−α

∑
κ(α)κCκ

(
UΣ (Ip − ι βT Σ)−1

)
∑

κ(α)κCκ(UΣ)
,

where ι=
√
−1, T is a symmetric positive definite matrix of order p with T = ((1+ δij) tij/2)

and δij is the Kronecker delta.

Proposition 4.2. If X∼ GMGp (α, β, k,Σ,U), then for a p× p non-singular constant

matrix A, we have

AXA′ ∼ GMGp

(
α, β, k,AΣA′,

(
A−1

)′
UA−1

)
.

Proposition 4.3. Let X∼ GMGp(α, β, k,Σ,U). Then

E
[
det(X)h

]
= det(βΣ)h Γp(α+ h)

Γp(α)

∑
κ(α+ h)κCκ(UΣ)∑

κ(α)κCκ(UΣ)
.

Proof: By definition

E
[
det(X)h

]
= C (α, β, k,Σ,U)

∫
X>0

etr
(
− 1
β

Σ−1X

)
det(X)α+h−(p+1)/2

[
tr(XU)

]k
dX

=
C (α, β, k,Σ,U)

C (α+ h, β, k,Σ,U)
.

Now, simplification of the above expression yields the desired result.

Proposition 4.4. If X∼ GMGp

(
α, β, k,Σ,Σ−1

)
. Then

E
[
det(X)h

]
= det(βΣ)h Γp(α+ h)

Γp(α)
(αp+ hp)k

(αp)k
.

In order to find the expectation of the trace of a GMG random matrix, it is useful to
find the expectation of zonal polynomials, which is derived below.

Theorem 4.1. Let X∼ GMGp (α, β, k,Σ,U) and B be a constant symmetric matrix

of order p. Then

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U) βpα+t+k det(Σ)α

∑
κ

∑
φ∈κ·τ

θκ,τ
φ Γp(α, φ)Cκ,τ

φ (UΣ,BΣ) .

Proof: By definition, we have

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U)

×
∫

X>0
etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k
Cτ (XB) dX .
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Now, writing [
tr(XU)

]k
Cτ (XB) =

∑
κ

Cκ(XU)Cτ (XB)

=
∑

κ

∑
φ∈κ·τ

θκ,τ
φ Cκ,τ

φ (XU ,XB) ,

where we have used (2.7), and integrating X by using (2.8), we obtain

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U)

∑
κ

∑
φ∈κ·τ

θκ,τ
φ

×
∫

X>0
etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2Cκ,τ

φ (XU ,XB) dX

= C(α, β, k,Σ,U) det(βΣ)α
∑

κ

∑
φ∈κ·τ

θκ,τ
φ Γp(α, φ)Cκ,τ

φ (βUΣ, βBΣ) .

Now, the result follows from the fact that

Cκ,τ
φ (βUΣ, βBΣ) = βk+tCκ,τ

φ (UΣ,BΣ) .

Theorem 4.2. Let Y ∼ IGMGp (α, β, k,Ψ,U). Then, the Laplace transform of Y is

given by

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
det(T )α

[
dk

dzk
Bα

(
T
(
β−1Ψ− zU

))]
z=0

,(4.3)

where T is a complex symmetric matrix of order p with Re(T ) > 0 and Bδ(·) is the Bessel

function of matrix argument (Herz [16]) given by

(4.4) Bδ(WZ) = det(W )−δ

∫
S>0

det(S)δ−(p+1)/2 etr
(
−SZ − S−1W

)
dS .

Proof: The Laplace transform of Y , denoted by ϕY (T ) can be derived as

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
×
∫

Y >0
etr(−TY ) etr

(
− 1
β

ΨY −1

)
det(Y )−α−(p+1)/2

[
tr
(
Y −1U

)]k
dY .(4.5)

Note that we can write

(4.6)
[
tr
(
Y −1U

)]k =
[
dk

dzk
exp

[
z tr
(
Y −1U

)]]
z=0

.

Now, substituting (4.6) in (4.5), we have

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
×
[
dk

dzk

∫
Y >0

etr(−TY ) etr
[
−
(
β−1Ψ− zU

)
Y −1

]
det(Y )−α−(p+1)/2 dY

]
z=0

= C
(
α, β, k,Ψ−1,U

)
×
[
dk

dzk

∫
Y >0

etr
[
−TY −1−

(
β−1Ψ− zU

)
Y
]

det(Y )α−(p+1)/2 dY

]
z=0

.(4.7)

Finally, using (4.4) in (4.7), we get the desired result.
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Proposition 4.5. Let Y ∼ IGMGp (α, β, k,Ψ,U). Then

E
[
det(Y )h

]
=

det(Ψ)h Γp(α− h)
βph Γp(α)

∑
κ(α− h)κCκ

(
UΨ−1

)∑
κ(α)κCκ(UΨ−1)

, Re(α− h) >
p− 1

2
.

