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1. INTRODUCTION

Over the past decades, different statistical distributions and related models have been
proposed for treating randomness and uncertainty, among which the exponentiated Weibull
distribution models is a key one [20]. Meanwhile, two-parameter generalized exponential
distribution (denoted by GED) has also been proposed as a sub-model in the exponen-
tiated Weibull distribution model which model the real data in a more realistic manner.
Several researchers have concentrated on applying this distribution in various fields and stud-
ied the problem of parameters estimation for GED [11]–[14], [18], [22], [23], [25], [27]–[30],
[35].

Inferences about stress-strength model is an important and interesting fields in the
reliability theory. In the mechanical reliability of a system, if we denote X as the strength of
a component which is subject to the stress Y, then R = P (Y <X) is known as a measure of
system performance. The problem of estimating R for certain family of probability distribu-
tions, has been widely studied in the literature. In the following, we review the main studies
in this context in an attempt to display the motivation for this paper.

The MLE of P (Y <X), when X and Y have bivariate exponential distribution, has
been considered by Awad et al. [1]. Church and Harris [2], Downton [6], Woodward and
Kelley [34] and Owen et al. [26] considered the estimation of P (Y <X), when X and Y

are normally distributed. Similar problem for the multivariate normal distribution has been
considered by Gupta and Gupta [10]. Kelley et al. [16] and Sathe and Shah [32] considered
the estimation of P (Y <X) when X and Y are independent exponential random variables.
Constantine and Karson [4] considered the estimation of P (Y <X), when X and Y are in-
dependent Gamma random variables. Sathe and Dixit [31] have been estimate of P (Y <X)
in the negative binomial distribution. Surles and Padgett [33] considered the estimation of
P (Y <X), where X and Y are Burr Type random variables. Finally, Nasiri and Pazira [24]
have done the estimation of P (Y <X) in exponential case.

The drawback of the above mentioned models is their lack of a supporting the sample
data which contain outliers due to human error in measuring or erroneous procedures. To the
best of our knowledge, a few researchers investigated the statistical inference about R based
on samples contain outlier observation(s). Kim and Chung [17] and Jeevanand and Nair [15]
have considered the Bayesian estimation of R based on samples containing outlier from the
Burr-X distribution and exponential distribution, respectively. Li and Hao [19] studied the
Bayesian and maximum likelihood estimation of R when X and Y are two independent gener-
alized exponential distributions containing one outlier. Pazira and Nasiri [28] and Nasiri [21]
consider the estimating parameters of R for generalized exponential distribution and Lomax
distribution with presence k-outliers, respectively. Ghanizadeh [8] and Ghanizadeh et al. [9]
studied the estimation of R in the presence of k-outlier for Rayleigh and Exponentiated
Gamma distribution, respectively.

In the present work, the Bayes and maximum likelihood approaches to estimate the
P (Y <X) are incorporated into the samples containing outliers. This paper is organized as
follows: First, in Section 2, we recall the concept of GED and then formulated the problem.



Some Reliability Estimates for Generalized Exponential Distribution with Presence of k-Outliers 3

Then, we investigate the MLE and the Bayes estimators of R when the scale parameter is
known and unknown, respectively in Section 3 and 4. The different proposed methods have
been compared using Monte Carlo simulations and bootstrap methods and their results have
been reported in Section 5. An numerical example is illustrated in Section 6. Finally, a brief
conclusion presented in Section 7.

2. MATHEMATICAL FORMULATION

The two-parameter GED has the following density function

(2.1) f(x, α, λ) = αλe−λx
(
1− e−λx

)α−1 , x > 0 ,

where α > 0 and λ > 0 are the shape and scale parameters, respectively. We denote the two-
parameter GED with the shape parameter α and scale parameter λ will be denoted by GE(α, λ).

