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1. INTRODUCTION

Almost all applied sciences including, biomedical science, engineering, finance, demog-
raphy, environmental and agricultural sciences, there is a need of statistical analysis and
modeling of the data. A number of continuous distributions for modeling lifetime data have
been introduced in statistical literature such as Exponential, Lindley, Gamma, Lognormal
and Weibull. Among these Gamma and Lognormal distributions are less popular because
their survival functions cannot be expressed in closed forms and both require numerical inte-
gration. Researchers in probability distribution theory often use a probability distributions
based on either their mathematical simplicity or because of their flexibility. Several paramet-
ric models are used in the analysis of lifetime data and in the problems associated with the
modeling of the failure process. The Exponential distribution is often used to model the time
interval between successive random events but Gamma and Weibull distribution is the most
widely used model for lifetime distribution due to its flexibility. The exponential distribution
is a particular case of the Gamma and Weibull distribution. In order to increase the suitabil-
ity of the well-known distributions, many authors have proposed different transformations
to generate new distributions, it has been an increased interest in defining new generators
for univariate continuous distributions by introducing one or more additional shape param-
eter(s) to the baseline model. This improves the goodness-of-fit of the proposed generated
distribution.

In the context of increasing flexibility in distribution, many generalization or transfor-
mation methods are available in the literature based on baseline distribution. Ghitany et al. [6]
developed a two-parameter weighted Lindley distribution and discussed its applications to
survival data. Zakerzadeh and Dolati [26] obtained a generalized Lindley distribution and
discussed its various properties and applications. Shaw and Buckley [23] proposed a new
transformation method by adding one extra parameter and Kumaraswamy [9] gives another
method of proposing new distribution by taking baseline distribution. A families of distri-
butions for the median of a random sample drawn from an arbitrary lifetime distribution is
introduced by Abd-Elrahman [1]. Since its failure rate function is monotonically increasing
with finite limit for this they generalize distribution by making transformation X =

(
Y−δ

θ

)λ
,

the parameter δ is a threshold parameter, θ and λ are the scale and the shape parameters,
respectively. Gupta et al. [7] proposed an exponentiated type distribution by adding one
more shape parameter. A new generalization of Lindley distribution, i.e. SSD distribution,
appear in Singh et al. [25]. In very recent compounded exponential lindley distribution (CEL)
has been studied by Singh et al. [24]. A new class of distribution by adding two additional
shape parameters is found (see Cordeiro et al. [4]). Also some well-known generators are
the beta-G by Eugene et al. [5], gamma-G by Zografos and Balakrishnan [27], the Zografos-
Balakrishnan-G family by Nadarajah et al. [13].
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2. GENESIS OF THE DISTRIBUTION

In this study, an attempt has been made to develop a new continuous distribution using
concept discussed by Gupta and Kirmani [8]. Let X be a continuous random variable with
the cumulative distribution function (cdf) F (x) and expectation E(X). It is worthwhile to
mention here that the E(X) can be defined in terms of cdf of any distribution as follows:

E(X) =

∞∫
0

[1− F (x)]dx.

Let us have, for positive x,

∞∫
0

[1− F (x)]dx = lim
k→∞

k∫
0

1.[1− F (x)]dx.

Now, integrating by parts, we have

lim
k→∞

[{1− F (k)}k] + lim
k→∞

k∫
0

xf(x)dx, where
d

dx
[F (x)] = f(x).(2.1)

Since F (∞) = 1, lim
k→∞

[{1− F (k)}k] = 0, then

(2.2)

∞∫
0

[1− F (x)]dx = lim
k→∞

k∫
0

xf(x)dx =

∞∫
0

xf(x)dx = E(X).

Keeping the above concept into mind we define a pdf g∗(x) as

g∗(x) =
1− F (x)

E(X)
, x > 0.(2.3)

If g∗(x) is a pdf then its integration over the range should be equal to 1. Now we have

∞∫
0

g∗(x)dx =

∞∫
0

[1− F (x)]
E(X)

dx =
1

E(X)

∞∫
0

[1− F (x)]dx =
E(X)
E(X)

= 1.

