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Abstract:

• In this paper, we obtain the point and interval estimates of the stress-strength parameter under
the hybrid progressive censored scheme, when stress and strength are considered as two indepen-
dent random variables of Kumaraswamy. We solve the problem in three cases, as follows: First,
assuming that stress and strength have different first shape parameters and the common second
shape parameter, we obtain maximum likelihood estimation (MLE), approximation maximum like-
lihood estimation (AMLE) and two Bayesian approximation estimates due to the lack of explicit
forms. Also, we construct the asymptotic and highest posterior density (HPD) intervals for R.
Moreover, we consider the existence and uniqueness of the MLE. Second, assuming that common
second shape parameter is identified, we derive the MLE and exact Bayes estimate of R. Third,
assuming that all parameters are unknown and different, we achieve the statistical inference of R,
namely MLE, AMLE and Bayesian inference of R. Furthermore, we apply the Monte Carlo simu-
lations for comparing the performance of different methods. Finally, we analyze two data sets for
illustrative purposes.
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1. INTRODUCTION

One of the most interesting problems in reliability theory, is inference of the stress-
strength parameter, R = P (X < Y ). The variables Y and X are known as strength and
stress, respectively. In one system, if the applied stress is greater than its strength, as a
result the system fails. In statistical science, more attention has been paid to the estimation
of R since 1956, beginning with the work of Birnbaum [3]. From that time, estimating the R

have been done from the frequentist and Bayesian viewpoints. Recently, some studies about
the stress-strength model can be found in Rezaei et al. [21], Babayi et al. [2], Nadar et al. [18]
and Kizilaslan and Nadar [8].

Although, in the complete sample case, many authors have been investigated the stress-
strength models, they did not pay attention to the censored sample case. Whereas in really
applicable situations, for many reasons like financial plane or limited time, the researchers
confront censored data.

Among various censoring schemes, Type-I and Type-II are the two most fundamental
schemes, which can be explained as follows. We finish the test in a pre-selected time and
pre-chosen number of failures, in Type-I and Type-II schemes, respectively. Also, we finish
the test at time T ∗ = min{Xm:n, T}, where Xm:n is the m-th failure times from n items and
T > 0, in the hybrid scheme, which has been indicated by Epstein [5]. Also, In hybrid scheme,
Singh and Goel [24] obtained reliability estimation of modified Weibull distribution. Because
in the hybrid scheme, the removal of active units cannot be lost during the test, hybrid pro-
gressive (HP) scheme is introduced by Kundu and Joarder [14], which can be described as
follows. Let N units be put on the test with censoring scheme (R1, ..., Rn) and pausing time
T ∗ = min{Xn:n:N , T}, where X1:n:N ≤ ... ≤ Xn:n:N be a progressive censoring scheme and
T > 0 is a fixed time. It is obvious that if Xn:n:N < T then we finish the test at time Xn:n:N

and {X1:n:N , ..., Xn:n:N} is the observed sample. Otherwise, if XJ :n:N < T < XJ+1:n:N then
we finish the test at time T and {X1:n:N , ..., XJ :n:N} is the observed sample. In symbol, we
say that {X1:n:N , ..., XJ :n:N} is a HP censoring sample with scheme {N,n, T, J,R1, ..., RJ}.
Recently, some of the authors have studied the stress-strength model and censored data.
For example, Shoaee and Khorram considered stress-strength reliability of a two-parameter
bathtub-shaped lifetime distribution with respect to progressively censored samples, [22].
Also, they obtained some statistical inference of R = P (Y < X) for Weibull distribution un-
der Type-II progressively hybrid censored data, [23]. Kohansal [9] considered estimation of
multicomponent stress-strength reliability for Kumaraswamy distribution under progressive
censoring. Rasethuntsa and Nadar [20] studied stress-strength reliability of a non-identical-
component-strengths system based on upper record values from the family of Kumaraswamy
generalized distributions. Very recently, Maurya and Tripathi [17] derived the reliability
estimation in a multicomponent stress strength model for Burr XII distribution under pro-
gressive censoring. In addition, Kohansal [10] obtained Bayesian and classical estimation
of R = P (X < Y ) based on Burr type XII distribution under hybrid progressive censored
samples. Kohansal and Rezakhah [12] considered the inference of R = P (Y < X) for two-
parameter Rayleigh distribution in terms of progressively censored samples. Ahmadi and
Ghafouri [1] obtained the reliability estimation in a multicomponent stress-strength model
under generalized half-normal distribution based on progressive Type-II censoring. Further-
more, Kohansal and Shoaee [13] derived Bayesian and classical estimation of reliability in
a multicomponent stress-strength model under adaptive hybrid progressive censored data.
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Finally, Kohansal and Nadarajah [11] estimated the stress-strength parameter based on
Type-II hybrid progressive censored samples for a Kumaraswamy distribution. In this study,
based on HP censoring scheme, the reliability parameter R = P (X < Y ) is estimated when
X and Y are two independent random variables from the Kumaraswamy distribution (KuD).
This paper has also some contribution in terms of inference. We consider the different point
and interval estimations of R, and all of these estimates are considered in Bayesian and classi-
cal viewpoints. Also, we investigate the problem in three different cases, first at the time that
X and Y have the unknown common one parameter, secondly when have known common
one parameter, and third when they have different unknown parameters. Moreover, as the
HP censoring is a general scheme, so we can obtain from it, some cases that are considered
(up to now).

KuD with the first and second shape parameters α and λ, respectively, which is denoted
by Ku(α, λ), has the probability density function (pdf), cumulative distribution function (cdf)
and failure rate function as follows:

f(x) = αλxλ−1(1− xλ)α−1, 0 < x < 1, α, λ > 0,

F (x) = 1− (1− xλ)α, 0 < x < 1, α, λ > 0,

H(x) =
αλxλ−1

1− xλ
, 0 < x < 1, α, λ > 0,

respectively. The probability density and failure rate functions of KuD are presented in
Figure 1. KuD has an increasing failure rate function, so the KuD can be used for analyzing
the real data sets if the empirical consideration suggests that the failure rate function of the
prior distribution is increasing. Moreover, KuD is the very appropriate fit to many natural
phenomena, which their outcomes have lower and upper bounds, such as the heights of
individuals, scores obtained on a test, atmospheric temperatures, hydrological data, economic
data, etc.
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Figure 1: Shape of probability density (right) and failure rate (left) functions of KuD when λ = 2.

The other parts of this paper are arranged as follows: In Section 2, under the
HP censoring scheme, assuming X ∼ Ku(α, λ) and Y ∼ Ku(β, λ), we obtain the point
and interval estimates of R = P (X < Y ), from the frequentist and Bayesian viewpoints.



54 A. Kohansal

More specifically, in Section 2, the existence and uniqueness of MLEs are considered. Because
the MLEs of unknown parameters and R cannot be earned in the closed forms, we obtain
the AMLEs of parameters and R, which have the explicit forms. In addition, we develop
the Bayes estimates of R, by applying Lindley’s approximation and MCMC method due to
the lack of explicit forms. Moreover, different confidence intervals such as asymptotic and
HPD intervals of R are provided. In Section 3, by assuming that the common shape param-
eter is known, the MLE and exact Bayes estimate of R are earned. Because the assumption
studied in Section 2 is quite strong, we consider the statistical inference of R in general
case. Accordingly, in Section 4, under the HP censoring scheme, assuming X ∼ Ku(α, λ1)
and Y ∼ Ku(β, λ2), we provide the MLE, AMLE and Bayes estimate of R, respectively.
In Section 5, we give the simulation results and data analysis, and following that we conclude
the paper in Section 6.

2. INFERENCE ON R WITH UNKNOWN COMMON λ

2.1. MLE of R

The stress-strength parameter, when X and Y are two independent random variables
from Ku(α, λ) and Ku(β, λ), respectively, can be obtained simply as R = P (X < Y ) = α

α+β .
In this section, under the HP censoring scheme, we derive the MLE of R. Because R is
a function of the unknown parameters, consequently at first we obtain the MLEs of α, β,
and λ. If {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censoring schemes
{N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively, after that the likelihood
function of the unknown parameters α, β and λ can be written as

L(α, β, λ) ∝
[ J1∏

i=1

f(xi)[1− F (xi)]Ri [1− F (T1)]
R∗

J1

]

×
[ J2∏

i=1

f(yj)[1− F (yj)]Sj [1− F (T2)]
S∗

J2

]
,

where

R∗
J1

= N − J1 −
J1∑
i=1

Ri, S∗J2
= M − J2 −

J2∑
j=1

Sj .