For different values of the shape parameter, the density function can take different
shape. If the scale parameter λ is equal to one, for α ≤ 1, the density function is a decreasing
function and for α > 1, it is a unimodal, skewed, right tailed similar to the Weibull or Gamma
density function. It is observed that even for very large shape parameter (α), it is not
symmetric. For this density function (2.1), the mode is at log α for α > 1 and for α ≤ 1, the
mode is at α. It has the median at − ln(1 − 0.51/α) . The mean, median and mode are non-
linear functions of the shape parameter α and as this parameter goes to infinity all of them
tend to infinity. For large values of α, the mean, median and mode are approximately equal
to α but they converge at different rates. Figure 1 shows the shape of f(x, α) for different
values of α when λ = 1 (for more details refer to Gupta and Kundu [11]).

Figure 1: pdf of GE(α,1) for different values of α.

The main aim of this paper is to focus on the inference of R = P (Y <X), where Y ∼
GE(α,λ), with pdf denoted in Equation (2.1) and X has GED with presence of k outliers,
with pdf

(2.2) f(x, β1, β2, λ) =
k

n
f(x, β1, λ) +

n − k

n
f(x, β2, λ) , x > 0 ,

where function f(·) is given in Equation (2.1). For more details see Dixit [5] and Nasiri and
Pazira [23]–[24].
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To this end, suppose that Y1, Y2, ..., Ym be a random sample for Y with pdf

(2.3) g(y, α, λ) = αλe−λy
(
1− e−λy

)α−1 , y > 0 ,

and X1, X2, ..., Xn be random sample for X with pdf

(2.4) f(x, β1, β2, λ) =
k

n
g(x, β1, λ) +

n − k

n
g(x, β2, λ) , x > 0 ,

with presence of k outliers. The function g(·) is given in Equation (2.3).
Then, based on the definition of R, we have that

R = P (Y <X) =
∫ ∞

0

∫ x

0
g(y, α, λ) f(x, β1, β2, λ) dy dx(2.5)

=
k

n
· β1

α + β1
+

n − k

n
· β2

α + β2
.

Thus, in order to estimate the R, it is sufficient that we estimate the parameters α, β1

and β2.

3. MAXIMUM LIKELIHOOD ESTIMATOR OF R

In this section, we study the maximum likelihood estimation of the R. In order to
compute the MLE of R, first we consider the joint distribution of X1, X2, ..., Xn with presence
of k outliers as follows:

f(x1, x2, ..., xn) =

=
1

C(n, k)

n∏
i=1

[
β2λe−λxi

(
1− e−λxi

)β2−1
]∑

A

k∏
r=1

(
β1λe−λxAr

(
1− e−λxAr

)β1−1

β2λe−λxAr

(
1− e−λxAr

)β2−1

)
(3.1)

=
1

C(n, k)
βk

1 βn−k
2 λne−λ

P
xi

n∏
i=1

[(
1− e−λxi

)β2−1
] ∑

A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

where C(n,k)=
(n

k

)
and

∑
A =

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 ···

∑n
Ak=Ak−1+1. (For more details see [28]).

Using Equation (3.1), the likelihood function based on two observed sample is given as follows:

L(α, β1, β2, λ) = g(y1, y2, ..., ym) f(x1, x2, ..., xn) .

The Log-likelihood function of the observed sample is

lnL(α,β1,β2,λ) = m ln(αλ) − λ

m∑
i=1

yi + (α−1)
m∑

i=1

ln
(
1− e−λyi

)
+ ln

βk
1βn−k

2

C(n,k)
λne−

Pn
i=1λxi

n∏
i=1

[(
1−e−λxi

)β2−1
]∑

A

k∏
r=1

(
1−e−λxAr

)β1−β2

.(3.2)
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It is well known that, in order to compute the The MLE’s of α say α̂, we must obtain the
solution of following equation

∂ lnL

∂α
=

mλ

αλ
+

m∑
i=1

ln
(
1− e−λyi

)
= 0 ,

or

m

α
= −

m∑
i=1

ln
(
1− e−λyi

)
.

