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1. INTRODUCTION

Generalized Pareto distributions (GPDs), along with the generalized extreme value
distributions (GEV), play a central role in the theory and applications of the statistics of
extremes. Important (monographic) references include Gumbel (1958) [29], Leadbetter et al.

(1983) [35], Castillo (1988) [9], Beirlant et al. (2004) [4], Embrechts et al. (1997) [23], Kotz and
Nadarajah (2000) [33], Reiss and Thomas (2001) [44], Finkenstädt and Rootzén (2003) [24],
Coles (2004) [19], Castillo et al. (2005) [11], de Haan and Ferreira (2006) [21], Chavez et

al. (2016) [18], and Dey and Yan (2016) [22]. In this work, we revisit the important issue of
statistical inference for the tail index α within the class of the GPD. In particular, we develop
sound, simulation-enabled testing and interval estimation procedures for α with the focus on
small samples.

Recall that a GP random variable X can be described through the stochastic represen-
tation

(1.1) X
d=

1
β

1
α

(eαE − 1), α ∈ R, β > 0,

where E is a standard exponential random variable, β is the scale parameter, and α is the
index parameter (tail index for α > 0). The corresponding survival function (SF) of X in
(1.1) is of the form

(1.2) S(x) = P(X > x) = (1 + αβx)−1/α.

For α > 0 we get Pareto II (Lomax) distributions with power law tails of order α while for
α = 0, understood in the limiting sense, the variable X in (1.1) reduces to an exponential
random variable with mean 1/β, and the probability density function (PDF)

(1.3) f(x) = βe−βx, for x ∈ R+ = (0,∞).

Both, Lomax and exponential distributions are supported on the positive half-line R+.
For α < 0, GPDs are re-scaled beta distributions with compact support on the interval
(0,−1/(αβ)), and include, for instance, the uniform distribution for α = −1. The impor-
tance of this family comes from the Peak Over Threshold (POT) theory (see, e.g., Balkema
and de Haan, 1974 [3]; Pickands, 1975 [42]), where the GPDs provide natural approximations
for the excess (or exceedence) random variables X = Y − d|Y > d for large classes of random
variables Y, where d is a high threshold. This approximation property, coupled with their
power-law tail behavior for α > 0, make GPDs very relevant and commonly used in insur-
ance mathematics, hydrology, climate science and other areas where the observations over
high thresholds are of primary importance.

Our main contribution is a mathematically rigorous procedure for testing and con-
structing confidence intervals (CIs) for the index α within the GPD family, with the focus on
small samples. Our methodology is based on the Greenwood statistic,

(1.4) Tn =
∑n

i=1 X2
i

(
∑n

i=1 Xi)2
,

where the {Xi} are the underlying data. Since its introduction in Greenwood (1946) [28], this
statistic appeared in many different contexts and application areas, and it is closely related
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to several other common statistics, such as the sample coefficient of variation

(1.5) CVn =

√
1
n

∑n
i=1(Xi −X)2

X
=

√
nTn − 1,

the reciprocal of CVn known as the Sharpe’s ratio in finance and insurance applications, the
self-normalized sum Sn = T

−1/2
n , (see, e.g., Albrecher et al., 2010 [1] and references therein),

and the student t-statistic, STn =
√

(n− 1)/(nTn − 1). Since tests and confidence intervals
are often based on estimates of parameters, the correctness and practical execution of the
estimation procedures is of primary importance for many tests, including the commonly used
likelihood ratio procedure. However, for the GPDs there are serious theoretical and com-
putational problems with the standard, likelihood-based inference for α. Indeed, in general,
the maximum likelihood estimates (MLEs) for α may not exist or may not be well defined,
because without artificial restrictions on the parameter space, the likelihood function is infi-
nite along one of its boundaries. In addition, even when an MLE does exist, the question of
uniqueness is still open. The problems with the likelihood function lead to practical issues
with numerical calculations of the MLEs and thus implementation of standard likelihood
ratio tests for α (see, e.g., Neves et al., 2006 [40]). Further, we noted several errors and
inaccuracies in the estimation literature, and we include a review and discussion of the se-
lected key papers on estimation for the GPD family in Appendix A (in the Supplementary
Material). The challenges of finding the MLE of α suggest a need for test procedures that
do not require estimation of α. Our test based on the Greenwood statistic is an example of
such a procedure.