The proposed model, in association with the existing ones, has some differences and
similarities. About the differences, we notice that it is a general model and some important
models can be obtained from it. For example, by setting T1 = Xn and T2 = Ym, we derive the
likelihood function for R = P (X < Y ) in the progressive censoring scheme. Also, by setting
T1 = Xn, Ri = 0 (i = 1, ..., n− 1), Rn = N −n and T2 = Ym, Sj = 0 (j = 1, ...,m− 1), Sm =
M −m, we obtain the likelihood function for R = P (X < Y ) in Type-II censoring scheme.
Moreover, by setting T1 = Xn, Ri = 0 (i = 1, ..., n) and T2 = Ym, Sj = 0 (j = 1, ...,m), we
derive the likelihood function for R = P (X < Y ) in complete sample. About the similarities,
we identify that most of the censoring schemes have complex computational needs.
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The likelihood function, with respect to the observed data can be obtained as:

L(data|α, β, λ) ∝ αJ1βJ2λJ1+J2

(
J1∏
i=1

xλ−1
i (1− xλ

i )α(Ri+1)−1

)
(1− T λ

1 )αR∗
J1

×

 J2∏
j=1

yλ−1
j (1− yλ

j )β(Sj+1)−1

 (1− T λ
2 )βS∗

J2 .

Therefore, the log-likelihood function, along with ignoring the constant value, is as:

`(α, β, λ) = J1 log(α) +
J1∑
i=1

(α(Ri + 1)− 1) log(1− xλ
i ) + αR∗

J1
log(1− T λ

1 )

+ J2 log(β) +
J2∑

j=1

(β(Sj + 1)− 1) log(1− yλ
j ) + βS∗J2

log(1− T λ
2 )

+ (λ− 1)
J1∑
i=1

log(xi) + (λ− 1)
J2∑

j=1

log(yj) + (J1 + J2) log(λ).(2.1)

Consequently, to earn the MLEs of α, β and λ, namely, α̂, β̂ and λ̂, respectively, we should
solve the following equations:

∂`

∂α
=

J1

α
+

J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 ) = 0,(2.2)

∂`

∂β
=

J2

β
+

J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 ) = 0,(2.3)

∂`

∂λ
=

J1 + J2

λ
+

J1∑
i=1

log(xi)−
J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i

log(xi)
1− xλ

i

− αR∗
J1

T λ
1

log(T1)
1− T λ

1

+
J2∑

j=1

log(yj)−
J2∑

j=1

(
β(Sj + 1)− 1

)
yλ

j

log(yj)
1− yλ

j

− βS∗J2
T λ

2

log(T2)
1− T λ

2

= 0.(2.4)

From the equations (2.2) and (2.3), we have

α̂(λ) = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
}−1

,

β̂(λ) = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
}−1

.

Also, to derive λ̂, we apply one numerical method like Newton–Raphson on the equation
(2.4). After obtaining the MLEs of α, β, and λ, by the use of the invariance property, the
MLE of R can be derived as

(2.5) R̂MLE =
α̂

α̂ + β̂
.
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2.2. Existence and uniqueness of the MLEs

In this section, we consider the existence and uniqueness of the MLEs.

Theorem 2.1. The MLEs of the parameters α and β, which were obtained by ap-

plying the following equations, are unique:

α̂ = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
}−1

,

β̂ = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
}−1

,

and λ̂ should be obtained by finding a solution for the following equation:

G(λ) =
J1 + J2

λ
+

J1∑
i=1

log(xi)−
J1∑
i=1

(
α̂(Ri + 1)− 1

)
xλ

i

log(xi)
1− xλ

i

− α̂R∗
J1

T λ
1

log(T1)
1− T λ

1

+
J2∑

j=1

log(yj)−
J2∑

j=1

(
β̂(Sj + 1)− 1

)
yλ

j

log(yj)
1− yλ

j

− β̂S∗J2
T λ

2

log(T2)
1− T λ

2

.

Proof: See Appendix A.

2.3. AMLE of R

From Section 2.1, we observe that the MLEs of unknown parameters and R cannot
be earned in the closed forms. As a result in this section, we obtain the AMLEs of the
parameters, which have the explicit forms.

Lemma 2.1. Let Z ′ and Z ′′ be Weibull and Extreme value distributions, in symbols

Z ′ ∼ W(α, θ) and Z ′′ ∼ EV(µ, σ), if they have the following cumulative distribution functions,

respectively as:

FZ′(z) = 1− e−
xα

θ , z > 0, α, θ > 0,

FZ′′(z) = 1− e−e
x−µ

σ , z ∈ R, µ ∈ R, σ > 0.

(i) If Z ∼ Ku(α, λ) and Z ′ = (− log(1− Zλ))
1
λ , then Z ′ ∼ W(λ, 1

α).

(ii) If Z ′ ∼ W(λ, 1
α) and Z ′′ = log(Z ′), then Z ′′ ∼ EV(µ, σ), where µ = − 1

λ log(α) and

σ = 1
λ .

Proof: Obvious.
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Consider that {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censoring
schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively and

X ′
i = (− log(1−Xλ

i ))
1
λ , Ui = log(X ′

i) and Y ′
j = (− log(1− Y λ

j ))
1
λ , Vj = log(Y ′

j ).

Applying Lemma 2.1, Ui ∼ EV(µ1, σ) and Vj ∼ EV(µ2, σ), where

µ1 = − 1
λ

log(α), µ2 = − 1
λ

log(β), and σ =
1
λ

.

Therefore, in terms of the observed data {U1, ..., Un} and {V1, ..., Vm}, and by ignoring the
constant value, the log-likelihood function is as follows:

`∗(µ1, µ2, σ) =
J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

+
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)ezj − S∗J2
eδ2 − (J1 + J2) log(σ),(2.6)

where

ti =
ui − µ1

σ
, zj =

vj − µ2

σ
, δ1 =

a1 − µ1

σ
, δ2 =

a2 − µ2

σ
,

a1 = log
(
(− log(1− T λ

1 ))
1
λ
)
, a2 = log

(
(− log(1− T λ

2 ))
1
λ
)
.

Now by taking derivatives with respect to µ1, µ2 and σ from (2.6), we achieve the following
equations:

∂`∗

∂µ1
= − 1

σ

[
J1 −

J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

]
= 0,(2.7)

∂`∗

∂µ2
= − 1

σ

[
J2 −

J2∑
j=1

(Sj + 1)ezj − S∗J2
eδ2

]
= 0,(2.8)

∂`∗

∂σ
= − 1

σ

[
J1 + J2 +

J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)tieti −R∗
J1

δ1e
δ1

+
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)zje
zj − S∗J2

δ2e
δ2

]
= 0.(2.9)

To obtain the AMLEs of µ1, µ2 and σ, let

qi = 1−
n∏

j=n−i+1

j +
n∑

k=n−j+1

Rk

j + 1 +
n∑

k=n−j+1

Rk

, i = 1, ..., n, q∗J1
= 1− 1

2
(qJ1 + qJ1+1),

q̄j = 1−
m∏

i=m−j+1

i +
m∑

k=m−i+1

Sk

i + 1 +
m∑

k=m−i+1

Sk

, j = 1, ...,m, q̄∗J2
= 1− 1

2
(q̄J2 + q̄J2+1).

Also, by expanding the functions eti , ezj , eδ1 and eδ2 in Taylor series around the points

νi = log
(
− log(1− qi)

)
, ν̄j = log

(
− log(1− q̄j)

)
,

ν∗J1
= log

(
− log(1− q∗J1

)
)
, ν̄∗J2

= log
(
− log(1− q̄∗J2

)
)
,
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respectively, and keeping the first order derivatives, we have

eti = αi + βiti, ezj = ᾱj + β̄jzj , eδ1 = α∗J1
+ β∗J1

δ1, eδ2 = ᾱ∗J1
+ β̄∗J2

δ2,

where

αi = eνi(1− νi), βi = eνi , ᾱj = eν̄j (1− ν̄j), β̄j = eν̄j ,

α∗J1
= e

ν∗J1 (1− ν∗J1
), β∗J1

= e
ν∗J1 , ᾱ∗J2

= e
ν̄∗J2 (1− ν̄∗J2

), β̄∗J2
= e

ν̄∗J2 .

