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1. INTRODUCTION

Let X and Y be two continuous random variables. A large body of literature has grown
around statistical inference for R = P (X >Y ). This enthusiasm roots in applicability of this
quantity in diverse areas. In the so-called stress-strength model in engineering, R measures
the reliability of a component, where X and Y represent the strength of the component, and
the stress that it is undergoing, respectively. For example, Weerahandi and Johnson [22]
considered a rocket-motor experiment in which X represents the chamber burst strength,
and Y represents the operating pressure. In medicine, R may be interpreted as a measure of
treatment’s effectiveness if X and Y are the response variables from treatment and control
groups, respectively (Ventura and Racugno [20]). It is also related to receiver operating
characteristic (ROC) curve, which is a useful tool in analysis of the discriminatory accuracy of
a diagnostic test or marker in distinguishing between diseased and non-diseased individuals.
Bamber [2] showed that the area under the ROC curve equals R. Wolfe and Hogg [23]
considered R as a general measure for the difference between two populations.

The estimation of R has received considerable attention in the statistical literature.
A comprehensive account of this topic appears in Kotz et al. [11]. To facilitate mathematical
development, most of the pertinent articles assume that X and Y are independent. In many
real situations, however, the two variables are correlated. In the following, three examples in
the context of engineering, education and economics are presented (see Domma and Giordano
[4]):

• Let X and Y be the lifetimes of two electronic devices, stimulated by a single source.
Then R is the probability that one survives after the other one.

• Some universities in Japan use an admission test based on Japanese (X) and English
(E) knowledge. In order to get admission, a candidate must qualify X + E > c,
where c is a pre-determined cut-off score. If we set Y = c− E, then the admission
probability is given by R.

• Let X and Y be household consumption and income, respectively. If consumption
exceeds income, then household will face financial stress. Thus, R is a measure of
household financial fragility.

The reliability estimation has been studied for some bivariate distributions, including
bivariate normal (Gupta and Subramanian [10]), bivariate beta (Nadarajah [15]), bivariate
exponential (Nadarajah and Kotz [16]), and bivariate log-normal (Gupta et al. [9]), among
others. A limitation shared by these articles is that the marginal distributions are of the same
type. Moreover, a specific form of dependence between margins is allowed. Bivariate normal
distribution is a nice example clarifying these points. Here, the marginal distributions are
normal, and their association is linear. To overcome the above shortcomings, Domma and
Giordano [4] built on a copula to model the association between the two variables.

Let the random variables X and Y be the lifetimes of two systems. If both systems
are operating at time t > 0, then their residual lifetimes are given by Xt = (X− t |X >t) and
Yt = (Y− t |Y >t). Zardasht and Asadi [24] proposed R(t) = P (Xt>Yt) as a time-dependent
criterion to compare the two residual lifetimes. They studied properties of this measure, and
developed a nonparametric estimator for R(t) based on two independent random samples.
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Mahdizadeh and Zamanzade [12, 13, 14] are examples of recent works on inference about
R(t). In light of the above argument for R, we think that R(t) is also applicable in settings
where Xt and Yt are not independent. For example, in the third example provided above, R(t)
can be considered as a measure of household financial fragility, given that the consumption
and income exceed a lower bound t. This article employs a copula approach to account for
dependence in evaluating R(t). Our approach is similar to that adopted by Domma and
Giordano [4].

Section 2 presents some basic properties of copulas. Section 3 provides expressions
of R(t) for some parametric family of copulas, and margins. Section 4 contains numerical
results evaluating the effect of the marginal distributions and the reference copula parameters
on the reliability index. In Section 5, the proposed method is applied to a data set. Final
conclusions appear in Section 6. Figures are collected in an Appendix.

2. THE COPULA APPROACH

If I is the interval [0,1], then a bivariate copula can be represented as C : I×I → I,
where C fulfils the following properties:

• For all u, v ∈ I, C(u, 0) = 0, C(0, v) = 0, C(u, 1) = u, and C(1, v) = v.

• For all u1, u2, v1, v2 ∈ I, with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 .