Therefore the generated pdf using the above transformation technique will be a valid pdf.
This g∗(x) may be called an induced or equilibrium distribution. Actually this distribution
is a particular case of weighted distribution defined by Patil and Rao [14]. According to the
Patil and Rao [14], if f(x; θ) be the probability distribution function of random variable X
and the unknown parameter θ the weighted distribution is defined as:

f∗(x; θ) =
w(x)f(x; θ)

E[w(x)]
, x ∈ R, θ > 0,

where w(x) is the weight function, and f(x; θ) is the base line distribution. We know that
1− F (x) = S(x) = f(x)

h(x) , i.e. if we take w(x) = h(x)−1, we can get the induced distribution
defined above in equation number (2.3). This distribution is well connected to its parent
distribution and many of the statistical properties can be easily studied.
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2.1. Proposed distribution

We consider cdf of one parameter Lindley distribution and using the idea of induced
distribution given in the equation (2.3), the pdf and cdf of transformed distribution is given
in equations (2.4) and (2.5) respectively:

f(x; θ) =
θ

θ + 2
(1 + θ + θx)e−θx,(2.4)

F (x; θ) = 1−
[
1 +

θx

θ + 2

]
e−θx, x > 0, θ > 0.(2.5)

In fact this distribution is Garima distribution and already discussed by Shanker [20], which
is a mixture of Exponential (θ) and Gamma (2, θ) distribution with mixing proportion θ+1

θ+2 .
Also he discussed its various statistical properties.

Therefore in this paper, we consider cdf F (x) of Garima distribution as a base line
distribution and try to develop a new distribution. The pdf and cdf of the new distribution
is as follows:

g(x; θ) =
θ

θ + 3
(2 + θ + θx)e−θx, x > 0, θ > 0,(2.6)

and the corresponding cdf is

G(x; θ) = 1−
[
1 +

θx

θ + 3

]
e−θx, x > 0, θ > 0.(2.7)

The above distribution is similar to the base line distribution and develop using concept of
induced distribution thus named as induced Garima (i-Garima) distribution. This distribu-
tion can also be consider as second order induced Lindley distribution. The cdf of i-Garima
distribution is displayed in Figure (1).
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Figure 1: Cumulative distribution function of i-Garima distribution.

The proposed distribution, i.e. i-Garima distribution, can be easily expressed as a
mixture of Exponential (θ) and Gamma (2, θ) as

f(x; θ) = pg1(x) + (1− p)g2(x),(2.8)

where p = θ+2
θ+3 , g1(x) = θe−θx, and g2(x) = θ2xe−θx.
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3. PROPERTIES

The r-th order moments about origin is given by

E(Xr) =

∞∫
0

xrg(x)dx =
θ

θ + 3

∞∫
0

xre−θx(2 + θ + θx)dx.

Hence,

µ′r =
r!
θr

(θ + r + 3)
(θ + 3)

, r = 1, 2, 3, ...(3.1)

First four moments about origin are obtained as:

µ′1 =
1
θ

(θ + 4)
(θ + 3)

, µ′2 =
2
θ2

(θ + 5)
(θ + 3)

, µ′3 =
6
θ3

(θ + 6)
(θ + 3)

, µ′4 =
24
θ4

(θ + 7)
(θ + 3)

.

Using the above expression we get the four moments about mean, i.e. central moments of the
proposed distribution are given by

µ1 =
θ + 4

θ(θ + 3)
, µ2 =

θ2 + 8θ + 14
θ2(θ + 3)2

,

µ3 =
2
(
θ3 + 12θ2 + 42θ + 46

)
θ3(θ + 3)3

, µ4 =
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
θ4(θ + 3)4

.

The coefficient of variation (CV), coefficient of skewness
√

β1, coefficient of kurtosis β2 and
index of dispersion γ of proposed distribution are obtained as:

CV =
σ

µ1
=
√

θ2 + 8θ + 14
θ + 4

,
√

β1 =
µ3

µ
3
2
2

=
2
(
θ3 + 12θ2 + 42θ + 46

)
(θ2 + 8θ + 14)

3
2

,

β2 =
µ4

µ2
2

=
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
(θ2 + 8θ + 14)2

, γ =
µ2

µ1
=

(
θ2 + 8θ + 14

)
θ(θ + 3)(θ + 4)

.