Now, if we apply the linear approximations in equations (2.7)–(2.9) and solve them, then the
AMLEs of µ1, µ2, and σ, say µ̃1, µ̃2 and σ̃, respectively, can be resulted from the following
equation:

µ̃1 = A1 − σ̃B1, µ̃2 = A2 − σ̃B2,

σ̃ =
−(D1 + D2) +

√
(D1 + D2)2 + 4(C1 + C2)(E1 + E2)

2(C1 + C2)
,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given in details in Appendix B. After
deriving µ̃1, µ̃2 and σ̃, the AMLEs of α, β, and λ, say α̃, β̃ and λ̃, respectively, can be
evaluated through

α̃ = e−
µ̃1
σ̃ , β̃ = e−

µ̃2
σ̃ , λ̃ =

1
σ̃

.

So, the AMLE of R, namely R̃, is

(2.10) R̃ =
α̃

α̃ + β̃
.

2.4. Asymptotic confidence interval

In this section, we obtain the asymptotic confidence interval of R by the asymptotic
distribution of R̂, which was obtained from the asymptotic distribution of θ̂ = (α̂, β̂, λ̂).

We denote the observed Fisher information matrix by I(θ) = [Iij ] =
[
− ∂2`

∂θi ∂θj

]
, i, j = 1, 2, 3.

By differentiating from (2.1) for two times with respect to α, β, and λ, the inlines of I(θ)
matrix can be obtained as:

I11 =
J1

α2
, I22 =

J2

β2
, I12 = I21 = 0,

I13 = I31 =
J1∑
i=1

(Ri + 1)xλ
i

log(xi)
1− xλ

i

+ R∗
J1

T λ
1

log(T1)
1− T λ

1

,

I23 = I32 =
J2∑

j=1

(Sj + 1)yλ
j

log(yj)
1− yλ

j

+ S∗J2
T λ

2

log(T2)
1− T λ

2

,

I33 =
J1 + J2

λ2
+

J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i

( log(xi)
1− xλ

i

)2 + αR∗
J1

T λ
1

( log(T1)
1− T λ

1

)2
+

J2∑
j=1

(
β(Sj + 1)− 1

)
yλ

j

( log(yj)
1− yλ

j

)2 + βS∗J2
T λ

2

( log(T2)
1− T λ

2

)2
.
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Theorem 2.2. Let α̂, β̂ and λ̂ be the MLEs of α, β, and λ, respectively. So

[(α̂− α), (β̂ − β), (λ̂− λ)]T D−→ N3(0, I−1(α, β, λ)),

where I(α, β, λ) and I−1(α, β, λ) are symmetric matrices and

I(α, β, λ) =

 I11 0 I13

I22 I23

I33

 , I−1(α, β, λ) =
1

|I(α, β, λ)|

 b11 b12 b13

b22 b23

b33

 ,

in which |I(α, β, λ)| = I11I22I33 − I11I
2
23 − I2

13I22,

b11 = I22I33 − I2
23, b12 = I13I23, b13 = −I13I22,

b22 = I11I33 − I2
13, b23 = −I11I23, b33 = I11I22.

Proof: From the asymptotic normality of the MLE, the theorem would be resulted.

Theorem 2.3. Let R̂MLE be the MLE of R. So,

(R̂MLE −R) D−→ N(0, B),

where

(2.11) B =
1

|I(α, β, λ)|

[
(
∂R

∂α
)2b11 + (

∂R

∂β
)2b22 + 2(

∂R

∂α
)(

∂R

∂β
)b12

]
.

Proof: Using Theorem 2.2 and applying the delta method, the asymptotic distribution
of R̂ = bα

bα+bβ
can be obtained as follows:

(R̂MLE −R) D−→ N(0, B),

where B = bTI−1(α, β, λ)b, with b = [∂R
∂α , ∂R

∂β , ∂R
∂λ ]T = [∂R

∂α , ∂R
∂β , 0]T, in which

(2.12)
∂R

∂α
=

β

(α + β)2
,

∂R

∂β
= − α

(α + β)2
,

and I−1(α, β, λ) is defined in Theorem 2.2. Therefore, B can be represented as (2.11) and
the theorem results.

Using Theorem 2.3, the asymptotic confidence interval of R can be derived. It is notable
that B should be estimated by the MLEs of α, β, and λ. So, a 100(1− γ)% asymptotic
confidence interval of R can be constructed as

(R̂MLE − z1− γ
2

√
B̂, R̂MLE + z1− γ

2

√
B̂),

where zγ is 100γ-th percentile of N(0, 1).
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2.5. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when α ∼ Γ(a1, b1),
β ∼ Γ(a2, b2) and λ ∼ Γ(a3, b3) are independent random variables. Accordingly, based on the
observed censoring samples, the joint posterior density function of α, β and λ are achieved
by:

π(α, β, λ|data) =
L(data|α, β, λ)π1(α)π2(β)π3(λ)∫∞

0

∫∞
0

∫∞
0 L(data|α, β, λ)π1(α)π2(β)π3(λ)dαdβdλ

,(2.13)

where

π1(α) ∝ αa1−1e−b1α, α > 0, a1, b1 > 0,

π2(β) ∝ βa2−1e−b2β, β > 0, a2, b2 > 0,

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3, b3 > 0.

As we observe from (2.13), the Bayes estimates cannot be derived in the closed-form. There-
fore, we approximate them by applying two following methods:

• Lindley’s approximation,

• MCMC method.

2.5.1. Lindley’s approximation

One of the most applicable numerical methods to approximate the Bayes estimate has
been introduced by Lindley in [16]. This method can be described as follows. Let U(θ) be a
function of the parameter value. The Bayes estimate of U(θ), under the squared error loss
function, is

E
(
u(θ)|data

)
=
∫

u(θ)eQ(θ)dθ∫
eQ(θ)dθ

,

where Q(θ) = `(θ) + ρ(θ), `(θ) and ρ(θ) are the logarithm of likelihood function and prior
density of θ, respectively. Lindley has been approximated E(u(θ)|data) as

E
(
u(θ)|data

)
= u +

1
2

∑
i

∑
j

(uij + 2uiρj)σij +
1
2

∑
i

∑
j

∑
k

∑
p

`ijkσijσkpup

∣∣∣∣
θ=bθ

,

where θ = (θ1, ..., θm), i, j, k, p = 1, ...,m, θ̂ is the MLE of θ, u = u(θ), ui = ∂u/∂θi, uij =
∂2u/∂θi∂θj , `ijk = ∂3`/∂θi∂θj∂θk, ρj = ∂ρ/∂θj , and σij = (i, j)-th element in the inverse of
matrix [−`ij ] all calculated at the MLE of parameters.

When we face up to the case of three parameter θ = (θ1, θ2, θ3), Lindley’s approximation
conducts to

E(u(θ)|data) = u + (u1d1 + u2d2 + u3d3 + d4 + d5) +
1
2

[
A(u1σ11 + u2σ12 + u3σ13)

+ B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)
]
,(2.14)
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which their elements are presented in detail in Appendix C. Therefore, the Bayes estimate of
R is

R̂Lin
s,k = R + [u1d1 + u2d2 + d4 + d5] +

1
2

[
A(u1σ11 + u2σ12)

+ B(u1σ21 + u2σ22) + C(u1σ31 + u2σ32)
]
.(2.15)

It should be noted that all parameters are evaluated at (α̂, β̂, λ̂), respectively.

As we observe, constructing the HPD credible interval is not possible by using the
Lindley’s approximation. So, we apply the Markov Chain Monte Carlo (MCMC) method to
approximate the Bayes estimate and construct the corresponding HPD credible intervals.