Further, for reliable inference on small samples we need the test statistic to be stochasti-
cally monotone (increasing or decreasing) with respect to α in order to be useful for derivation
of the critical regions and construction of confidence intervals (CIs) via “inversion of the test”
method. Again, the Greenwood statistic satisfies this requirement, as it is stochastically
increasing with respect to α within the GPD family (see Arendarczyk et al., 2021 [2]).

The challenges with ML estimation and the need for stochastic order of the test statistic
with respect to the parameter of interest are our main motivation for deriving a test based
on the Greenwood statistic. In addition, there is a long history of using Tn in testing for
exponentiality, where tests based on Tn (or related CVn) have been shown to be locally most
powerful within the GPD family (see, e.g., Marohn, 2000 [37]). Further, the statistic Tn

comes up naturally in estimation within the GPD and Lomax (Pareto II) families, as shown
in Appendix A.

While tests based on the coefficient of variation (or other statistics equivalent to Tn)
have already been used for the GPD, most of them focused on testing exponentiality and had
rejection regions based on the asymptotic distributions of the test statistics (see, for example,
Hasofer and Wang, 1992 [30], Gomes and van Monfort, 1986 [27], Marohn, 2000 [37], Reiss
and Thomas, 2001 [44]). In contrast, our approach uses the exact distribution of the test
statistic, obtained by straightforward simulations, and is similar in spirit to that of Chaouche
and Bacro (2004, 2006) [16, 17] and Tajvidi (2003) [49]. Chaouche and Bacro (2004, 2006)
[16, 17] noticed that the population value of their statistic S used for testing exponentiality
is increasing in α, and that its empirical distribution shifts to the right with increasing α.
Our results formalize these observations and show that the probability distribution of the
S statistic computed on a random sample from GPD is stochastically increasing in α over
the entire range of its values. Castillo et al. (2014) [13] considered testing exponentiality
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within GPD using a test statistic incorporating several sample CVs computed on different
sets of exceedances of varying high thresholds. The power of the proposed test was compared
with those of several other tests, including one based on the sample CV, for two alternatives:
absolute value of student-t distribution as well as GPD with shape parameter larger than 0
(Pareto). It appeared that tests based on the CV performed best. The paper is not very clear
however about the derivation of the critical values, whether these were done by simulations
or using the asymptotic distribution of the test statistic. Castillo and Padilla (2015) [14]
extended these ideas to the full GPD case with a similar test statistic, based on the asymptotic
distribution of the sample CV for GPD samples. Castillo and Serra (2015) [15] focused on
the MLEs (see also Castillo and Daoudi, 2009 [12]) and offered brief remarks about testing
and interval estimation for α, but no details were provided in this regard. Tajvidi (2003) [49]
considered several methods for constructing confidence intervals for the index α in the GPD
family using bootstrapping, likelihood ratio (LR) test, and profiling the likelihood function,
concluding that the likelihood based methods perform better than the bootstrapping in small
to moderate size samples. However, in view of the considerable theoretical and computational
difficulties with the MLEs of the GPD parameters, likelihood based inference may not be
effective for many data sets. In summary, although substantial work was done towards
testing for the GPD tail index, to date, we have not found any test for α that works well on
small samples without any restrictions of the values of α.