The coefficient of variation (CV), index of dispersion (γ), coefficient of skewness (
√

β1) and
kurtosis (β2) are calculated for different values of θ. Coefficient of variation (CV) is observed
less than 1 for all values of θ. Coefficient of skewness (

√
β1) and kurtosis (β2) are found

more than 1 and 3 respectively for different values of θ, therefore the proposed distribution
is positively skewed and leptokurtic. The index of dispersion (γ) shows that the proposed
distribution is under-dispersed as well as over-dispersed. It is observed that for θ= 1.1474,
the value of γ is 1. For θ > 1.1474, the distribution is under-dispersed and for θ < 1.1474,
it is over-dispersed. The graph for CV, γ,

√
β1 and β2 for different values of θ are shown in

Figure 2.
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Figure 2: Graph of the CV, γ, β1 and β2 for different values of θ.

3.1. Generating functions

The moment generating function Mx(t), characteristic function Φx(t) and cumulant
generating function κx(t) of proposed distribution are given by:

Mx(t) =
[
1− (2 + θ)t

(3 + θ)θ

](
1− t

θ

)−2

,

∣∣∣∣ t

θ

∣∣∣∣ < 1,(3.2)

Φx(t) =
[
1− (2 + θ)it

(3 + θ)θ

](
1− it

θ

)−2

, i =
√
−1,(3.3)

κx(t) = log
(

1− (2 + θ)it
(3 + θ)θ

)
− 2 log

(
1− it

θ

)
.(3.4)

By series expansion of log(1− x) = −
∞∑

r=0

xr

r , we get

κx(t) = −
∞∑

r=0

(
(2 + θ)
(3 + θ)θ

)r (it)r

r
+ 2

∞∑
r=0

(
it
θ

)r

r

= 2
∞∑

r=0

(r − 1)!
θr

(it)r

r!
−

∞∑
r=0

(r − 1)!
[

θ + 2
θ(θ + 3)

]r (it)r

r!
.

Hence r-th cumulant of i-Garima distribution is given by

κr = coefficient of
(it)r

r!
in κx(t)

= 2
(r − 1)!

θr
− (r − 1)!(θ + 2)r

[θ(θ + 3)]r
, r = 1, 2, 3, ...

From the above equation we have four moments, that are the same as obtained earlier by
equation (3.1):

µ1 = κ1 =
θ + 4

θ(θ + 3)
, µ2 = κ2 =

θ2 + 8θ + 14
θ2(θ + 3)2

,

µ3 = κ3 =
2
(
θ3 +12θ2 + 42θ + 46

)
θ3(θ + 3)3

, µ4 = κ4 + 3κ2
2 =

3
(
3θ4 + 48θ3 + 260θ2 + 592θ+488

)
θ4(θ + 3)4

.
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3.2. Hazard rate and mean residual life function

Let X be a random variable with pdf g(x) and cdf G(x). The hazard function is given
as

h(x) = lim
∆x→∞

P (X < x + ∆x|X > x)
∆x

=
g(x; θ)

1−G(x; θ)
.(3.5)

After using pdf and cdf of i-Garima distribution in above expression we get the hazard rate
function h(x) of i-Garima distribution as

h(x) =
θ(2 + θ + θx)
(3 + θ + θx)

,(3.6)

taking limit as x → 0 in (3.6), we get

lim
x→0

h(x) = lim
x→0

θ

[
1− 1

(3 + θ + θx)

]
= θ

[
1− 1

(3 + θ)

]
> 0, θ ∈ R+,

and for x →∞ we get

lim
x→∞

h(x) = lim
x→∞

θ

[
1− 1

(3 + θ + θx)

]
= θ > 0, θ ∈ R+.

Hence, h(x) > 0 for x > 0, θ > 0. Therefore, h(x) is an increasing function. The figure of
hazard function is displayed in the Figure (3).
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Figure 3: Hazard function of i-Garima distribution.