Proof: By definition,

E
[
det(Y )h

]
= C

(
α, β, k,Ψ−1,U

)
×
∫

Y >0
etr
(
−β−1ΨY −1

)
det(Y )−(α−h)−(p+1)/2

[
tr
(
Y −1U

)]k
dY

=
C
(
α, β, k,Ψ−1,U

)
C (α− h, β, k,Ψ−1,U)

, Re(α− h) >
p− 1

2
.

Now, the desired result is obtained by simplifying the above expression.

Proposition 4.6. Let Y ∼ IGMGp (α, β, k,Ψ,U) and A be a constant symmetric ma-

trix of order p. Then AYA′ ∼ IGMGp (α, β, k,AΨA′,AUA′).

Proof: The Jacobian of the transformation Z = AYA′ is J(Y →Z) = det(A)−(p+1).
Substituting appropriately in the p.d.f of Y , we get the desired result.

Theorem 4.3. Let the p× p random symmetric matrices X1 and X2 be independent,

X1∼ GMGp (α1, β, k,Σ,U) and X2 ∼ GMGp (α2, β, l,Σ,U). Define R = (X1 + X2)
−1/2

×X1 (X1 + X2)
−1/2 and S = X1 + X2. The p.d.f of S is given by

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 ×

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ

Γp (α1, κ) Γp (α1, λ)
Γp (α1 + α2, φ)

Cκ,λ
φ (SU ,SU) , S > 0 .

Further, for U = Ip, the p.d.f of R is given by

C (α1, β, k,Σ, Ip) C (α2, β, l,Σ, Ip) det(βΣ)α1+α2 det(R)α1−(p+1)/2 det(Ip−R)α2−(p+1)/2 ×

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Γp (α1 + α2, φ) Cκ,λ

φ

(
βΣR, βΣ (Ip−R)

)
, 0<R< Ip .

Proof: The joint p.d.f of X1 and X2 is given by

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1 (X1+X2)

]
×

× det(X1)
α1−(p+1)/2 det(X2)

α2−(p+1)/2 [tr(X1U)
]k [tr(X2U)

]l , X1 > 0, X2 > 0 .

Transforming R = (X1 + X2)
−1/2 X1 (X1 + X2)

−1/2 and S = X1 + X2 with the Jacobian
J (X1,X2→R,S) = det(S)(p+1)/2 in the joint p.d.f of X1 and X2, the joint p.d.f of R and S

can be derived as

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 det(R)α1−(p+1)/2 ×

× det(Ip−R)α2−(p+1)/2 [tr(S1/2RS1/2U
)]k [

tr
(
S1/2 (Ip−R) S1/2U

)]l
,(4.8)
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where S > 0 and 0 < R < Ip. Now, writing

[
tr
(
S1/2RS1/2U

)]k [
tr
(
S1/2 (Ip −R) S1/2U

)]l
=

=
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Cκ,λ

φ

(
S1/2US1/2R, S1/2US1/2 (Ip −R)

)
in (4.8), the joint p.d.f of R and S can be re-written as

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 ×

× det(R)α1−(p+1)/2 det(Ip −R)α2−(p+1)/2

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Cκ,λ

φ

(
S1/2US1/2R, S1/2US1/2 (Ip −R)

)
,(4.9)

where S > 0 and 0 < R < Ip. Finally, integrating the above expression with respect to R

by using (2.13), we get the p.d.f of S. Further, substituting U = Ip in the above expression
and integrating S by using (2.8), we get the p.d.f of R.

5. FAMILY OF GENERALIZED MATRIX VARIATE t-DISTRIBUTIONS

In this section, a new family of matrix variate t distributions is introduced. This
distribution will be useful in Bayesian analysis.

Definition 5.1. The n× p random matrix T is said to have a generalized matrix
variate t distribution (GMT) with parameters M ∈ Rn×p, Ψ(p×p) > 0, Ω(n×n) > 0,
U(p×p) > 0, α > (p− 1)/2, β > 0, κ = (k1, ..., kp), k1 ≥ ··· ≥ kp ≥ 0, if its p.d.f is given
by

det(Ω)−p/2 det(Ψ)−n/2 Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ(UΨ−1)

(
β

2π

)np/2

×

× det
(

In +
β

2
Ω−1(T−M)Ψ−1(T−M)′

)−(α+n/2)

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
(T−M)′ Ω−1(T−M)

)−1
)

, T ∈ Rn×p .(5.1)

We shall use the notation T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U).