A famous theorem by Sklar [19] provides the connection between bivariate copulas and bi-
variate distribution functions. It states that for any two continuous random variables X and
Y with joint distribution function H, there exists a unique copula C such that

H(x, y) = C
(
F (x), G(y)

)
, ∀x, y ∈ R ,

where F and G are the marginal distributions of X and Y , respectively. Let f and g be the
corresponding marginal density functions. Then, the joint density function is

(2.1) h(x, y) = c
(
F (x), G(y)

)
f(x) g(y) ,

where c
(
F (x), G(y)

)
=

∂2C
(
F (x), G(y)

)
∂F (x) ∂G(y)

is called the copula density.

In general, C ∈ Cθ, where θ is a vector of parameters that determines the degree of
dependence between the two random variables. Also, F ∈ Fγ and G ∈ Gν , where γ and ν are
vectors of parameters associated with the marginal distributions. For simplicity in notation,
all such parameters are assumed implicitly.

A salient feature of copulas is that they allow us to model the dependence structure
between random variables independently of the marginal distributions. Owing to this flexi-
bility, the copula approach has drawn much interest in recent years. It has been successfully
applied in a variety of scientific fields. Some applications are provided in the following. In
biomedical research, Escarela and Carrière [5] employed copula in studying competing risks.
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In the actuarial context, Frees and Wang [6] modeled dependent mortality and losses using
copulas. In the engineering context, Genest and Favre [7] utilized copulas in hydrological
modeling.

3. COMPUTATION OF R(t)

We first provide a representation for R(t) which is helpful in our mathematical devel-
opment. It is easily seen that

(3.1) R(t) =
R1(t)
R2(t)

,

where R1(t) = P (X >Y > t) and R2(t) = P (X >t, Y > t). Using h(x, y) in (2.1), components
of R(t) can be written as

(3.2) R1(t) =
∫ ∞

t

∫ x

t
c
(
F (x), G(y)

)
f(x) g(y) dy dx ,

and

(3.3) R2(t) =
∫ ∞

t

∫ ∞

t
c
(
F (x), G(y)

)
f(x) g(y) dy dx .

In the following, the marginal distributions and the copulas used in computing (3.1) are
introduced.

Burr [3] introduced a family of distributions that includes twelve distribution types.
Two important cases are the Burr type III (BIII), and Burr type XII. The former distribution
is more flexible in the sense that it covers wider ranges of skewness and kurtosis, often
exhibited by real data. It has been applied in a multitude of data-modeling contexts. The
interested reader is referred to Zimmer et al. [25] and Shao [18] for some applications in
reliability and environmental studies, among others.

The cumulative distribution function (CDF) and the probability density function (PDF)
of the BIII distribution are given by

F (x) =
(
1 + x−δ

)−α, x > 0; α, δ > 0 ,

and
f(x) = α δx−(δ+1)

(
1 + x−δ

)−(α+1), x > 0; α, δ > 0 ,

respectively. The random variable X with this distribution will be denoted by X ∼ BIII(α, δ).
In our reliability modeling, it is assumed that both stress and strength variables follow the BIII
distribution. The positivity assumption for X and Y is not restrictive, because it is possible to
use an increasing transformation to create positive random variables from arbitrary X and Y ,
while preserving the dependence structure. See Theorem 2.4.3 in Nelsen [17].

To model the association between the two variables, we consider two famous copulas:
Farlie–Gumbel–Morgenstern (FGM), and generalized Farlie–Gumbel–Morgenstern (GFGM).
These copulas enjoy the advantage of mathematical tractability. In particular, it turns out
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that under both families, R1(t) and R2(t) are decomposed into two components. The first
one represents the numerator/denominator in (3.1) when X and Y are independent, and the
second one indicates contribution of the association between the two variables in the value of
the corresponding quantity. This property is not shared by all other copulas.

3.1. Using FGM copula

The FGM copula is one of the most popular parametric family of copulas that has been
widely used due to its simple form. It is defined as

C
(
F (x), G(y)

)
= F (x) G(y)

(
1 + θ

[
1− F (x)

] [
1−G(y)

])
, θ ∈ [−1, 1] .