Hence,

α̂ =
−m∑m

i=1 ln
(
1− e−λ̂yi

) .(3.3)

In similar way, the MLE’s of β1, β2 and λ, say β̂1, β̂2 and λ̂ respectively, obtained as the
solutions of

∂ lnL

∂β1
=

k

β1
+

∂
∂β1

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
k

β1
+

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2 ln
(
1− e−λxAr

)
∑

A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0 ,

(3.4)

∂ lnL

∂β2
=

n− k

β2
+

n∑
i=1

ln
(
1− e−λxi

)
+

∂
∂β2

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
n− k

β2
+

n∑
i=1

ln
(
1−e−λxi

)
−
∑

A

∏k
r=1

(
1−e−λxAr

)β1−β2 ln
(
1−e−λxAr

)
∑

A

∏k
r=1

(
1−e−λxAr

)β1−β2
= 0 ,

(3.5)

∂ lnL

∂λ
=

m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α − 1)
m∑

i=1

yi e
−λyi

1− e−λyi

+ (β2−1)
n∑

i=1

xi e
−λxi

1− e−λxi
+

∂
∂λ

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α − 1)
m∑

i=1

yi e
−λyi

1− e−λyi

+ (β2−1)
n∑

i=1

xi e
−λxi

1− e−λxi
+

∑
A

∏k
r=1(β1−β2) xAr

(
1− e−λxAr

)β1−β2−1∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0 .

(3.6)

From Equations (3.4)–(3.6), we obtain the β̂1, β̂2 and λ̂ as the solution of non-linear
equations.

Since ML estimators are invariant, so the MLE of R becomes

R̂ =
k

n

β̂1

α̂ + β̂1

+
n − k

n

β̂2

α̂ + β̂2

.(3.7)
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Note 3.1. For β1 = β2 = β in case of no outliers presence, α̂ and β̂ can be obtained as

α̂ =
−m∑m

i=1 ln
(
1− e−λ̂yi

) , β̂ =
−n∑n

i=1 ln
(
1− e−λ̂xi

)
and λ̂ can be obtained as the function of the non-linear equation

g(λ) =
m + n

λ
− n∑n

i=1 ln
(
1− e−λxi

) n∑
i=1

xi e
−λxi(

1− e−λxi
)

− m∑m
i=1 ln

(
1− e−λyi

) m∑
i=1

yi e
−λyi(

1− e−λyi
) −

n∑
i=1

xi(
1− e−λxi

) −
m∑

i=1

yi(
1− e−λyi

) = 0

are given by Kundu and Gupta [18].

Note 3.2. The estimation of R when λ is known was studied by Pazira and Nasiri
[28]. In this case, the MLE estimation of R is given as Equation (3.7) in which α̂, β̂1 and β̂2

given as follows:

α̂ =
−m∑m

i=1 ln
(
1− e−yi

) ,(3.8)

∂ lnL

∂β1
=

k

β1
+

∑
A

∏k
r=1

(
1− e−xAr

)β1−β2 ln
(
1− e−xAr

)
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2
= 0 ,(3.9)

∂ lnL

∂β2
=

n− k

β2
+

n∑
i=1

ln
(
1− e−xi

)
−
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2 ln
(
1− e−xAr

)
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2
= 0 .(3.10)

3.1. Bootstrap method

In this subsection, we propose the percentile bootstrap method based on the idea of
Efrom [7] in two cases of parameter λ is known and unknown. The algorithms for estimating
the R in these cases are illustrated below.

When λ is unknown

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1, β̂2 and λ̂ from
equations (3.3), (3.4) and (3.5) and (3.6) respectively.

Step 2: Using α̂ and λ̂, we generate a bootstrap sample {y∗1, ..., y∗m} and similarly using
β̂1, β̂2 and λ̂, generate a bootstrap sample {x∗1, ..., x∗n}. Based on {y∗1, ..., y∗m} and {x∗1, ..., x∗n}
compute R.

Step 3: Repeat step 2, NBOOT times.



Some Reliability Estimates for Generalized Exponential Distribution with Presence of k-Outliers 7

When λ is known

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1 and β̂2 from
Equations (3.8), (3.9) and (3.10) respectively.