There is also a rich body of literature on the problem of testing for a GEV domain of
attraction (DoA), which is equivalent to testing for a GPD domain of attraction. The impor-
tance of this problem is well understood in the extreme value literature. In particular, testing
for Gumbel DoA (α = 0) is a common need (see, e.g., Fraga Alves and Gomes, 1996 [25];
Gomes and Alpuin, 1986 [26]). When checking domain of attraction, the estimation (or test-
ing) is usually carried out using the excesses of the sample values over a high threshold, taken
to be either a predetermined value (see, e.g., Davison and Smith, 1990 [20]) or a particular
order statistic (see, e.g., Neves and Fraga Alves, 2007 [39] and the references therein). In the
latter case the size of the resulting data set available for inference may be moderate to quite
small. Neves and Fraga Alves (2007) [39] considered tests for GEV domain of attraction,
particularly the Gumbel DoA. Both of their tests are related to the Greenwood statistic. The
main result of the paper is the limiting distribution of (normalized) test statistics, assuming
that α < 1/4. Recently, Schluter and Trede (2018) [46] used one of the test statistics of Neves
and Fraga Alves (2007) [39] for testing Gumbel domain of attraction (α = 0) against heavy
tailed GPD alternatives. Our results on the properties of the statistic Tn and its version
computed on the exceedences (Section 2) show that Tn can be used for the DoA tests on the
small samples, which are common in the problems considering exceedences.

Next, we note the tests based on the statistic Rn, involving the ratio of the maximum
and the sum of the sample values,

(1.6) Rn =
∨n

i=1 Xi∑n
i=1 Xi

,

when the underlying sample {Xi} is from a GPD or its domain of attraction (see Neves et al.,
2006 [40]). Our interest in this statistic stems from its properties that are similar to those of
Tn, which makes Rn a major competitor of Tn in testing. As discussed in Bryson (1974) [6],
a test based on Rn is the most powerful for testing exponentiality against uniformity (both
special cases of GPDs). The statistic Rn is also mentioned in Chaouche and Bacro (2004) [16]
in connection with testing for α within the class of GPDs, and was proposed by Neves et al.
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(2006) [40] for testing maximum DoA. A simulation study in Neves et al. (2006) [40] showed
that their test based on Rn, along with the test of Hasofer and Wang (1992) [30],
which in essence is based on the Tn, compared very favorably in terms of power with several
other tests for α = 0 within the GPDs. However, the rejection regions of both tests were
based on the asymptotic distributions of the test statistics, which may not work well for
small samples. We shall revisit the test based on Rn in Section 3, where we present new
results on its properties.

We selected the test based on statistic Rn to perform power comparison with our test
based on the Greenwood statistic. However, instead of using the asymptotic distribution of
Rn, we use essentially the same numerical procedure to compute (simulated) p-values as in
our test. We selected the test based on Rn for the power comparison for the following reasons:

(1) A test based on Rn was shown as more powerful than several other tests (Neves
et al., 2006 [40]);

(2) The Rn statistic is stochastically increasing with respect to α which makes it
appropriate for small sample testing;

(3) We did not find another test applicable to one- and two-sided hypotheses for α

within the entire GPD family.

All other tests have (or should have) some restriction on the range of α where they are
applicable.

Our paper is organized as follows. We start with Section 2, where we review the key
properties of the statistic Tn. New properties of the statistic Rn are presented in Section 3.
The main contribution is Section 4, containing rigorous development of tests and confidence
intervals for the index α within the GPD family. This is followed by a limited power compari-
son between tests based on Tn and Rn in Section 5. Illustrative data examples are presented in
Section 6. Proofs are collected in Section 7. Appendix T contains power tables. A review and
discussion of the main works on the estimation for GPD family is presented in Appendix A.
Both appendixes are available in the Supplementary Material.

2. FUNDAMENTAL PROPERTIES OF THE GREENWOOD STATISTIC Tn

Let X1, ..., Xn be a random sample from a probability distribution supported on the
non-negative real line R+ = [0,∞). It is widely recognized that within the GPD family the
distribution of Tn is rather complicated (even under exponentiality) with no closed form ex-
pressions for the PDF or the CDF for general n. However, its distribution is scale-invariant
and bounded ( 1

n ≤ Tn ≤ 1 for all n), and so all the moments of the Greenwood statistic
are finite, even when the distributional moments of the underlying sequence {Xi} do not
exist. The moments of Tn under exponentiality were derived by Moran (1947) [38], who also
established an asymptotic (normal) distribution of Tn for general distributions of {Xi} with
finite first four moments, noting that the convergence to the limiting normal distribution is
rather slow. In particular, under exponentiality, for large n, the Greenwood statistic is ap-
proximately normal with mean 2/n and variance 4/n3. Going beyond light-tail distributions,
Albrecher et al. (2010) [1] provided exact asymptotic distributions of Tn as n goes to infinity
for distributions of {Xi} with regularly varying tail.
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2.1. Stochastic ordering of Tn