2.5.2. MCMC method

After simplify equation (2.13), we get the posterior pdfs of α, β and λ as:

α|λ, data ∼ Γ
(
J1 + a1, b1 −

J1∑
i=1

(Ri + 1) log(1− xλ
i )−R∗

J1
log(1− T λ

1 )
)
,

β|λ, data ∼ Γ
(
J2 + a2, b2 −

J2∑
j=1

(Sj + 1) log(1− yλ
j )− S∗J2

log(1− T λ
2 )
)
,

π(λ|α, β, data) ∝
( J1∏

i=1

xλ−1
i (1− xλ

i )α(Ri+1)−1

)( J2∏
j=1

yλ−1
j (1− yλ

j )β(Sj+1)−1

)
× λJ1+J2+a3−1e−λb3(1− T λ

1 )αR∗
J1 (1− T λ

2 )βS∗
J2 .

It is identified that the posterior pdf of λ is not a well known distribution. Therefore, we
utilize the Metropolis–Hastings method with normal proposal distribution in order to generate
random samples from it. Consequently, the Gibbs sampling algorithm can be proposed as
follows:

1. Start with the begin value (α(0), β(0), λ(0)).

2. Set t = 1.

3. Generate λ(t) from π(λ|α(t−1), β(t−1),data), using Metropolis–Hastings method.

4. Generate α(t) from Γ
(
J1 +a1, b1−

J1∑
i=1

(Ri +1) log(1−x
λ(t−1)

i −R∗
J1

log(1−T
λ(t−1)

1 )
)
.

5. Generate β(t) from Γ
(
J2 +a2, b2−

J2∑
j=1

(Sj +1) log(1−y
λ(t−1)

j )−S∗J2
log(1−T

λ(t−1)

2 )
)
.

6. Calculate Rt = αt
αt+βt

.

7. Set t = t + 1.

8. Repeat steps 3–7, for T times.
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By applying this algorithm, the Bayes estimate of R, under the squared error loss function
is resulted from

R̂MC =
1

T −M

T∑
t=M+1

Rt,(2.16)

where M is the burn-in period. Moreover, a 100(1− γ)% HPD credible interval of R can be
constructed by applying the method conducted by Chen and Shao [4].

3. INFERENCE ON R WITH KNOWN COMMON λ

3.1. MLE of R

Consider that {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censor-
ing schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively. Based on
Section 2.1, when the common shape parameter λ is known, the MLE of R can be attained
easily by the following equation:

(3.1) R̂MLE =

1 +
J2

( J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
)

J1

( J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
)

−1

.

In a similar manner to Section 2.4, (R̂MLE−R) D−→ N(0, C), where C = (∂R
∂α )2 1

I11
+(∂R

∂β )2 1
I22

,

and ∂R
∂α and ∂R

∂β are indicated in (2.12). Consequently, a 100(1− γ)% asymptotic confidence
interval for R can be constructed as(

R̂MLE − z1− γ
2

√
Ĉ, R̂MLE + z1− γ

2

√
Ĉ
)
,

where zγ is 100γ-th percentile of N(0, 1).

3.2. Bayes estimation

In this section, we infer the Bayesian estimation and corresponding credible interval of
the stress-strength parameter, when α ∼ Γ(a1, b1) and β ∼ Γ(a2, b2) are independent random
variables. With respect to the observed censoring samples, the joint posterior density function
of α and β are given by:

(3.2) π(α, β|λ, data) =
(V + b1)J1+a1(U + b2)J2+a2

Γ(J1 + a1)Γ(J2 + a2)
αJ1+a1−1βJ2+a2−1e−α(V +b1)−β(U+b2),
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where

V = −
J1∑
i=1

(Ri + 1) log(1− xλ
i )−R∗

J1
log(1− T λ

1 ),

U = −
J2∑

j=1

(Sj + 1) log(1− yλ
j )− S∗J2

log(1− T λ
2 ).

Under the squared error loss function, for obtaining R Bayes estimate, we solve the following
integral:

R̂B =
∫ ∞

0

∫ ∞

0

α

α + β
× π(α, β|λ, data)dαdβ.

Now in this study, we use the idea of Kizilaslan and Nadar [8], and accordingly, obtain the
R Bayes estimate as

(3.3) R̂B =


(1− z)J1+a1(J1 + a1)

w
2F1(w, J1 + a1 + 1;w + 1, z) if |z| < 1,

(J1 + a1)
w(1− z)J2+a2

2F1(w, J2 + a2;w + 1,
z

1− z
) if z < −1,

where w = J1 + J2 + a1 + a2, z = 1− V + b1

U + b2
and

2F1(α, β; γ, z) =
1

B(β, γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt, |z| < 1,

is the hypergeometric series, which is quickly evaluated and readily available in standard
software like MATLAB. Moreover, we construct a 100(1−γ)% Bayesian interval for the stress-
strength parameter by (L,U), where L and U are the lower and upper bounds, respectively,
which indicate

(3.4)
∫ L

0
fR(R)dR =

γ

2
,

∫ U

0
fR(R)dR = 1− γ

2
,

where fR(R) is the probability density function of R, which obtained from (3.2) as

fR(R) =
(1− z)J1+a1RJ1+a1−1(1−R)J2+a2−1(1−Rz)−w

B(J1 + a1, J2 + a2)
, 0 < R < 1.
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4. ESTIMATION OF R IN GENERAL CASE

4.1. MLE of R

The stress-strength parameter, when X and Y are two independent random variables
from Ku(α, λ1) and Ku(β, λ2), respectively, can be obtained as

R = P (X < Y )

=
∫ 1

0
fY (y)FX(y)dy

=
∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1
(
1− (1− yλ1)α

)
dy

= 1−
∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1(1− yλ1)αdy.

Assume that {X1, ..., Xn} and {Y1, ..., Ym} are two HP censoring samples with censoring
schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively. As a result,
the likelihood function of the unknown parameters α, β, λ1 and λ2 can be written as

L(data|α, β, λ1, λ2) ∝ αJ1λJ1
1

(
J1∏
i=1

xλ1−1
i (1− xλ1

i )α(Ri+1)−1

)
(1− T λ1

1 )αR∗
J1

× βJ2λJ2
2

 J2∏
j=1

yλ2−1
j (1− yλ2

j )β(Sj+1)−1

 (1− T λ2
2 )βS∗

J2 .

Therefore, the log-likelihood function, along with ignoring the constant value, is as:

`(α, β, λ1, λ2) = J1 log(αλ1) + J2 log(βλ2) +
J1∑
i=1

(α(Ri + 1)− 1) log(1− xλ1
i )

+
J2∑

j=1

(β(Sj + 1)− 1) log(1− yλ2
j ) + αR∗

J1
log(1− T λ1

1 )

+ βS∗J2
log(1− T λ2

2 ) + (λ1 − 1)
J1∑
i=1

log(xi) + (λ2 − 1)
J2∑

j=1

log(yj).

In a similar manner as Section 2.1, α̂ and β̂, respectively, can be obtained from

α̂(λ1) = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ1
i ) + R∗

J1
log(1− T λ1

1 )
}−1

,

β̂(λ2) = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ2
j ) + S∗J2

log(1− T λ2
2 )
}−1

.
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Also, to derive λ̂1 and λ̂2, respectively, we apply one numerical method like Newton–Raphson
on the following equations:

∂`

∂λ1
=

J1

λ1
+

J1∑
i=1

log(xi)−
J1∑
i=1

(α(Ri + 1)− 1)xλ1
i

log(xi)
1− xλ1

i

− αR∗
J1

T λ1
1

log(T1)
1− T λ1

1

= 0,

∂`

∂λ2
=

J2

λ2
+

J2∑
j=1

log(yj)−
J2∑

j=1

(β(Sj + 1)− 1)yλ2
j

log(yj)

1− yλ2
j

− βS∗J2
T λ2

2

log(T2)
1− T λ2

2

= 0.

After obtaining the MLEs of α, β, λ1, and λ2, by using the invariance property, the MLE of
R can be derived as

(4.1) R̂MLE = 1−
∫ 1

0
β̂λ̂2y

bλ2−1(1− y
bλ2)bβ−1(1− y

bλ1)bαdy.

4.2. AMLE of R

In this section, we obtain AMLE of R. Consider {X1, ..., Xn} and {Y1, ..., Ym} are two
HP censoring samples with censoring schemes {N,n, T1, J1, R1, ..., RJ1} and also by consid-
ering {M,m, T2, J2, S1, ..., SJ2} from the distributions Ku(α, λ1) and Ku(β, λ2), respectively,
and

X ′
i = (− log(1−Xλ1

i ))
1

λ1 , Ui = log(X ′
i) and Y ′

j = (− log(1− Y λ2
j ))

1
λ2 , Vj = log(Y ′

j ).