The corresponding copula density is given by

(3.4) c
(
F (x), G(y)

)
= 1 + θ

[
1− 2F (x)

] [
1− 2G(y)

]
, θ ∈ [−1, 1] .

Substituting (3.4) in (3.2) and with some algebra, it follows that

R1(t) = RI
1(t) + θRD

1 (t) ,

where

(3.5) RI
1(t) =

∫ ∞

t
G(x) dF (x) − G(t)

[
1− F (t)

]
,

and

(3.6) RD
1 (t) =

∫ ∞

t

[
1− 2F (x)

] [
G(x)−G2(x)

]
dF (x) +

[
F (t)− F 2(t)

] [
G(t)−G2(t)

]
.

Again, substituting (3.4) in (3.3) and some simplification yield

R2(t) = RI
2(t) + θRD

2 (t) ,

where

(3.7) RI
2(t) =

[
1− F (t)

] [
1−G(t)

]
,

and

(3.8) RD
2 (t) = F (t) G(t)

[
1− F (t)

] [
1−G(t)

]
.

If X∼ BIII(α, δ) and Y ∼ BIII(β, δ), then it is possible to obtain a closed-form expres-
sion for R(t). For notational convenience, S(t; δ, k) is defined as

(3.9) S(t; δ, k) =
1
k

[
1−

(
1 + t−δ

)−k
]
, t, k, δ > 0 .

Incorporating the PDF and CDF of the the BIII distribution in (3.5) and (3.6), we get

RI
1(t) = α S(t; δ, α + β)− α S(t; δ, α)

[
1− β S(t; δ, β)

]
,
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and

RD
1 (t) = α

[
S(t; δ, α+β)− S(t; δ, α+2β)

]
− 2α

[
S(t; δ, 2α+β)− S(t; δ, 2(α+β))

]
+α β S(t; δ, α) S(t; δ, β)

[
1− α S(t; δ, α)

][
1− β S(t; δ, β)

]
.

Similarly, one can verify that (3.7) and (3.8) take the forms

RI
2(t) = α β S(t; δ, α) S(t; δ, β) ,

and
RD

2 (t) = α β S(t; δ, α) S(t; δ, β)
[
1− α S(t; δ, α)

][
1− β S(t; δ, β)

]
.

3.2. Using GFGM copula

Any copula depends on some parameters which determine the degree of dependence be-
tween the margins. Two common measures of the association are Spearman’s ρ and Kendall’s
τ coefficients. Under the FGM copula, ρ ∈ [−1/3, 1/3] and τ ∈ [−2/9, 2/9], meaning that a
relatively weak dependence is allowed. As a result, several modifications of the original FGM
copula have been proposed. In the following, we consider a generalization due to Bairamov
et al. [1]. The GFGM copula is defined as

C
(
F (x), G(y)

)
= F (x) G(y)

(
1 + θ

[
1− F (x)m1

]p1
[
1−G(y)m2

]p2
)

,

where m1, m2, p1, and p2 are positive parameters, and θ ∈ [θ`, θu] with

θ` = −min

{
1,

1
m1m2

(
1 + m1p1

m1(p1 − 1)

)p1−1( 1 + m2p2

m2 (p2 − 1)

)p2−1
}

,

and

θu = min

{
1

m1

(
1 + m1p1

m1(p1 − 1)

)p1−1

,
1

m2

(
1 + m2p2

m2(p2 − 1)

)p2−1
}

.

The corresponding copula density is given by

c
(
F (x), G(y)

)
= 1 + θ

[
1− F (x)m1

]p1−1[
1− (1 + m1p1) F (x)m1

]
×
[
1−G(y)m2

]p2−1[
1− (1 + m2p2) G(y)m2

]
.(3.10)

Clearly, by setting m1 = m2 = p1 = p2 = 1 in the above equation, we arrive at (3.4).