Step 2: Using α̂, we generate a bootstrap sample {y∗1, ..., y∗m} and similarly using
β̂1 and β̂2, generate a bootstrap sample {x∗1, ..., x∗n}. Based on {y∗1, ..., y∗m} and {x∗1, ..., x∗n}
compute R.

Step 3: Repeat step 2, NBOOT times.

4. BAYES ESTIMATOR OF R

In this section, we obtain the Bayes estimation of R under assumption that the param-
eters β1, β2, α and λ are random variables. We mainly obtain the Bayes estimate of R

under the squared error loss. It is assumed that the parameters β1, β2, α and λ have
independent gamma priors with the parameters β1 ∼ Gamma(a1, b1), β2 ∼ Gamma(a2, b2),
α ∼ Gamma(a3, b3) and λ ∼ Gamma(a4, b4). Based on the above assumptions, the joint den-
sity of the data, β1, β2, α and λ can be obtained as

L(data, β1, β2, α, λ) = L(data; β1, β2, α, λ) . π(β1) . π(β2) . π(α) . π(λ)

= C1 βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) ,

where

C1 =
4∏

i=1

(
bai
i

Γ(ai)

)
1

C(n, k)
,

h (β1, β2, λ) =
∑
A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

h (β1, β2, α, λ) = e
−b1β1−β2

(
b2−

nP

i=1
ln
(
1−e−λxi

))
−α

(
b3−

mP

j=1
ln
(
1−e−λyj

))
e−λ(nx̄+mȳ)

.

Therefore, the joint posterior density of given the data is

L(β1, β2, α, λ |data) =(4.1)

=
βk+a1−1

1 βn−k+a2−1
2 αm+a3−1λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ)

∞∫
0

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h(β1,β2,α) h(β1,β2,α,λ) dβ1 dβ2 dα dλ

.
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Finally, the Bayes estimator of R, denoted by R̂B, is given as follows

R̂B =(4.2)

=
k

n

∞R

0

∞R

0

∞R

0

∞R

0

u(α,β1) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

∞R

0

∞R

0

∞R

0

∞R

0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

+
n−k

n

∞R

0

∞R

0

∞R

0

∞R

0

u(α,β2) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1,β2,α) h(β1,β2,α,λ) dβ1 dβ2 dα dλ

∞R

0

∞R

0

∞R

0

∞R

0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

,

where u(α, βi) = βi

α+βi
, i = 1, 2.

Furthermore, in the case of λ known, the Bayes estimator of R is given by

R̂B =(4.3)

=
k

n

∞∫
0

∞∫
0

∞∫
0

u(α,β1) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

+
n−k

n

∞∫
0

∞∫
0

∞∫
0

u(α,β2) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

,

where

g (β1, β2) =
∑
A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

g (β1, β2, α) = e
−b1β1−β2

(
b2−

nP

i=1
ln
(
1−e−λxi

))
−α

(
b3−

mP

j=1
ln
(
1−e−λyj

))
.

Since Equations (4.2) and (4.3) can not be obtained analytically, we adopt the Gibbs sam-
pling technique to compute the Bayes estimate of R. Moreover, to compute different Bayes
estimates, we prefer to use the non-informative prior, because we do not have any prior in-
formation on R. On the other hand, the non-informative prior provides prior distributions
which are not proper, we adopt the suggestion of Congdon [3] and Kundu and Gupta [18].

5. SIMULATION RESULTS

In this section, we present some results based on Monte Carlo simulations to compare
the performance of the different methods. We consider two cases separately to draw inference
on R, namely when:

(i) the common scale parameter λ is known;

(ii) the common scale parameter λ is unknown.
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In both cases we consider the following small sample size

(n, m) = (15, 15), (20, 20), (25, 25), (15, 20), (20, 15), (15, 25), (25, 15), (20, 25), (25, 20) .