Recall that if X and Y are two random variables with respective CDFs FX and FY and
quantile functions (QFs) QX = F−1

X and QY = F−1
Y , X is said to be stochastically smaller

than Y , denoted by X ≤st Y , whenever FY (x) ≤ FX(x) for each x ∈ R. This is the ordinary
stochastic order (dominance). On the other hand, X is smaller than Y in the star-shaped
order, denoted by X ≤∗ Y , whenever QY (u1)/QX(u1) ≤ QY (u2)/QX(u2) for all u1 ≤ u2, so
that the function QY (u)/QX(u) is non-decreasing in u. For more information on stochastic
orders, see, e.g., Belzunce et al. (2016) [5].

An important result established in Arendarczyk et al. (2021) [2], which is fundamental
to this work, shows that:

1. When the underlying distribution of the {Xi} is stochastically increasing with
respect to the star-shaped order ≤∗ then the distribution of Tn is stochastically
increasing with respect to the ordinary stochastic order ≤st.

2. The GPDs given by the SF (1.2) are star-shaped ordered with respect to the
parameter α.

Therefore, the Greenwood statistic Tn is stochastically increasing with respect to the
parameter α within the GPD family. As discussed in Section 4, this key property of Tn plays
crucial role in setting up testing and developing confidence intervals for α within this family.

2.2. Symmetry of Tn within the GPD family

In applications, the Greenwood statistic Tn and its functions are often applied to the
exceedences X(j) −X(k), where X(1) < ··· < X(n) are the (ascending) order statistics based
on the random sample X1, ..., Xn and j = k + 1, ..., n. This leads to the statistic

(2.1) Tn,k =

∑n−k
i=1

(
X(k+i) −X(k)

)2[∑n−k
i=1

(
X(k+i) −X(k)

)]2 , k ∈ {0, 1, ..., n− 1},

where X(0) = 0, so that Tn,0 reduces to Tn. By POT theory, when k is relatively large,
then (under appropriate scaling) these n− k exceedences behave as if they were n− k order
statistics (based on the sample of size n− k) from a GPD (see, e.g., Neves et al., 2006 [40]).
This crucial property plays a fundamental role in testing for the extreme domain of attraction
(see, e.g., Marohn, 2000 [37]; Neves et al., 2006 [40]; Neves and Fraga Alves, 2007 [39] and the
references therein). Since the statistic Tn,k is scale invariant, when the underlying distribution
of the sample belongs to the domain of attraction of a GPD with index α given by (1.2), the
distribution of the Tn,k in (2.1) is approximately the same as that of Tn−k based on a sample
of size n− k from the GPD itself. In other words, we would have an approximate equality in
distribution

(2.2) Tn,k
d∼

∑n−k
i=1 W 2

i

(
∑n−k

i=1 Wi)2
,

where the {Wi} follow GP (α, β). We show below that if the data are generated by a GPD
in the first place, then the the distributions of Tn,k and Tn−k are exactly the same.
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Proposition 2.1. Let n ∈ N with n ≥ 2 and let k ∈ {0, ..., n− 1}. Suppose that

X1, ..., Xn are IID and let Tn,k be defined by (2.1). Let Y1, ..., Yn−k be another random

sample, and let Tn−k be the Greenwood statistic computed on the Yi
′s. Suppose that both

random samples are coming from a GPD with the same index α. Then, we have Tn,k
d= Tn−k.

Remark 2.1. This new result complementsProposition5 inArendarczyk etal. (2021) [2],
as it shows that the latter also holds with k = 0.

2.3. Limiting behavior of the Greenwood statistic within the GPD family

Another key property of Tn we use in this work is its limiting behavior as the parameter
α approaches ±∞ within the GPD family while the sample size n stays fixed (Arendarczyk
et al., 2021 [2]). We include the result here for convenience of the reader.