Based on the observed data {U1, ..., Un} and {V1, ..., Vm}, along with ignoring the constant
value, the log-likelihood function is obtained as follows:

`∗(µ1, µ2, σ1, σ2) = − J1 log(σ1) +
J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

− J2 log(σ2) +
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)ezj − S∗J2
eδ2 ,(4.2)

where

ti =
ui − µ1

σ1
, zj =

vj − µ2

σ2
, µ1 =

− log(α)
λ1

, µ2 =
− log(β)

λ2
,

δp =
ap − µp

σp
, σp =

1
λp

, ap = log((− log(1− T
λp
p ))

1
λp ), p = 1, 2.
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Now by taking derivatives due to µ1, µ2, σ1 and σ2 from (4.2), we obtain the following
equations:

∂`∗

∂µ1
= − 1

σ1

[
J1 −

J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

]
= 0,

∂`∗

∂µ2
= − 1

σ2

[
J2 −

J2∑
j=1

(Sj + 1)ezj − S∗J2
eδ2

]
= 0,

∂`∗

∂σ1
= − 1

σ1

[
J1 +

J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)tieti −R∗
J1

δ1e
δ1

]
= 0,

∂`∗

∂σ2
= − 1

σ2

[
J2 +

J2∑
j=1

zj −
J2∑

j=1

(Sj + 1)zje
zj − S∗J2

δ2e
δ2

]
= 0.

In a similar manner as Section 2.3, we derive the AMLEs of µ1, µ2, σ1 and σ2, say µ̃1, µ̃2, σ̃1

and σ̃2, respectively, by

µ̃1 = A1 − σ̃1B1, µ̃2 = A2 − σ̃2B2,

σ̃1 =
−D1 +

√
D2

1 + 4C1E1

2C1
, σ̃2 =

−D2 +
√

D2
2 + 4C2E2

2C2
,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given in Section 2.3. After achieving µ̃1,

µ̃2, σ̃1, and σ̃2, the values of α̃, β̃, λ̃1, λ̃2 and R̃ can be evaluated by α̃ = e
− µ̃1

σ̃1 , β̃ = e
− µ̃2

σ̃2 ,
λ̃1 = 1

σ̃1
, λ̃2 = 1

σ̃2
and consequently

(4.3) R̃ = 1−
∫ 1

0
β̃λ̃2y

λ̃2−1(1− yλ̃2)β̃−1(1− yλ̃1)α̃dy.

4.3. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estima-
tion and corresponding credible interval of the stress-strength parameter, when the unknown
parameters α ∼ Γ(a1, b1), β ∼ Γ(a2, b2), λ1 ∼ Γ(a3, b3) and λ2 ∼ Γ(a4, b4) are independent
random variables. In a same manner as Section 2.5, as the Bayesian estimation of R has not
a closed-form, we approximate it by applying MCMC method. After simplifying the joint
posterior density function of the unknown parameters, we get the posterior pdfs of α, β, λ1

and λ2 as:

α|λ1,data ∼ Γ
(
J1 + a1, b1 −

J1∑
i=1

(Ri + 1) log(1− xλ1
i )−R∗

J1
log(1− T λ1

1 )
)
,

β|λ2,data ∼ Γ
(
J2 + a2, b2 −

J2∑
j=1

(Sj + 1) log(1− yλ2
j )− S∗J2

log(1− T λ2
2 )
)
,

π(λ1|α, data) ∝ λJ1+a3−1
1

( J1∏
i=1

xλ1−1
i (1− xλ1

i )α(Ri+1)−1

)
(1− T λ1

1 )αR∗
J1e−λ1b3

π(λ2|β, data) ∝ λJ2+a4−1
2

( J2∏
j=1

yλ2−1
j (1− yλ2

j )β(Sj+1)−1

)
(1− T λ2

2 )βS∗
J2e−λ2b4 .
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It is recognized that the posterior pdfs of λ1 and λ2 are not well known distributions. So,
we utilize the Metropolis–Hastings method with normal proposal distribution for generating
random samples from them. Therefore, the Gibbs sampling algorithm can be proposed as
follows:

1. Start with the begin value (α(0), β(0), λ1(0), λ2(0)).

2. Set t = 1.

3. Generate λ1(t) from π(λ1|α(t−1),data), using Metropolis–Hastings method.

4. Generate λ2(t) from π(λ2|β(t−1),data), using Metropolis–Hastings method.

5. Generate α(t) from Γ
(
J1 +a1, b1−

J1∑
i=1

(Ri +1) log(1−x
λ1(t−1)

i −R∗
J1

log(1−T
λ1(t−1)

1 )
)
.

6. Generate β(t) from Γ
(
J2 +a2, b2−

J2∑
j=1

(Sj +1) log(1−y
λ2(t−1)

j )−S∗J2
log(1−T

λ2(t−1)

2 )
)
.

7. Calculate Rt = 1−
∫ 1
0 β(t)λ2(t)y

λ2(t)−1(1− yλ2(t))β(t)−1(1− yλ1(t))αtdy.

8. Set t = t + 1.

9. Repeat steps 3–8, for T times.

Using this algorithm, under the squared error loss function, the R Bayes estimate will be
resulted from

R̂MC =
1

T −M

T∑
t=M+1

Rt,(4.4)

where M is the burn-in period. Moreover, a 100(1− γ)% HPD credible interval of R can be
constructed by applying the method accomplished by Chen and Shao [4].

5. SIMULATION STUDY AND DATA ANALYSIS

In this section, we compare the performance of different methods by Monte Carlo
simulations and analyze two real data sets to illustrative aims.

5.1. Numerical experiments and discussions

In this section, we compare the behavior of various estimates by Monte Carlo simula-
tions, under different censoring schemes. The comparison among estimates is accomplished
in terms of mean squared errors (MSEs). Also, the comparison of confidence intervals is
performed in terms of average lengths and coverage percentages. We apply different schemes,
parameters, and hyper parameters to implement the simulation study. All results are re-
ported based on 3000 replications. Also, the nominal level is 0.95 in comparison with the
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confidence intervals. We utilize the different censoring schemes as:

Scheme 1: R1 = ... = Rn−1 = 0, Rn = N − n,

Scheme 2: R1 = ... = Rn =
N − n

n
,

Scheme 3: R1 = ... = Rn
2

= 0, Rn
2
+1 = ... = Rn =

2(N − n)
n

.

We can interpret theses schemes as follows. In Scheme 1, the number of removal units
at the first, second and so on until reaching the (n− 1)-th failure times is zero and we remove
all N − n units at the n-th failure time. We use Scheme 2 and 3 when N − n to be divisible
by n, and n must be an even number. In Scheme 2, the number of removal units at the first,
second and so on until reaching the (n)-th failure times is N−n

n . In Scheme 3, the number of
removal units at the first, second and so on until reaching the (n

2 )-th failure times is zero and
the number of removal units at the n

2 + 1, and so on up to the (n)-th failure times is 2(N−n)
n .

All of these schemes are considered for two values of T as 0.7 and 0.9, respectively.

In the First case, by assuming the unknown common shape parameter λ, we choose
α = β = λ = 2, without any loss of generality. Also, Bayesian inference are given in terms
of three priors as: Prior 1: aj = 0, bj = 0, j = 1, 2, 3, Prior 2: aj = 1, bj = 0.1, j = 1, 2, 3,

and Prior 3: aj = 2, bj = 0.2, j = 1, 2, 3. Moreover, we noted that the number of iterations
in the MCMC method is T = 5000, and the threshold of burn-in is 2000. In this case, we
obtained the Biases and MSEs of MLE using (2.5), AMLE using (2.10), Bayes estimates of R

through Lindley’s approximation and MCMC method using (2.15) and (2.16), respectively.
The results are shown in Table 1. Additionally, we derived the asymptotic confidence and
HPD credible intervals of R. Theses results are displayed in Table 2. By the above chosen,
R was obtained equal to 0.5. Also, using the numerical method, we obtain the mean and
variance of R as a random variable. Based on Priors 2 and 3, the variance of R is 0.0833 and
0.05, respectively, and the mean of R is 0.5 for both priors. So we expect that the performance
of MSE is the best using Prior 3.