Moreover, in both cases we take α = 1.50, β1 = 2.50 and β2 = 2.75. Without loss of generality
we take λ = 1 in the case λ is known. Here we present a complete analysis of a simulated
data, and the results are given in Tables 1 to 4 for k = 1 and Tables 5 to 8 for k = 2.

It is observed that the maximum likelihood estimator of R, when λ is known and
unknown works quite well. We report the average estimates and the MSEs based on 5000
replications. The results are reported in Tables 1 and 2 for k = 1, and 5 and 6 for k = 2.
In this case, as we expected, when m = n and m, n increase then the average biases and
the MSEs decrease. For fixed m as n increase the MSEs decrease and also for fixed n as m

increases the MSEs decrease.

Based on obtained results, it is clear that the estimator of R using bootstrap method,
when λ is known and unknown works quite well. We report the average estimates and the
MSEs based on 100 replications. The results are reported in Tables 3 and 4 for k = 1, and
7 and 8 for k = 2. In this case, as we expected, when m = n and m, n increase then the
average biases and the MSEs decrease. For fixed m as n increase the MSEs decrease and also
for fixed n as m increases the MSEs decrease.

Table 1: MLE when k = 1, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.8444 2.5000 3.3135 0.6278 −0.0178 0.0217
(20, 20) 1.6075 2.5000 2.7086 0.6237 −0.0222 0.0063
(25, 25) 1.8233 2.5000 2.7277 0.6074 −0.0388 0.0082
(15, 20) 1.6851 2.5000 3.1127 0.6445 −0.0011 0.0023
(20, 15) 1.4864 2.5000 3.4041 0.6959 0.0500 0.0034
(15, 25) 1.7807 2.5000 2.6832 0.6071 −0.0385 0.0088
(25, 15) 1.4213 2.5000 2.7206 0.6490 0.0028 0.0033
(20, 25) 1.6360 2.5000 2.8331 0.6333 −0.0126 0.0030
(25, 20) 1.5888 2.5000 2.6093 0.6249 −0.0213 0.0073

Table 2: MLE when k = 1, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 0.9877 1.5666 2.5000 2.7500 0.6443 −0.0012 0.0051
(20, 20) 0.9899 1.6447 2.5000 2.7500 0.6338 −0.0122 0.0050
(25, 25) 1.0223 1.6172 2.5000 2.7500 0.6344 −0.0118 0.0036
(15, 20) 1.0108 1.6242 2.5000 2.7500 0.6365 −0.0091 0.0050
(20, 15) 1.0209 1.6831 2.5000 2.7500 0.6291 −0.0168 0.0060
(15, 25) 1.0165 1.6402 2.5000 2.7500 0.6359 −0.0097 0.0052
(25, 15) 1.0037 1.6527 2.5000 2.7500 0.6324 −0.0138 0.0054
(20, 25) 0.9974 1.5571 2.5000 2.7500 0.6425 −0.0034 0.0032
(25, 20) 1.0251 1.6440 2.5000 2.7500 0.6325 −0.0137 0.0044
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Table 3: Bootstrap method when k = 1, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.6774 14.6622 59.6942 0.9076 0.2620 0.0735
(20, 20) 1.7030 9.7609 180.1635 0.8881 0.2421 0.0780
(25, 25) 0.3793 2.5000 12.5714 0.9010 0.2548 0.0796
(15, 20) 4.5208 2.5000 13.3324 0.6994 0.0539 0.0105
(20, 15) 1.5245 6.5037 89.0338 0.9411 0.2952 0.0899
(15, 25) 3.4078 6.1308 272.3902 0.8519 0.2063 0.0503
(25, 15) 2.6388 2.5401 112.7504 0.8501 0.2039 0.0489
(20, 25) 1.6082 2.5000 7.5632 0.7984 0.1525 0.0324
(25, 20) 0.5908 2.5000 2.1251 0.8065 0.1603 0.0692