Let p1 and p2 be two positive integers. Then using the binomial expansion in (3.10),
it can be shown that

c
(
F (x), G(y)

)
= 1 + θ

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j F (x)m1i G(y)m2j

×
[
1− (1 + m1p1) F (x)m1

] [
1− (1 + m2p2) G(y)m2

]
.(3.11)
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This representation will be used in computing R(t). Proceeding as in the previous sub-section,
we get

R1(t) = RI
1(t) + θRD

1 (t) ,

where RI
1(t) is given in (3.5), and

(3.12) RD
1 (t) =

p1−1∑
i=0

(
p1−1

i

)
(−1)i

∫ ∞

t
F (x)m1i

[
1− (1 + m1p1) F (x)m1

]
J(x) dF (x) ,

with

J(x) =
p2−1∑
j=0

(
p2−1

j

)
(−1)j

(
1

m2 j + 1

[
G(x)m2j+1 −G(t)m2j+1

]
− 1 + m2p2

m2(j +1) + 1

[
G(x)m2(j+1)+1 −G(t)m2(j+1)+1

])
.

Similarly, it is concluded that

R2(t) = RI
2(t) + θRD

2 (t) ,

where RI
2(t) is given in (3.7), and

RD
2 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

×

(
1

m1i + 1

[
1− F (t)m1i+1

]
− 1 + m1p1

m1(i+1) + 1

[
1− F (t)m1(i+1)+1

])

×

(
1

m2j + 1

[
1−G(t)m2j+1

]
− 1 + m2p2

m2(j +1) + 1

[
1−G(t)m2(j+1)+1

])
.(3.13)

If X∼ BIII(α, δ), Y ∼ BIII(β, δ), and S(t; δ, k) is defined as in (3.9), then from (3.12)
and (3.13) we have

RD
1 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

×

{
α

(m2 j + 1)
S
(
t; δ, α(m1 i+1) + β(m2 j +1)

)
− α(1 + m2p2)

m2(j +1) + 1
S
(
t; δ, α(m1 i+1) + β

(
m2(j +1) + 1

))
− α(1 + m1p1)

m2 j + 1
S
(
t; δ, α

(
m1(i+1) + 1

)
+ β(m2 j + 1)

)
+

α(1 + m1p1) (1 + m2p2)
m2(j +1) + 1

S
(
t; δ, α

(
m1(i+1) + 1

)
+ β

(
m2(j +1) + 1

))
+

(
(1 + m2p2)

[
1

m2(j +1) + 1
− β S

(
t; δ, β

(
m2(j +1) + 1

))]
−
[

1
m2 j + 1

− β S
(
t; δ, β(m2 j + 1)

)])

× α

[
S
(
t; δ, α(m1 i + 1)

)
− (1 + m1p1) S

(
t; δ, α

(
m1(i+1) + 1

))]}
,
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and

RD
2 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

× α

[
S
(
t; δ, α(m1 i + 1)

)
− (1 + m1p1) S

(
t; δ, α

(
m1(i+1) + 1

))]
× β

[
S
(
t; δ, β(m2 j + 1)

)
− (1 + m2p2) S

(
t; δ, β

(
m2(j +1) + 1

))]
.

4. NUMERICAL RESULTS

We now evaluate R(t) for some specific choices of the marginal distributions, and the
reference copula parameters. Figures 1–5 show the curves of R(t), where the involved param-
eters are given in the caption of each figure. The following configurations of

(m1,m2, p1, p2) ∈
{

(1, 1, 1, 1), (1, 4, 2, 7), (1, 4, 1, 10), (4, 1, 3, 2), (5, 5, 2, 1)
}

are associated with Figures 1–5, respectively. In each case, sixteen combinations of (α, β, δ)
and θ are considered whose values can be found in the caption of the figures. In particular,
black/solid curves indicate the situation that X and Y are independent, i.e. θ = 0 in (3.4)
and (3.10).

Figure 1 is given to the FGM copula. For fixed t, R(t) is a decreasing function of θ if
α < β. The situation is reversed if α > β. For example, compare panels (a) and (c). These
properties are easily concluded in the special case of t = 0, as mentioned by Domma and
Giordano [4]. The plot presented in panel (d) is very interesting. In fact, it can be shown
that if the marginal distributions are identical (α = β), then R(t) = 0.5 for all t, regardless
of θ. Finally, one can see that R(t) is a monotone function of t, given a fixed θ.