In the second case, by assuming the known common shape parameter λ, we choose
α = β = λ = 3, without loss of generality. Also, Bayesian inference are given in terms of
three priors as: Prior 4: aj = 0, bj = 0, j = 1, 2, Prior 5: aj = 1, bj = 0.1, j = 1, 2, and
Prior 6: aj = 2, bj = 0.2, j = 1, 2. In this case, we obtained the Biases and MSEs of MLE,
Bayes estimates and 95% Bayesian intervals of R using (3.1), (3.3) and (3.4), respectively. The
results are indicated in Table 3. Similar to the previous case, we expect that the performance
of MSE be the best using Prior 6.

In the third case, assuming the different second shape parameters λ1 and λ2, we choose
α = β = λ1 = λ2 = 2, without any loss of generality. Also, Bayesian inference are presented
based on three priors as: Prior 7: aj = 0, bj = 0, j = 1, 2, 3, 4, Prior 8: aj = 1, bj = 0.1, j =
1, 2, 3, 4, and Prior 9: aj = 2, bj = 0.2, j = 1, 2, 3, 4. Also, we noted that the number of
iterations in the MCMC method is T = 5000, and the threshold of burn-in is 2000. In this
case, we obtained the Biases and MSEs of MLE, AMLE and Bayes estimate by applying
MCMC method using (4.1), (4.3) and (4.4), respectively. Also, the results are indicated in
Table 4.
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Table 2: Average confidence/credible lengths and coverage percentages
for estimates of R when λ is unknown.

(N, n, T ) C.S
AMLE MLE Prior 1 Prior 2 Prior 3

length C.P length C.P length C.P length C.P length C.P

(40,10,0.7)

(1,1) 0.4374 0.8710 0.4197 0.8710 0.4061 0.9000 0.3922 0.9020 0.3791 0.9100
(2,2) 0.4352 0.8760 0.4216 0.8750 0.4043 0.9020 0.3931 0.9070 0.3787 0.9080
(3,3) 0.4543 0.8870 0.4270 0.8830 0.4117 0.9030 0.3956 0.9080 0.3813 0.9080
(1,2) 0.4137 0.8940 0.4009 0.8900 0.3887 0.9010 0.3788 0.9040 0.3669 0.9060

(60,10,0.7)

(1,1) 0.4369 0.8810 0.4242 0.8860 0.4074 0.9120 0.3912 0.9130 0.3831 0.9140
(2,2) 0.4366 0.8960 0.4221 0.8900 0.4064 0.9080 0.3915 0.9110 0.3806 0.9170
(3,3) 0.4280 0.9090 0.4209 0.9050 0.4055 0.9200 0.3932 0.9210 0.3799 0.9260
(1,2) 0.4329 0.9010 0.3987 0.9020 0.3764 0.9200 0.3661 0.9230 0.3605 0.9280

(40,20,0.7)

(1,1) 0.3090 0.9180 0.3055 0.9140 0.3001 0.9350 0.2926 0.9380 0.2888 0.9390
(2,2) 0.3045 0.9290 0.3082 0.9230 0.3030 0.9340 0.2968 0.9360 0.2903 0.9400
(3,3) 0.2989 0.9100 0.3148 0.9120 0.3099 0.9350 0.3028 0.9360 0.2947 0.9370
(1,2) 0.2897 0.9340 0.2877 0.9340 0.2730 0.9360 0.2728 0.9380 0.2690 0.9390

(60,20,0.7)

(1,1) 0.3097 0.9240 0.3051 0.9270 0.2980 0.9310 0.2930 0.9310 0.2874 0.9330
(2,2) 0.3065 0.9110 0.3049 0.9120 0.2983 0.9310 0.2912 0.9320 0.2888 0.9330
(3,3) 0.3043 0.9280 0.3066 0.9230 0.3029 0.9360 0.2942 0.9370 0.2903 0.9390
(1,2) 0.2893 0.9340 0.2807 0.9320 0.2697 0.9380 0.2614 0.9390 0.2599 0.9400

(40,10,0.9)

(1,1) 0.4370 0.8810 0.4135 0.8880 0.4019 0.9150 0.3864 0.9150 0.3780 0.9180
(2,2) 0.4350 0.8850 0.4152 0.8880 0.4020 0.9150 0.3902 0.9160 0.3783 0.9170
(3,3) 0.4313 0.8870 0.4250 0.8840 0.4078 0.9180 0.3948 0.9200 0.3810 0.9270
(1,2) 0.4115 0.9000 0.3988 0.9050 0.3769 0.9150 0.3708 0.9200 0.3612 0.9210

(60,10,0.9)

(1,1) 0.4368 0.9020 0.4200 0.9080 0.4042 0.9290 0.3895 0.9300 0.3796 0.9330
(2,2) 0.4350 0.8940 0.4219 0.8960 0.4039 0.9220 0.3906 0.9240 0.3804 0.9290
(3,3) 0.4211 0.8900 0.4187 0.8940 0.4055 0.9210 0.3920 0.9220 0.3778 0.9270
(1,2) 0.4319 0.9030 0.3957 0.9050 0.3717 0.9300 0.3659 0.9310 0.3567 0.9330

(40,20,0.9)

(1,1) 0.3077 0.9240 0.3040 0.9230 0.2973 0.9390 0.2920 0.9400 0.2848 0.9430
(2,2) 0.3023 0.9320 0.3038 0.9320 0.2970 0.9390 0.2925 0.9450 0.2845 0.9480
(3,3) 0.2909 0.9270 0.3028 0.9260 0.2963 0.9390 0.2916 0.9390 0.2844 0.9400
(1,2) 0.2820 0.9290 0.2863 0.9210 0.2728 0.9420 0.2719 0.9460 0.2682 0.9470

(60,20,0.9)

(1,1) 0.3095 0.9360 0.3046 0.9350 0.2979 0.9400 0.2919 0.9420 0.2866 0.9490
(2,2) 0.3065 0.9290 0.3029 0.9290 0.2977 0.9390 0.2873 0.9400 0.2859 0.9410
(3,3) 0.2974 0.9340 0.3040 0.9360 0.2974 0.9420 0.2904 0.9440 0.2857 0.9500
(1,2) 0.2823 0.9230 0.2767 0.9280 0.2598 0.9390 0.2562 0.9400 0.2558 0.9410

To monitor the convergence of the MCMC method, in the first and third cases, we
studied the trace plots for various censoring schemes and parameters. In all cases, the trace
plots indicated that the MCMC method is converged. Some of these plots are displayed in
Figures 2–5. It is notable that Figures 2 and 3 have considered the problem in the first case
(when the common second shape parameter is unknown), and Figures 4 and 5 have considered
the problem in the third case (when all parameters are different and unknown), respectively.

Due to the information of Table 1, we observed that the Bayes estimates have the
minimum value of MSEs. Also, in Bayesian inference, the informative priors performance was
better than non-informative ones and the best performance, in terms of MSE, was belonged
to Prior 3. Furthermore, the MCMC method performs better, in comparison with Lindley’s
approximation. From Table 2, we observed that the HPD credible intervals indicated a better
performance compared to the asymptotic confidence intervals. Also, in Bayesian inference,
the best performance belonged to Prior 3, namely, the HPD credible intervals based on Prior
3, have the smallest average lengths and largest coverage percentages.
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As shown in Table 3, we observed that the Bayes estimates have the minimum value
of MSEs. Also, in Bayesian inference, the informative priors performed better than non-
informative ones and the best performance, in terms of MSE, was belonged to Prior 6.
Moreover, we observed that the Bayesian credible intervals have the better performance,
in comparison with the asymptotic confidence intervals. Also, in Bayesian inference, the best
performance belonged to Prior 6, namely, the Bayesian credible intervals based on Prior 6
have the smallest average lengths and largest coverage percentages.

As we observe from Table 4, the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative ones
and the best performance, in terms of MSE, was belonged to Prior 9. Moreover, we ob-
served that HPD credible intervals based on informative priors, indicated better performance
compared to non-informative ones.