Table 4: Bootstrap method when k = 1, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 0.0942 47.7459 2.5000 2.7500 0.3846 −0.2609 0.1497
(20, 20) 0.1831 4.0096 2.5000 2.7500 0.4931 −0.1528 0.0571
(25, 25) 1.8805 9.7125 2.5000 2.7500 0.3571 −0.2890 0.1195
(15, 20) 0.7036 8.4306 2.5000 2.7500 0.4055 −0.2401 0.0980
(20, 15) 1.9512 6.6062 2.5000 2.7500 0.3598 −0.2861 0.1075
(15, 25) 0.8380 2.2379 2.5000 2.7500 0.6275 −0.0181 0.0474
(25, 15) 0.2228 10.3235 2.5000 2.7500 0.3642 −0.2820 0.1196
(20, 25) 1.4792 2.4191 2.5000 2.7500 0.5761 −0.0698 0.0277
(25, 20) 0.4040 1.7287 2.5000 2.7500 0.6455 −0.0006 0.0198

Table 5: MLE when k = 2, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.8567 2.8847 2.2264 0.5198 −0.1244 0.0217
(20, 20) 1.5968 2.5165 2.5660 0.5848 −0.0601 0.0071
(25, 25) 1.6174 1.9278 2.4801 0.6004 −0.0449 0.0056
(15, 20) 1.5593 3.9744 2.8183 0.6380 −0.0061 0.0111
(20, 15) 1.6675 3.1053 2.6176 0.6174 −0.0274 0.0166
(15, 25) 1.6831 2.9464 2.3125 0.5741 −0.0700 0.0106
(25, 15) 1.5960 1.7858 2.6101 0.6034 −0.0419 0.0071
(20, 25) 1.6159 3.1946 2.7131 0.6198 −0.0250 0.0060
(25, 20) 1.4687 3.1153 2.8283 0.6556 0.0103 0.0034

Table 6: MLE when k = 2, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.0637 1.6394 2.7108 2.3042 0.5491 −0.0950 0.0106
(20, 20) 0.9842 1.6196 2.6559 2.4108 0.5779 −0.0670 0.0110
(25, 25) 0.9916 1.8235 2.6076 2.4758 0.5824 −0.0629 0.0159
(15, 20) 0.9449 1.3620 2.5189 2.3047 0.5885 −0.0557 0.0037
(20, 15) 1.0560 1.9955 2.8272 2.4110 0.5297 −0.1152 0.0185
(15, 25) 0.9265 1.4211 3.7023 2.3022 0.5857 −0.0584 0.0051
(25, 15) 0.9867 1.5628 2.2423 2.4753 0.5911 −0.0542 0.0056
(20, 25) 1.0057 1.4799 2.4455 2.4105 0.5931 −0.0517 0.0056
(25, 20) 0.9153 1.5412 2.7855 2.4752 0.5947 −0.0506 0.0045
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Table 7: Bootstrap method when k = 2, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 2.21351 0.65190 1.30161 0.348023 −0.254428 0.0671290
(20,20) 2.42581 0.46529 1.21980 0.315847 −0.297756 0.0922301
(25,25) 1.95369 3.91502 2.95105 0.601363 −0.018931 0.0036032
(15,20) 1.14788 5.47549 3.46179 0.748267 0.145816 0.0250333
(20,15) 1.50094 6.10851 3.89440 0.709387 0.095784 0.0205170
(15,25) 1.42394 0.66237 1.25841 0.439300 −0.163151 0.0443621
(25,15) 4.55750 1.89003 2.24141 0.362190 −0.258104 0.0943967
(20,25) 1.09092 1.39501 1.75356 0.603435 −0.010168 0.0032842
(25,20) 1.53441 1.77145 2.36214 0.589008 −0.031286 0.0134582