Now the mean residual life function (MRLF) is given as (3.7). We know that if a
component of age t, the remaining lifetime after age t will be random. The expected value of
the random life time is called the mean residual life and the mathematical form is known as
MRLF. This may be more relevant than the hazard rate function in the study of repairable
or replacement time. The MRLF provide idea about the entire residual life distribution or
life expectancy, whereas the hazard rate is related only to the risk of immediate failure.
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We have

m(x) = E[X − x|X > x] =
1

1−G(x; θ)

∞∫
x

[1−G(t; θ)]dt,

m(x) =
(4 + θ + θx)
θ(3 + θ + θx)

.(3.7)

If x = 0, we get, m(0) = θ+4
θ(θ+3) which is E(X) of the proposed distribution and also m(x) is

decreasing function for all x > 0 and θ > 0. The graph of MRLF of i-Garima distribution is
given in the Figure (4), which is decreasing type.

 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12

m
(x
)

x

Figure 4: Mean residual life function (MRLF) of i-Garima distribution.

3.3. Quantile function

Theorem 3.1. If X∼ i-Garima(θ), then Quantile function of X is defined as

Q(p) = −1− 3
θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
,

where p ∈ (0, 1) and W−1 is the negative branch of the Lambert W function.

Proof: Let

Q(p) = F−1(p), p ∈ (0, 1).

The quantile function, say q(p), defined by G(Q(p)) = p is the root of the equation

1−
(

1 +
θQ(p)
θ + 3

)
e−θQ(p) = p,

[3 + θ + θQ(p)]e−θQ(p) = (1− p)(θ + 3).
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Multiplying both sides by −e−(θ+3) we get

−[3 + θ + θQ(p)]e−(3+θ+θQ(p)) = −(1− p)(θ + 3)e−(3+θ).

Now (3 + θ + θQ(p)) > 1, ∀θ > 0, Q(p) > 0. By applying W-function defined as the solution
of the equation w(z)eW (z) = z, the above equation can be written as

W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
= −(3 + θ + θQ(p)),

where and W−1(·) is the negative branch of the Lambert W function and we get the required
result:

Q(p) = −1− 3
θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
.(3.8)

3.4. Stochastic ordering

Stochastic ordering of a continuous random variable is an important tool to judging
their comparative behaviour. A random variable X is said to be smaller than a random
variable Y , when:

(i) Stochastic order X ≤st Y if FX(x) ≥ FY (x) for all x;

(ii) Hazard rate order X ≤hr Y if hX(x) ≥ hY (x) for all x;

(iii) Mean residual life order X ≤mrl Y if mX(x) ≥ mY (x) for all x;

(iv) Likelihood ratio order X ≤lr Y if fX(x)
fY (x) decreases in x.

The following results by Shaked and Shanthikumar [16] are well known for introducing
stochastic ordering of distributions:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

⇓
X ≤st Y.

With the help of the following theorem we claim that i-Garima distribution is ordered with
respect to strongest likelihood ratio ordering.

Theorem 3.2. Let X∼ i-Garima(θ1) distribution and Y ∼ i-Garima(θ2) distribution.

If θ1 > θ2 then X ≤lr Y and therefore X ≤hr Y , X ≤mrl Y and X ≤st Y .

Proof: We have

fX(x)
fY (x)

=
θ1(θ2 + 3)
θ2(θ1 + 3)

(
2 + θ1 + θ1x

2 + θ2 + θ2x

)
e−(θ1−θ2)x, x > 0.

Now taking log both sides we get

log
[
fX(x)
fY (x)

]
= log

[
θ1(θ2 + 3)
θ2(θ1 + 3)

]
log

[
2 + θ1 + θ1x

2 + θ2 + θ2x

]
−(θ1 − θ2)x.
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By differentiating both sides we get

d

dx
log

[
fX(x)
fY (x)

]
=

2(θ1 − θ2)
(2 + θ1 + θ1x)(2 + θ2 + θ2x)

−(θ1 − θ2).

Thus, for θ1 > θ2, d
dx log

[
fX(x)
fY (x)

]
< 0. This means that X ≤lr Y and hence X ≤hr Y , X ≤mrl Y

and X ≤st Y .

3.5. Order statistics

Let X1, X2, ..., Xm be a random sample of size m from i-Garima distribution and also
let X(1), X(2), ..., X(m) be the corresponding order statistics. The pdf and cdf of r-th order
statistics, say Y =X(r), are given by

f(r:m)(y) =
m!