For β = 2, α = (m+ p− 1)/2 and k = 0, the GMT distribution simplifies to the matrix
variate t distribution (Gupta and Nagar [14]). Further, for k = 0, the GMT simplifies to the
generalized matrix variate t distribution defined by Iranmanesh et al. [19].

Theorem 5.1. Let X |Σ ∼ Nn,p (0,Ω⊗Σ) and Σ ∼ IGMGp (α, β, k,Ψ,U). Then,

X∼ GMTn,p (α, β, k,0,Ω,Ψ,U).
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Proof: Let g(X |Σ) be the conditional p.d.f of X given Σ. Further, let h(Σ) be the
marginal p.d.f of Σ. Then, using conditional method, we find the marginal p.d.f of X as

f(X) =
∫
Σ>0

g(X |Σ)h(Σ) dΣ .

Now, substituting for g(X|Σ) and h(Σ) above, we get the marginal p.d.f of X as

f(X) = (2π)−np/2 det(Ω)−p/2C
(
α, β, k,Ψ−1,U

)
×
∫
Σ>0

etr
[
− 1
β

(
Ψ +

β

2
X ′Ω−1X

)
Σ−1

]
det(Σ)−α−(n+p+1)/2

[
tr
(
Σ−1U

)]k
dΣ.

Further, substituting Σ−1 = Z with the Jacobian J(Σ → Z) = det(Z)−(p+1) in the above
integral and using (3.2), we get

f(X) = (2π)−np/2 det(Ω)−p/2 C
(
α, β, k,Ψ−1,U

)
C
(
α+ n/2, β, k, (Ψ + βX ′Ω−1X/2)−1 ,U

) .
Finally, simplifying the above expression, we get

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

In +
β

2
Ω−1XΨ−1X ′

)−(α+n/2)

×

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
X ′Ω−1X

)−1
)
, X ∈ Rn×p,

which is the desired result.

Next, in Corollary 5.1.1, Corollary 5.1.2 and Theorem 5.2, we give three different vari-
ations of the above theorem.

Corollary 5.1.1. Let Y |Σ ∼ Np,n (0,Σ⊗Ω) and Σ ∼ IGMGp (α, β, k,Ψ,U). Then,

the marginal p.d.f of Y is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

Ip +
β

2
Ψ−1Y Ω−1Y ′

)−(α+n/2)

×

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
Y Ω−1Y ′

)−1
)
, Y ∈ Rp×n.

Proof: Take Y = X ′ in Theorem 5.1.

Corollary 5.1.2. Let X|Ω ∼ Nn,p (0,Ω⊗Σ) and Ω ∼ IGMGn (α, β, k,Ψ,U). Then,

the marginal p.d.f of X is

det(Σ)−n/2 det(Ψ)−p/2Γn(α+ p/2)
Γn(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

In +
β

2
Ψ−1XΣ−1X ′

)−(α+p/2)

×

×
∑

κ

(
α+

p

2

)
κ
Cκ

(
U

(
Ψ +

β

2
XΣ−1X ′

)−1
)
, X ∈ Rn×p.

Proof: This result can be obtained from Corollary 5.1.1.
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Theorem 5.2. Let Y |Ω ∼ Np,n (0,Σ⊗Ω) and Ω ∼ IGMGn (α, β, k,Ψ,U). Then,

Y ∼ GMTp,n (α, β, k,0,Σ,Ψ,U).

Proof: Let g(Y |Ω) be the conditional p.d.f of Y given Ω. Further, let h(Ω) be the
marginal p.d.f of Ω. Then, using conditional method, we find the marginal p.d.f of Y as

fY (Y ) =
∫
Ω>0

g(Y |Ω)h(Ω) dΩ.

Now, substituting for g(Y |Ω) and h(Ω) above, we get the marginal p.d.f of Y as

fY (Y ) = (2π)−np/2 det(Σ)−n/2C
(
α, β, k,Ψ−1,U

)
×
∫
Ω>0

etr
[
− 1
β

(
Ψ +

β

2
Y ′Σ−1Y

)
Ω−1

]
det(Ω)−α−(n+p+1)/2

[
tr
(
Ω−1U

)]k
dΩ.