Figures 2–5 correspond to the GFGM copula. Depending on values of the involved
parameters, the reliability measure takes a variety of functional forms. A marked difference
from Figure 1 is that for fixed θ, R(t) may not be a monotone function of t. This is observed
in panel (d) of Figure 3, for example. If the margins are the same and θ = 0 (see Figures 2
and 4), then it can be proved that R(t) = 0.5 for all t. We note that under the FGM copula,
this property holds for arbitrary θ.

It should be emphasized that if the dependence between X and Y is not incorporated
in computing the reliability, the resulting value could be higher/lower than the true one.
Compare black/solid curve with the others in each panel of Figures 1–5. This highlights
importance of the copula approach as it is an efficient way to capture dependence structure
between random variables in developing inference procedures.
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5. APPLICATION

In this section, application of the copula-based approach in reliability modeling is pro-
vided based on China Health and Nutrition Survey (CHNS) data. The CHNS is an inter-
national collaborative project between the Carolina Population Center at the University of
North Carolina at Chapel Hill, and the National Institute for Nutrition and Health at the
Chinese Center for Disease Control and Prevention. It is designed to examine the effects of
the health, nutrition, and family planning policies and programs implemented by national
and local governments and to see how the social and economic transformation of Chinese
society is affecting the health and nutritional status of its population.

Recent studies support the importance of the lipid-transporting apolipoproteins, such
as ApoA and ApoB which transport high-density lipoprotein (HDL, good) cholesterol and
low-density lipoprotein (LDL, bad) cholesterol particles, respectively. A healthy individual
probably has larger ApoA value than ApoB, and thereby less risk for cardiovascular disease.
As alternatives to the traditional LDL and HDL biomarkers, these apolipoproteins have some
advantages (Walldius and Jungner [21]). Let R be the probability of ApoA being greater
than ApoB, where both were from the same individual, i.e., R = P (ApoA>ApoB). If this
probability is significantly larger than 0.5, then ApoA is stochastically larger than ApoB
for the population, meaning that this population is relatively at lower risk of cardiovascular
disease. Suppose from the previous studies, the researcher knows a lower bound t for values
of the biomarkers in the population. Then, one can utilize the index

R(t) =
P
(
ApoA>ApoB >t

)
P
(
ApoA>t, ApoB>t

) .

The CHNS data set1 contains values of ApoA and ApoB biomarkers for 10,187 Chinese
children and adults (aged ≥ 7) in year 2009. For the purpose of illustration, we estimated R(t)
based on the first 1,000 pairs of data. In doing so, we used the GFGM copula and assumed
that the margins are X∼ BIII(α, δ) and Y ∼ BIII(β, δ), where X and Y denote ApoA and
ApoB, respectively. In particular, the copula parameters were chosen as m1 = m2 = 3 and
p1 = p2 = 2. This set of values allows for nearly the maximum degree of dependence between
the margins under the GFGM copula. Moreover, it simplifies the model through setting
m1 = m2 and p1 = p2. The last parameter of the copula can be estimated from the expression
of Kendall’s τ . Domma and Giordano [4] showed that Kendall’s τ for the GFGM copula is
given by

τ =
8 θ p1p2

(2 + m1p1) (2 + m2p2)
B

(
2

m1
, p1

)
B

(
2

m2
, p2

)
,

where B(·, ·) is the beta function. By replacing τ in the above equation with its value from
the sample, and setting m1 = m2 = 3 and p1 = p2 = 2, an estimate of θ is obtained as 0.176.
It is to be noted that 0.176 falls into admissible range of θ in the GFGM copula with the
aforesaid choices of mi’s and pi’s, i.e. [−0.605, 0.778].

Before using the results of Sub-section 3.2, it is needed to formally assess fit of the
above-mentioned copula to the data. Toward this end, we employed the test statistic S

(B)
n ,

introduced by Genest et al. [8], based on Rosenblatt’s transform. The P-value associated
1It is available at http://www.cpc.unc.edu/projects/china/data/datasets .

http://www.cpc.unc.edu/projects/china/data/datasets
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with this test is determined through parametric bootstrap, where the details can be found
in Appendix D of Genest et al. [8]. In doing so, parameters α, β and δ were estimated
from data by 1.286, 0.522 and 7.398, respectively. Based on 1,000 bootstrap replications, an
approximate P-value for the test was computed as 0.316. So the null hypothesis that the
selected copula fits the data is not rejected at 0.05 significance level. Figure 6 shows the PDF
constructed using this specific GFGM copula with the Burr III marginal distributions.