(r − 1)!(m− r)!
F r−1(y)[1− F (y)]m−rf(y)

=
m!

(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)
(−1)lF r+l−1(y)f(y)(3.9)

and

F(r:m)(y) =
m∑

j=r

(
m

j

)
F j(y)[1− F (y)]m−j

=
m∑

j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)
(−1)lF j+l(y)(3.10)

respectively, for r = 1(1)m.

Based on equations (3.9) and (3.10) the pdf and cdf of r-th order statistics of i-Garima
distribution is given in equations (3.11) and (3.12):

f(r:m)(y) =
m!θ(3 + θ + θx)e−θx

(θ + 3)(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)[
1− θx + (θ + 3)

(θ + 3)
e−θx

]r+l−1

(3.11)

and

F(r:m)(y) =
m∑

j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)[
1− θx + (θ + 3)

(θ + 3)
e−θx

]j+l

.(3.12)

3.6. Bonferroni and Lorenz curves

Let the random variable X is non-negative with a continuous and twice differentiable
cumulative function. The Bonferroni [3] curve of the random variable X is defined as

B(p) =
1
pµ

q∫
0

xg(x)dx =
1
pµ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1
pµ

µ−
∞∫
q

xg(x)dx

(3.13)
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and the Lorenz curve (see Lorenz [12]) is defined by

L(p) =
1
µ

q∫
0

xg(x)dx =
1
µ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1
µ

µ−
∞∫
q

xg(x)dx

(3.14)

where q = G−1(p) and µ = E(X), p ∈ (0, 1].

The Gini index is given by

G = 1− 1
µ

∞∫
0

(1−G(x))2dx =
1
µ

∞∫
0

G(x)(1−G(x))dx.(3.15)

The Bonferroni, Lorenz curve and Gini index have application not only in economics
to study income and poverty, but also in other fields like reliability, population studies,
insurance, and medicine. Using the equations (3.13), (3.14) and (3.15) we get the Bonferroni
curve, Lorenz curve and the Gini index as:

B(p) =
1
p

[
1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4

]
,(3.16)

L(p) = 1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4
,(3.17)

G =
2θ2 + 16θ + 29
4(θ + 3)(θ + 4)

.(3.18)

4. ENTROPIES

Entropy, measures the variation in uncertainties associated with a random variable of
a probability distributions. Rényi’s and Shannon entropy are widely used to understand the
uncertainty involved in random variables.

4.1. Rényi entropy

If X is a continuous random variable having probability density function g(·), then the
Rényi Entropy (see Rényi [15]) is defined as

e(η) =
1

1− η
log

 ∞∫
0

gη(x)dx

,(4.1)

where η > 0 and η = 0.
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The Rényi entropy for the i-Garima distribution is defined as

e(η) =
1

1− η
log

 ∞∫
0

(
θ

θ + 3

)η

(2 + θ + θx)ηe−ηθxdx


=

1
1− η

log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

(
1 +

θx

θ + 2

)η

e−ηθxdx

.(4.2)

Now from the above equation (4.2), applying binomial expansion (1 + x)n =
n∑

k=0

(
n

k

)
xk,

we get

1
1− η

log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

η∑
j=0

(
η

j

)(
θx

θ + 2

)j

e−ηθxdx

,

i.e.
1

1− η
log

 η∑
j=0

(
η

j

)
θη+j(θ + 2)η−j

(θ + 3)η

∞∫
0

xje−ηθxdx

.(4.3)

After solving equation (4.3), we get the required results in equation (4.4):

=
1

1− η
log

 η∑
j=0

(
η

j

)
θη−1(θ + 2)η−j

(θ + 3)η

Γ(j + 1)
(η)j+1

,(4.4)

since
∞∫
0

xn−1e−θxdx = Γ(n)
θn .