Further, substituting Ω−1 = Z with the Jacobian J(Ω → Z) = det(Z)−(p+1) in the above
integral and using (3.2), we get

fY (Y ) = (2π)−np/2 det(Σ)−n/2 C
(
α, β, k,Ψ−1,U

)
C
(
α+ p/2, β, k, (Ψ + βY ′Σ−1Y /2)−1 ,U

) .
Finally, simplifying the above expression, we get the desired result.

6. SOME PROPERTIES OF THE GMT FAMILY OF DISTRIBUTIONS

In this section, various properties of the GMT distribution are derived.

Proposition 6.1. Let T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U). Let A(n×n) and B(p× p)
be constant nonsingular matrices. Then, ATB ∼ GMTn,p(α, β, k,AMB,AΩA′,B′ΨB,

B′UB).

Proof: Transforming W = ATB, with the Jacobian J(T →W ) = det(A)−p det(B)−n,
in the p.d.f (5.1) of T , and simplifying the resulting expression, we get the result.

Corollary 6.0.1. If T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U), then

Ω−1/2TB ∼ GMTn,p

(
α, β, k,Ω−1/2MB, In,B

′ΨB,B′UB
)
,

ATΨ−1/2 ∼ GMTn,p

(
α, β, k,AMΨ−1/2,AΩA′, Ip,Ψ−1/2UΨ−1/2

)
and

Ω−1/2TΨ−1/2 ∼ GMTn,p

(
α, β, k,Ω−1/2MΨ−1/2, In, Ip,Ψ−1/2UΨ−1/2

)
.
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Proposition 6.2. If T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U), then for n ≥ p, the p.d.f of

Z = (T −M)′Ω−1(T −M) is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(n/2)Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2

)np/2

det(Z)(n−p−1)/2×

× det
(

Ip +
β

2
Ψ−1Z

)−(α+n/2)∑
κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
Z

)−1
)
, Z > 0.(6.1)

Proof: The p.d.f of Z is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2∑
κ

(
α+

n

2

)
κ
×

×
∫

(T−M)′Ω−1(T−M)=Z
det
(

Ip +
β

2
Ψ−1(T −M)′Ω−1(T −M)

)−(α+n/2)

×Cκ

(
U

(
Ψ +

β

2
(T −M)′Ω−1(T −M)

)−1
)
dZ, Z > 0.

Now, evaluating the above integral by using Theorem 1.4.10 of Gupta and Nagar [14], we get
the result.

The following result is a generalization of the work of Dickey [12].

Theorem 6.1. Let X∼Nn,p (0,Ω⊗ Ip), independent of S ∼ GMGp

(
α, β, k,Λ−1,U

)
.

Define T = XS−1/2 +M , where M is an n× p constant matrix and S1/2
(
S1/2

)′
= S. Then,

the p.d.f of T is given by

det(Ω)−p/2 det(Λ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΛ−1)

(
β

2π

)np/2

×

× det
(

Ip +
β

2
Λ−1(T −M)′Ω−1(T −M)

)−(α+n/2)

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Λ +

β

2
(T −M)′Ω−1(T −M)

)−1
)
, T ∈ Rn×p.

Proof: The joint p.d.f of X and S is given by

(2π)−np/2 det(Ω)−p/2 det(Λ)α

βpα+kΓp(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α−(p+1)/2 [tr(SU)]k ×

× exp
[
− tr

(
1
β
ΛS +

1
2
X ′Ω−1X

)]
, S > 0, X ∈ Rn×p.

Now, let T = XS−1/2 + M . The Jacobian of this transformation is J(X → T ) = det(S)n/2.
Substituting for X in terms of T in the joint p.d.f of X and S, and multiplying the resulting
expression by J(X → T ), we get the joint p.d.f of T and S as

(2π)−np/2 det(Ω)−p/2 det(Λ)α

βpα+kΓp(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α+n/2−(p+1)/2 [tr(SU)]k ×

× etr
[
− 1
β

(
Λ +

β

2
(T −M)′Ω−1(T −M)

)
S

]
, S > 0, T ∈ Rn×p.
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Now, integrating out S by using (3.2) and simplifying the resulting expression the p.d.f of T

is obtained.

Theorem 6.2. Let X∼Nn,p (0, In ⊗Σ), independent of S∼GMGn

(
α, β, k,Λ−1,U

)
.

Define T =
(
S−1/2

)′
X + M , where M is an n× p constant matrix and S1/2

(
S1/2

)′
= S.

Then, the p.d.f of T is

det(Σ)−n/2 det(Λ)−p/2Γn(α+ p/2)
Γn(α)

∑
κ(α)κCκ (UΛ−1)

(
β

2π

)np/2

×

× det
(

In +
β

2
Λ−1(T −M)Σ−1(T −M)′

)−(α+p/2)

×
∑

κ

(
α+

p

2

)
κ
Cκ

(
U

(
Λ +

β

2
(T −M)Σ−1(T −M)′

)−1
)
, T ∈ Rn×p.