To tell the truth, from Tables 1, 3 and 4, along by increasing n for fixed N and T , and
also with increasing T for fixed N and n, the MSEs of all estimates decrease in all cases. This
can be due to the fact in both of the above mentioned cases, some additional information
is gathered. Moreover, from Tables 2, 3 and 4, with increasing n for fixed N and T , and
also with increasing T for fixed N and n, the average confidence lengths decrease and the
associated coverage percentages increase, in all cases.
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Figure 2: Trace plots with C.S (1, 1) (left) and (3, 3) (right), for (N,n, T ) = (40, 10, 0.7),
in common shape parameter λ.
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Figure 3: Trace plots with C.S (2, 2) (left) and (3, 3) (right), for (N,n, T ) = (60, 20, 0.9),
in common shape parameter λ.
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Figure 4: Trace plots with C.S (1, 3) (left) and (1, 1) (right), for (N,n, T ) = (40, 20, 0.7),
in general case.
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Figure 5: Trace plots with C.S (2, 3) (left) and (1, 1) (right), for (N,n, T ) = (60, 10, 0.9),
in general case.

5.2. Data analysis

In this section, we analyze two pair of real data set for illustrative proposes.

Example 5.1. In the first example, we use the monthly water capacity of the Shasta
reservoir in California, USA, see data in http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA.
Some authors such as Sultana et al. [25], Kohansal [9], Kizilaslan and Nadar [8], [6] and
Nadar et al. [19] have been studied this data, previously. From this data, we construct one
scenario relating to the excessive drought. In fact, we contract that if the average water
capacity in July and August of a same year is more than the water capacity in December,
the excessive drought will not occur. With respect to this scenario, we consider the months
July, August, and December from 1987 to 2016. So, X1, ..., X30 are the capacity of December
and Y1, ..., Y30 are the average capacity of July and August from 1987 to 2016, respectively,
and R = P (X < Y ) is the probability of non-occurrence of drought. As the range of KuD is
(0, 1), all data have been divided by the total capacity of Shasta reservoir, 4552000 acre-feet.
This work does not make any change in statistical inference.

At first, we check that the KuD can separately analyze these data sets or not. To fit
the KuD, we obtain the initial guess, in the Newton–Raphson method, by using the profile

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
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log-likelihood functions, which were indicated in Figure 6. So, we start this method by the
starting values 3.45 and 3.65, for X and Y , respectively. By fitting the KuD, for X, α̂, λ̂,
the Kolmogorov–Smirnov distance and the corresponding p-value are 4.1903, 3.5000, 0.1592
and 0.3916, respectively. Also, for Y , β̂, λ̂, the Kolmogorov–Smirnov distance and the associ-
ated p-value are 3.7828, 3.7700, 0.1218 and 0.7195, respectively. In terms of the p-values, we
identify that the KuD provides suitable fits for the data sets. Figures 7 and 8 indicated the em-
pirical distribution functions, PP-plots, and PP-plots with simulated envelope, for X and Y ,
respectively.
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Figure 6: Profile log-likelihood function of λ for X (left) Y (right).
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Figure 7: Empirical distribution function (left), PP-plot (center) and
PP-plots with simulated envelope (right) for X.
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Figure 8: Empirical distribution functions (left)PP-plot (center) and
PP plots with simulated envelope (right) for Y .
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For the illustrative proposes, we consider two different HP censoring schemes for X and
Y as follows:

Scheme 1: [1∗10, 0∗10], T1 = T2 = 0.9,

Scheme 2: [2∗10], T1 = T2 = 0.5.

In the first case, when the common shape parameter λ is unknown, for complete data
sets, and Schemes 1 and 2, we obtained the ML, AML and Bayes estimates of R with non-
informative priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = 0 by applying Lindley’s
approximation and MCMC method. Also, we derived the 95% asymptotic and HPD intervals.
The results are listed in Table 5.

Table 5: The ML, AML, Bayes estimates and different confidence/credible
intervals of R, in Example 5.1.

MLE Asymp. (MLE) AMLE Asymp. (AMLE)
Bayes

HPD
MCMC Lindley

Complete 0.5522 (0.4268,0.6776) 0.5641 (0.4403,0.6879) 0.5520 0.5511 (0.4258,0.6707)
λ Scheme 1 0.5520 (0.3983,0.7057) 0.5369 (0.3865,0.6927) 0.5523 0.5503 (0.3985,0.7036)

Scheme 2 0.5723 (0.3563,0.7882) 0.5200 (0.3013,0.7388) 0.5727 0.5673 (0.3530,0.7687)

Complete 0.5617 — 0.5971 — 0.5647 — (0.4372,0.6848)
λ1, λ2 Scheme 1 0.5533 — 0.5593 — 0.5534 — (0.3974,0.7027)

Scheme 2 0.5777 — 0.4899 — 0.5779 — (0.3501,0.7657)

As we observe, the second shape parameters of two data sets are not exactly same.
As a result, in the second case, when the shape parameters λ1 and λ2 are different and
unknown, for complete data sets, Schemes 1 and 2, we obtained the ML, AML and Bayes
estimates of R with non-informative priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 =
a4 = b4 = 0, respectively. Also, we derived 95% HPD credible intervals. Theses results are
presented in Table 5. By comparing the two schemes, we observed that estimators have
smaller standard errors in Scheme 1, compared to Scheme 2, as it was expected. It is notable
that the estimation methods which presented a better performance in the simulations are more
reliable than the others. So, the results based on the Bayesian estimations and in Bayesian
estimation the results obtained by the MCMC method are more preferred, in comparison
with the others. Also, we would like to use the HPD credible intervals as the best intervals.

Example 5.2. In the second example, we use the lifetime data for insulation speci-
mens. The length of time was observed until each specimen failed or ”broke down”. Also, the
results for seven groups of specimens, tested at voltages ranging from 26 to 38 kilovolts (kV)
were presented. We consider the data sets for 34 kV and 36 kV, reported in Lawless [15],
as the strength and stress variables, respectively. Therefore, the parameter R = P (X < Y )
can be investigated as the probability of insulation resistance. For the same reason as it was
earlier explained in Example 5.1, we have converted all data between 0 and 1. Recently,
Kizilaslan and Nadar [7] considered this data set.

At first, we must check that the KuD can analyze these data sets, separately. By fitting
the KuD, for X, α̂, λ̂, the Kolmogorov–Smirnov distance and the corresponding p-value are
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9.7733, 0.84, 0.2103 and 0.4592, respectively. Also, for Y , β̂, λ̂, the Kolmogorov–Smirnov
distance and the associated p-value are 0.8963, 0.3736, 0.2756 and 0.0911, respectively.
In terms of the p-values, we observe that the KuD provides suitable fits for the data sets.

For the illustrative proposes, we consider the HP censoring scheme as Scheme 3: [1∗5, 0∗5],
T1 = 0.1 and [1∗9, 0∗1], T2 = 0.2 for X and Y , respectively.

In the first case, when the common shape parameter λ is unknown, for complete data
sets and Scheme 3, we obtained the ML, AML, and Bayes estimates of R with non-informative
priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = 0 by applying Lindley’s approximation
and MCMC method. Also, we derived the 95% asymptotic and HPD intervals. These ob-
tained results are listed in Table 6.

As indicated, the second shape parameters of two data sets are not similar. So, when
the shape parameters λ1 and λ2 are different and unknown, for complete data sets, Schemes
1 and 2, we obtained the ML, AML and Bayes estimates of R with non-informative pri-
ors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = a4 = b4 = 0. Also, we derived 95% HPD
credible intervals. These results are given in Table 6.

Table 6: The ML, AML, Bayes estimates and different confidence/credible
intervals of R, in Example 5.2.

MLE Asymp. (MLE) AMLE Asymp. (AMLE)
Bayes

HPD
MCMC Lindley

λ
Complete 0.8007 (0.6763,0.9252) 0.7034 (0.5944,0.8619) 0.8016 0.7892 (0.6798,0.8938)
Scheme 3 0.6368 (0.4151,0.8614) 0.6739 (0.4131,0.9048) 0.6326 0.6273 (0.3851,0.8183)

λ1, λ2
Complete 0.7127 — 0.6058 — 0.7252 — (0.5979,0.8360)
Scheme 3 0.6371 — 0.6760 — 0.6351 — (0.3989,0.8234)

To see a motivation based on real data set that presents the need for the new methodol-
ogy, we consider the progressive scheme, one of the most applicable censoring scheme, for this
data set. Comparison between two methodologies (HP and progressive schemes) is performed
by obtaining the values of Akaike information criterion (AIC), Bayesian information criterion
(BIC) and Hannan–Quinn information criterion (HQC). We have shown the results in Table 7.
From Table 7, by ignoring minor differences, we see that the new methodology (results
based on HP scheme) is better than the previous one (results based on the progressive scheme.)