4.2. Shannon entropy

The Shannon entropy (see Shannon [22]) of i-Garima distribution is given as

Ω = E(− log x) = −
∞∫
0

log(f(x))f(x)dx

= − log
(

θ

θ + 3

) ∞∫
0

f(x)dx−
∞∫
0

log(2 + θ + θx)f(x)dx +

∞∫
0

θxf(x)dx

= − log
(

θ

θ + 3

)
− log(θ + 2)−

∞∫
0

log
(

1 +
θx

θ + 2

)
f(x)dx + θE(x).(4.5)

Here, E(X) = θ+4
θ(θ+3) , mean of the distribution. Applying log(1+x) =

∞∑
n=1

(−1)n+1 xn

n , |x| < 1,

in equation (4.5), we get

= − log
(

θ(θ + 2)
θ + 3

)
+

(
θ + 4
θ + 3

)
− θ

θ + 3

∞∫
0

∞∑
k=1

(−1)k+1

k

(
θx

θ + 2

)k

(2 + θ + θx)e−θxdx

= − log
(

θ(θ + 2)
θ + 3

)
+

(
θ + 4
θ + 3

)
− θ

θ + 3

∞∑
k=1

(−1)k+1

k

(
θ

θ + 2

)k
∞∫
0

xk(2 + θ + θx)e−θxdx.
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After the simplification above, we obtained Shannon entropy as

Ω =
(

θ + 4
θ + 3

)
− log

(
θ(θ + 2)
θ + 3

)
− 1

θ + 3

∞∑
k=1

(−1)k+1

k

k!(θ + k + 3)
(θ + 2)k

.(4.6)

5. STRESS-STRENGTH RELIABILITY

Stress-strength model describes the life of a system of component having a random
strength X and random stress Y . If stress is more than strength, the system of component
fails immediately. The measure of system reliability R = P (Y < X) is also known as stress-
strength parameter. It is used in engineering science such as deterioration of any structures,
motors, static fatigue of ceramic components and aging of concrete pressure vessels.

Let X and Y be independently distributed, with X∼ i-Garima(θ1) and Y ∼ i-Garima(θ2).
The CDF F1 of X and pdf f2 of Y are obtained from equations (2.7) and (2.6), respectively.
Then stress-strength reliability R is obtained as

R = P (Y < X) =

∞∫
0

P (Y < X|X = x)fx(X)dx =

∞∫
0

f(x; θ1)F (x; θ2)dx

= 1−
θ1

[
(θ1θ2 + 3θ1 + 2θ2 + 6)(θ1 + θ2)2 + (2θ1θ2 + 3θ1 + 2θ2)(θ1 + θ2) + 2θ1θ2

]
(θ1 + 3)(θ2 + 3)(θ1 + θ2)3

.(5.1)

6. MAXIMUM LIKELIHOOD ESTIMATION

Let (x1, x2, ..., xn) be a random sample from X∼ i-Garima(θ). The likelihood function,
L, is obtained as

L =
(

θ

θ + 3

)n n∏
i=1

(2 + θ + θxi)e
−θ

nP

i=1
xi

.(6.1)

Taking log both sides of equation (6.1) we get

log L = n log
(

θ

θ + 3

)
+

n∑
i=1

log(2 + θ + θxi)− θ
n∑

i=1

xi.(6.2)

Now differentiating both sides of (6.2) by θ we get

d(log L)
dθ

=
3n

θ2 + 3θ
+

n∑
i=1

1 + xi

2 + θ + θxi
− nx̄ = 0,(6.3)

where x̄ is the sample mean. The maximum likelihood estimate (θ̂) of θ is the solution of the
equation (6.3). Since this is a non-linear equation, thus we solve this by numerical method.
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7. EMPIRICAL ILLUSTRATIONS AND GOODNESS OF FIT

In this section, we present applications of the proposed distribution and their competent
models for two real data sets to illustrate their potentiality. We estimate the unknown parame-
ters of themodel by themaximum likelihood estimation (MLE)usingNewton–Raphsonmethod.
First data is about vinyl chloride obtained from clean up gradient monitoring wells in mg/l,
provided by Bhaumik et al. [2], and second data set represents completed remission times (in
months) of a random sample of 128 bladder cancer patients reported in Lee and Wang [10].
The summary measures of the two data sets are given below in Table 1.

Table 1: Summary measures of two data sets.

Datasets n mean sd median skewness kurtosis min max

1st data set 34 1.953 1.879 1.150 1.604 5.005 0.10 8.000
2nd data set 128 9.209 10.40 6.280 3.399 19.39 0.08 79.05

Table 1 reveals that both data sets are positively skewed and leptokurtic. First data
set is under-dispersed however second data set is over-dispersed. We applied the i-Garima
distributions for the above data sets and compared the results with some other competent
distributions (see Lindley [11], Shanker [17, 18, 19, 20, 21]).