Proof: The joint p.d.f of X and S is given by

(2π)−np/2 det(Σ)−n/2 det(Λ)α

βnα+kΓn(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α−(n+1)/2 [tr(SU)]k ×

× exp
[
− tr

(
1
β
ΛS +

1
2
XΣ−1X ′

)]
, S > 0, X ∈ Rn×p.

Now, let T =
(
S−1/2

)′
X +M . The Jacobian of the transformation is J(X → T ) = det(S)p/2.

Substituting for X in terms of T in the joint p.d.f of X and S, and multiplying the resulting
expression by J(X → T ), we get the joint p.d.f of T and S as

(2π)−np/2 det(Σ)−n/2 det(Λ)α

βnα+kΓn(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α+p/2−(n+1)/2 [tr(SU)]k ×

× etr
[
−
(

1
β
Λ +

1
2
(T −M)Σ−1(T −M)′

)
S

]
, S > 0, X ∈ Rn×p.

Now, integrating out S by using (3.2) and simplifying the resulting expression, the p.d.f of
T is obtained.

7. APPLICATIONS IN BAYESIAN ANALYSIS

As in Iranmanesh et al. [17], consider the Kullback-Leibler divergence loss (KLDL)
function log

(
π(A|D)
π(Σ|D)

)
with the posterior expected loss function

ρ(Σ,A) = E

[
log
(
π(A|D)
π(Σ|D)

)]
.

One may use the inverted generalized matrix gamma distribution as a prior distribution in
Bayesian context. It is straightforward to prove that posterior distributions are IGMG. They
are stated in Propositions 7.1 and 7.2 without proof.
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Proposition 7.1. Let X|Σ ∼ Nn,p (0,Ω⊗Σ). Further suppose that the prior distri-

bution of Σ is IGMG with parameters (α, β, k,Ψ,U). Then, the posterior distribution of Σ
is IGMG with parameters(
α+ n/2, β, k,

(
Ψ + βX ′Ω−1X/2

)−1
,U
)
. That is, the posterior p.d.f of Σ is

π(Σ|X) = C

(
α+

n

2
, β, k,

(
Ψ +

β

2
X ′Ω−1X

)−1

,U

)

× etr
[
− 1
β

(
Ψ +

β

2
X ′Ω−1X

)
Σ−1

]
det(Σ)−α−(n+p+1)/2

[
tr
(
Σ−1U

)]k
, Σ > 0.

Proposition 7.2. Let X|Σ ∼ Nn,p (0,Ω⊗Σ). Further suppose that the prior distri-

bution of Ω is IGMG with parameters (α, β, k,Ψ,U). Then, the posterior distribution of Ω
is IGMG with parameters

(
α+ p/2, β, k,

(
Ψ + βXΣ−1X ′/2

)−1
,U
)
. That is, the posterior

p.d.f of Ω is

π(Ω|X) = C

(
α+

p

2
, β, k,

(
Ψ +

β

2
XΣ−1X ′

)−1

,U

)

× etr
[
− 1
β

(
Ψ +

β

2
XΣ−1X ′

)
Ω−1

]
det(Ω)−α−(n+p+1)/2

[
tr
(
Ω−1U

)]k
, Ω > 0.

By definition, the Bayes estimator of Σ, under the KLDL function, is given by Σ̂ =
argmaxΣ π(Σ|X). Iranmanesh et al. [19] have shown that

Σ̂ = [α+ n/2 + (p+ 1)/2]−1

(
1
2
X ′Ω−1X +

1
β
Ψ
)

for the special case k = 0.

8. CONCLUSION

In this paper, a generalized matrix variate gamma distribution has been introduced.
The corresponding inverted matrix variate gamma distribution has also been derived. By
making use of this newly defined matrix variate distribution as the prior for the characteristic
matrix of a matrix variate normal distribution, using conditioning approach, a family of
generalized matrix variate t distributions has also been defined.

A future work is to consider estimation of the newly introduced matrix variate distribu-
tions. One issue is that the new distributions are over parameterized; that is, there is param-
eter redundancy. This can be accounted for numerically by constrained maximization of the
log likelihood. For example, if the data follow the overparameterized p.d.f ab exp(−abx) then
the log likelihood can be maximized using the constraint ab = c. Usually, partial derivatives of
the log likelihood are not required for evaluating maximum likelihood estimates numerically.
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