Table 8: Bootstrap method when MLE when k = 2, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.5127 2.0224 2.2197 2.3071 0.5339 −0.1102 0.0150
(20,20) 1.0199 1.5270 1.5802 2.4121 0.6068 −0.0380 0.0047
(25,25) 1.1685 2.2125 2.3427 2.4754 0.5302 −0.1151 0.0150
(15,20) 2.2332 1.8661 2.5324 2.3066 0.5534 −0.0908 0.0110
(20,15) 1.3911 0.6630 1.7005 2.4124 0.7806 0.1357 0.0209
(15,25) 1.3795 3.0205 3.4349 2.3031 0.4660 −0.1781 0.0424
(25,15) 0.6082 1.1873 2.5821 2.4751 0.6773 0.0321 0.0020
(20,25) 0.7843 1.9834 2.8723 2.4099 0.5562 −0.0887 0.0103
(25,20) 1.1818 2.1626 2.0703 2.4756 0.5314 −0.1139 0.0142

6. NUMERICAL EXAMPLE

In this section an numerical example is illustrated and the results of different methods
are compared. to do this, the data has been generated using k = 2, m = n = 15, α = 1.50,
β1 = 2.50, β2 = 2.75 and λ = 1. The data has been truncated after four decimal places and
it has been presented below. The Y values are

0.1656 1.4907 0.1297 0.1890 1.0442 0.2366 2.0775 2.0741
1.6354 0.3315 1.4178 1.0370 4.0119 1.3847 1.9806

and the corresponding X values are

3.5641 3.5056 4.9680 2.4494 2.6494 2.7850 3.3939 5.0067
4.8371 2.3331 3.4162 3.7709 3.4634 1.8660 1.7731

Now, we obtain the MLE estimates of α, β1, β2 and R as, α̂ = 2.234, β̂1 = 2.5, β̂2 =
10.43, R = 0.6441 and therefore R̂ = 0.7542. Also, using Equation (4.3) the Bayes estimation
becomes R̂B = 0.7623.
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In case (ii), when λ is unknown, the Y values are

1.5746 0.1059 0.5531 0.1378 0.2374 2.1082 1.5347 0.6255
3.3972 0.1119 0.8613 0.7467 1.8130 1.9542 0.3958

and the corresponding X values are

3.6642 3.5416 4.1511 4.3893 4.5871 3.0850 4.2729 4.1823
2.7502 2.5972 3.6886 6.5070 3.2589 1.6457 0.7974

Then α̂ = 0.7731, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.5405, R = 0.6441 and R̂ = 0.7783. Also, the
Bayes estimation becomes R̂B = 0.7763 using Equation (4.2).

For the bootstrap method when λ is known, the Y values are

0.2550 1.3994 0.9810 1.8751 1.6076 2.7293 2.6022 0.6569
1.5485 0.4147 0.1028 1.7211 0.9942 0.9493 2.7400

and the corresponding X values are

4.0273 4.0531 5.2043 4.8492 3.9213 2.8151 2.9842 5.4328
2.1106 3.6646 2.7675 7.1520 4.4030 1.4194 1.3471

Then α̂ = 1.7297, β̂1 = 2.5, β̂2 = 6.206, R = 0.6441 and R̂ = 0.7566.

In the bootstrap method when λ is unknown, the Y values are

1.9301 3.3788 0.6447 1.4552 0.8611 2.1686 1.8280 0.3618
2.3616 4.9962 1.0273 2.5419 1.2103 0.3400 0.4183

and the corresponding X values are

3.4369 4.5594 4.9697 4.7634 3.2003 3.7920 2.4787 2.5690
2.6606 4.2689 3.6796 2.8361 3.6791 0.6259 0.3760

Then α̂ = 1.7886, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.7535, R = 0.6441 and R̂ = 0.6029.

7. CONCLUSION

In this paper, we have studied the estimation of P (Y <X) for the GED. We assume
that the sample from each population contains k-outlier. Two cases scale parameter is known
or unknown are considered in this context. The MLE and Bayes estimator of R are obtained
in each case.

When the common scale parameter is unknown, it is observed that the maximum
likelihood estimator works quite well. Based on the simulation results, when the sample size
is very small, we recommend to use the parametric bootstrap percentile method. The similar
results was obtained in the case of the common scale parameter is known.
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