The goodness of fit of the i-Garima distribution has been explained for two real data
sets using −2LL (−2log likelihood), AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion) and K-S Statistic (Kolmogorov-Smirnov Statistic). The estimate of
these have been computed and shown in Tables 2 and 3, respectively. Smaller values of the
AIC and BIC indicates better model fittings. The formulae for computing AIC, BIC, and
K-S Statistics are as follows:

AIC = −2LL + 2k, BIC = −2LL + k log n, D = sup
x
|Fn(x)− F0(x)|,

where k = the number of parameters, n = the sample size, and Fn(x) = empirical distri-
bution function.

Table 2 and 3 reveals that i-Garima distribution provides closer fit for both data sets as
it has lower −2LL, AIC, BIC, K-S values and higher p-values corresponding to K-S statistics
than the other competitor models. Therefor, the proposed distribution i-Garima will consider
as a potential alternative in modeling life time data and can be recommended for modelling
data from engineering, medical, biological science and other applied sciences.



On an induced distribution and its statistical properties 317

Table 2: MLE’s, −2LL, AIC, BIC, K-S and p-values of the fitted distributions
for the vinyl chloride dataset given by Bhaumik et al. [2].

Distribution Estimate −2LL AIC BIC K-S p-value

i-Garima 0.674 111.18 113.18 114.71 0.1039 0.8567
Garima 0.723 111.50 113.50 115.03 0.1135 0.7731
Aradhana 1.133 116.06 118.06 119.59 0.1695 0.2826
Sujatha 1.146 115.54 117.54 119.07 0.1640 0.3196
Akash 1.166 115.15 117.15 118.68 0.1564 0.3762
Shanker 0.853 112.91 114.91 116.44 0.1308 0.6062
Lindley 0.199 112.61 114.61 116.13 0.1326 0.5881

Table 3: MLE’s, −2LL, AIC, BIC, K-S and p-values of the fitted distributions
for the bladder cancer patients data given by Lee and Wang [10].

Distribution Estimate −2LL AIC BIC K-S p-value

i-Garima 0.143 825.57 827.57 830.42 0.0768 0.4374
Garima 0.158 826.49 828.49 831.34 0.0873 0.2835
Aradhana 0.295 868.28 870.28 873.13 0.1713 0.0011
Sujatha 0.303 873.22 875.22 878.08 0.1792 0.0005
Akash 0.315 881.04 883.04 885.89 0.1904 0.0002
Shanker 0.214 841.68 843.68 846.53 0.1243 0.0382
Lindley 0.199 833.79 835.79 838.64 0.1114 0.0832

8. CONCLUSION

Better modeling of the survival data is a major concern for statisticians and applied
researchers. As a consequence, a significant progress has been made towards the extension
of lifetime models and their application to various data sets. The present study suggests
a technique for developing new probability distribution. A Single parameter distribution
named i-Garima, is suggested and investigated in this study. Different statistical properties
have been derived and studied for the proposed model. Moments about origin and mean have
been obtained. The nature of pdf, cdf, hazard rate function and mean residual life function
have been measured. The expression of stress-strength reliability is obtained, we can calculate
system reliability when stress and strength parameter is known. Bonferroni, Lorenz curves
and Gini index of the i-Garima are also measured. Maximum likelihood estimator of the
model parameter is derived and obtained through Newton-Raphson method. The Rényi
and Shannon entropies, order statistics and stochastic ordering are derived. An application
of i-Garima distribution is given using two real lifetime data sets to show the suitability
and the goodness of fit. Although the second data set have some censored cases but here
we use only completed cases for the analysis. i-Garima provides a better fit over Garima,
Aradhana, Sujatha, Akash, Shanker and Lindley distributions. It is realized that the proposed
distribution in this study will consider some data sets in view of different censored mechanisms
when specific interest comes into survival or reliability aspects. The article also opens a
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scope for studying under Bayesian paradigm of the parameters under different loss functions.
The work in this direction will perform in near future.
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