Plugging in the above set of parameters into the expression of R(t) in Sub-section 3.2
yields an estimate of the dynamic reliability. The corresponding graph is depicted in Figure 7
with blue/dashed curve. A similar graph may be plotted by ignoring the dependence between
the two variables, i.e. replacing 0.176 with 0 in the computations. The result is displayed
by black/solid curve in Figure 7. It is worth commenting that failing to incorporate the
dependence structure leads to inaccuracy in estimating R(t).

6. CONCLUSION

In the classical stress-strength model, the interest centers on R = P (X >Y ) for a unit,
where X and Y are the strength of the unit and the environmental stress, respectively.
This model has attracted much interest in the statistical literature. There are abundant
applications in the areas of reliability, quality control, psychology, medicine and clinical trials.
Recently, R has been extended to a dynamic form R(t) = P (Xt >Yt), where Xt and Yt are
residual lifetimes of two systems. Although the latter measure was motivated by a problem
in reliability theory, it is potentially applicable in many other situations. This article puts
forward a copula approach to account for dependence in evaluating R(t). Some explicit
expressions for R(t) are provided when the margins follow the BIII distribution, and the
reference copula is either the FGM or GFGM. The proposed method is explored by means of
numerical results and real data analysis.

It would be interesting to use other copulas, which allow for higher correlation between
the stress and strength variables, in dynamic reliability modeling. This will be considered in
a separate study.
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Figure 1: Plot of R(t) based on the FGM copula and the Burr III marginal
distributions with: (a) (α, β, δ) = (1, 5, 0.5), (b) (α, β, δ) = (1, 5, 3),
(c) (α, β, δ) = (8, 5, 0.5), and (d) (α, β, δ) = (8, 8, 3). Black/solid,
blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.333, 0.667, 1, respectively.
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Figure 2: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (1, 4, 2, 7),
and the Burr III marginal distributions with: (a) (α, β, δ) = (0.75, 0.75, 0.5),
(b) (α, β, δ) = (0.75, 0.75, 3), (c) (α, β, δ) = (4, 4, 0.5), and (d) (α, β, δ) = (4, 4, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.259, 0.519, 0.778, respectively.
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Figure 3: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (1, 4, 1, 10),
and the Burr III marginal distributions with: (a) (α, β, δ) = (1, 0.5, 0.5),
(b) (α, β, δ) = (1, 0.5, 3), (c) (α, β, δ) = (1, 2, 0.5), and (d) (α, β, δ) = (1, 2, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.269, 0.537, 0.806, respectively.
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Figure 4: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (4, 1, 3, 2),
and the Burr III marginal distributions with: (a) (α, β, δ) = (0.75, 0.75, 0.5),
(b) (α, β, δ) = (0.75, 0.75, 3), (c) (α, β, δ) = (4, 4, 0.5), and (d) (α, β, δ) = (4, 4, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.22, 0.44, 0.66, respectively.
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Figure 5: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (5, 5, 2, 1),
and the Burr III marginal distributions with: (a) (α, β, δ) = (1, 0.5, 0.5),
(b) (α, β, δ) = (1, 0.5, 3), (c) (α, β, δ) = (1, 2, 0.5), and (d) (α, β, δ) = (1, 2, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate
to θ = 0, 0.067, 0.133, 0.200, respectively.
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Figure 6: Plot of the PDF constructed using the GFGM copula with (m1,m2, p1, p2) = (3, 3, 2, 2),
and the Burr III marginal distributions with (α, β, δ) = (1.286, 0.522, 7.398).
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Figure 7: Plot of R(t) estimated from the CHNS data set based on the GFGM copula
with (m1,m2, p1, p2) = (3, 3, 2, 2), and the Burr III marginal distributions
with (α, β, δ) = (1.286, 0.522, 7.398). Black/solid and blue/dashed curves
relate to θ = 0 and θ = 0.176, respectively.
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