Table 7: AIC, BIC and HQC in comparison of two methodology, in Example 5.2.

HP Progressive

MLE AMLE Lindley MCMC MLE AMLE Lindley MCMC

AIC −42.9761 −37.8133 −42.9575 −42.9762 −42.0119 −37.5979 −42.0107 −42.0119
λ BIC −40.4765 −35.3137 −40.4579 −40.4765 −39.0247 −34.6107 −39.0235 −39.0249

HQC −42.7276 −37.5648 −42.7090 −42.7277 −41.4288 −37.0148 −41.4276 −41.4289

AIC −41.0665 −37.4275 — −41.0906 −40.0246 −35.5724 — −40.0373
λ1, λ2 BIC −37.7337 −34.0946 — −37.7678 −36.0417 −31.5895 — −36.0544

HQC −40.7352 −37.0962 — −40.7694 −39.2471 −34.7949 — −39.2597



78 A. Kohansal

6. CONCLUSION

In this paper, we obtain different estimates of the stress-strength parameter, under
the hybrid progressive censored scheme, at the time that stress and strength are considered
as two independent Kumaraswamy random variables. The problem is going to be solved
in three cases. First, when X ∼ Ku(α, λ) and Y ∼ Ku(β, λ), we derive ML, AML and two
approximated Bayes estimates by applying Lindley’s approximation and MCMC method, due
to the lack of explicit forms. Also, we consider the existence and uniqueness of the MLE and
construct the asymptotic and HPD intervals for R. Second, when the common second shape
parameter, λ, is known, we obtain the MLE and exact Bayes estimate of R. Third, in general
case, when X ∼ Ku(α, λ1) and Y ∼ Ku(β, λ2), we provide ML, AML and Bayesian inferences
of R, respectively.

From the simulation results, which were obtained using the Monte Carlo method, in
point estimates, we observed that the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative ones.
Furthermore, the MCMC method performs better than Lindley’s approximation. In interval
estimates, we observed that the HPD credible intervals have a better performance in compar-
ison with the asymptotic confidence intervals. Also, in Bayesian inference, the HPD credible
intervals based on informative priors have the smallest average lengths and largest coverage
percentages.

A. APPENDIX

Proof of Theorem 2.1: By a simple method, we can rewrite G(λ) as:

G(λ) =
J1

λ
+ G1(λ) + J1

G2(λ)
G3(λ)

+
J2

λ
+ H1(λ) + J2

H2(λ)
H3(λ)

,

where

G1(λ) =
J1∑
i=1

log(xi)
1− xλ

i

, G2(λ) =
J1∑
i=1

(Ri + 1)xλ
i

log(xi)
1− xλ

i

+ R∗
J1

T λ
1

log(T1)
1− T λ

1

,

G3(λ) =
J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 ),

H1(λ) =
J2∑

j=1

log(yj)
1− yλ

j

, H2(λ) =
J2∑

j=1

(Sj + 1)yλ
j

log(yj)
1− yλ

j

+ S∗J2
T λ

2

log(T2)
1− T λ

2

,

H3(λ) =
J2∑

j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 ).

We observe that lim
λ→0+

G(λ) = ∞ and lim
λ→∞

G(λ) < 0. Consequently, G(λ) has at least one

root in (0,∞) by the intermediate value theorem. So, it is enough to show that G′(λ) < 0.
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We can obtain G′(λ), after accomplishing some steps, as:

G′(λ) = − 1
λ2

{
G4(λ)− J1

G3(λ)G5(λ) +
(
G2(λ)

)2(
G3(λ)

)2 }

− 1
λ2
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(
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)2(
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)2 }
,
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(
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i )
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)2

, H4(λ) = J2 −
J2∑

j=1

yλ
j

( log(yλ
j )

1− yλ
j

)2
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It can be observed that G4(λ) > 0, as f(x) = x
( log(x)

1−x

)2, so f(x) < 1 for x ∈ (0, 1). Moreover,
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= −G3(λ)G5(λ).

The above equations have been obtained by applying the Cauchy–Schwarz inequality and
x < − log(1− x), x ∈ (0, 1). Consequently, G′(λ) < 0 and the proof is completed.
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B. APPENDIX

We compute µ̃1, µ̃2 and σ̃ at

A1 =

J1∑
i=1

(Ri + 1)βiui + R∗
J1

β∗J1
a1

J1∑
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C. APPENDIX.

For three parameters case, we compute (2.14) at θ̂ = (θ̂1, θ̂2, θ̂3), where

di = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,

d4 = u12σ12 + u13σ13 + u23σ23,

d5 =
1
2
(u11σ11 + u22σ22 + u33σ33),

A = `111σ11 + 2`121σ12 + 2`131σ13 + 2`231σ23 + `221σ22 + `331σ33,

B = `112σ11 + 2`122σ12 + 2`132σ13 + 2`232σ23 + `222σ22 + `332σ33,

C = `113σ11 + 2`123σ12 + 2`133σ13 + 2`233σ23 + `223σ22 + `333σ33.
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In our case, for (θ1, θ2, θ3) ≡ (α, β, λ) and u = R = α
α+β , we have

ρ1 =
a1 − 1

α
− b1, ρ2 =

a2 − 1
β

− b2, ρ3 =
a3 − 1

λ
− b3,

`11 = −J1

α2
, `22 = −J2

β2
, `12 = `21 = 0,

`13 = `31 = −
J1∑
i=1

(Ri + 1)xλ
i

log(xi)
1− xλ

i

−R∗
J1

T λ
1

log(T1)
1− T λ

1

,

`23 = `32 = −
J2∑

j=1

(Sj + 1)yλ
j

log(yj)
1− yλ

j

− S∗J2
T λ

2

log(T2)
1− T λ

2

,

`33 = −J1 + J2

λ2
−

J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i

(
log(xi)
1− xλ

i

)2

− αR∗
J1

T λ
1

(
log(T1)
1− T λ

1

)2

−
J2∑

j=1

(
β(Sj + 1)− 1

)
yλ

j

(
log(yj)
1− yλ

j

)2

− βS∗J2
T λ

2

(
log(T2)
1− T λ

2

)2

,

σij , i, j = 1, 2, 3 are obtained using `ij , i, j = 1, 2, 3 and

`111 =
2J1

α3
, `222 =

2J2

β3

`133 = `331 = `313 = −
J1∑
i=1

(Ri + 1)xλ
i

(
log(xi)
1− xλ

i

)2

−R∗
J1

T λ
1

(
log(T1)
1− T λ

1

)2

,

`233 = `332 = `323 = −
J2∑

j=1

(Sj + 1)yλ
j

(
log(yj)
1− yλ

j

)2

− S∗J2
T λ

2

(
log(T2)
1− T λ

2

)2

,

`333 =
2(J1 + J2)

λ3
−

J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i (1 + xλ
i )
(

log(xi)
1− xλ

i

)3

−
J2∑

j=1

(
β(Sj + 1)− 1

)
yλ

j (1 + yλ
j )
(

log(yj)
1− yλ

j

)3

− αR∗
J1

T λ
1 (1 + T λ

1 )
(

log(T1)
1− T λ

1

)3

− βS∗J2
T λ

2 (1 + T λ
2 )
(

log(T2)
1− T λ

2

)3

,

and other `ijk = 0. Moreover, u3 = ui3 = 0, i = 1, 2, 3, and u1, u2 are given in (2.12). Also,
u11 = −2β

(α+β)3
, u12 = u21 = α−β

(α+β)3
, u22 = 2α

(α+β)3
. So,

d4 = u12σ12, d5 =
1
2
(u11σ11 + u22σ22),

A = `111σ11 + `331σ33, B = `222σ22 + `332σ33, C = 2`133σ13 + 2`233σ23 + `333σ33.
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