Proposition 2.2. Suppose that n ∈ N and X1, ..., Xn are IID and GP (α, β) dis-

tributed. Then

(2.3) Tn
d→ 1/n as α → −∞ and Tn

d→ 1 as α →∞.

In fact, the distribution of the Greenwood statistic Tn on a GPD sample changes con-
tinuously within the interval (1/n, 1) as α increases within the interval (−∞,∞).

Remark 2.2. It can be shown that as α increases within the range (−∞,∞) then,
for each γ ∈ (0, 1), the (1− γ)× 100% percentiles of the distribution of Tn within the GPD
family continuously increase from their limiting values of tγ = 1/n at α = −∞ to tγ = 1 at
α = ∞.

This monotone behavior of the quantiles of Tn is important for constructing confidence
intervals and testing for α, as discussed in Section 4.

3. FUNDAMENTAL PROPERTIES OF THE STATISTIC Rn

Since we shall use the statistic Rn in the power comparisons in Section 5, we developed
new results that facilitate Rn — based testing for α within the class of GPDs. As shown
below, Tn and Rn share their key properties.

3.1. Stochastic ordering of Rn

It turns out that Rn computed on a sample from GPD is stochastically increasing with
respect to α. This is due to the fact that the GPDs are star-shaped ordered with respect to
α and the following new result concerning Rn, whose proof can be found in Section 7.
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Theorem 3.1. Let {Pθ, θ ∈ Θ ⊂ R} be a family of absolutely continuous probability

distributions on R+, where for each θ1 ≤ θ2 we have X(θ1) ≤∗ X(θ2), with X(θi) ∼ Pθi
, i = 1, 2.

Then, for each n ≥ 2, we have

(3.1) R(θ1)
n ≤st R(θ2)

n whenever θ1 ≤ θ2, θ1, θ2 ∈ Θ,

where R
(θ)
n is given by (1.6) with the {Xi} having a common distribution Pθ.

3.2. Symmetry of Rn within the GPD family

Let X(1) ≤ ··· ≤ X(n) be the (ascending) order statistics based on a random sample of
size n from a GPD (1.2). In analogy with Tn,k, define

(3.2) Rn,k =
X(n) −X(k)∑n−k

i=1 (X(k+i) −X(k))
, k ∈ {0, 1, ..., n− 1},

where for k = 0 we set X(0) = 0. This is essentially the statistic Rn−k evaluated on the exceed-
ences X(j)−X(k), with j=k+1, ...,n, which has been used in this form for testing the extremeDoA
(see Neves etal., 2006 [40]). In turn, when the statistic Rn−k+1,1 is evaluated on the set of n−k+1
observations X1, ..., Xn−k+1, then we essentially get the statistic Rn−k computed on the n− k

exceedences X(j) −X(1), with j = 2, ..., n− k + 1. The following new result, whose proof is
provided in Section7, shows that the statistics Rn,k and Rn−k+1,1 have the same distributions.

Proposition 3.1. Let n ∈ N with n ≥ 2 and let k ∈ {0, 1, ..., n− 1}. Suppose that

X1, ..., Xn are IID and let Rn,k be defined by (3.2). Let Y1, ..., Yn−k+1 be another random

sample, and set

(3.3) Rn−k+1,1 =
Y(n−k+1) − Y(1)∑n−k
i=1

(
Y(1+i) − Y(1)

) .

Then, if the two samples are coming from a GPD with the same α, we have Rn,k
d= Rn−k+1,1.

Remark 3.1. The above result implies that if the data are generated by a GPD, then
the distributions of Rn,k and Rn−k are exactly the same, similarly to Tn,k and Tn−k as shown in
Proposition 2.1. Thus, if n and k are large and the statistic Rn,k is evaluated on a set of order
statistics X(1) ≤ ··· ≤ X(n) of an IID sample from a distribution in the GPD (with index α)
domain of attraction then standard arguments from POT theory (see, e.g., Neves et al., 2006
[40]) show that this Rn,k behaves as if computed on a sample from the GPD (with the same α).

3.3. Limiting behavior of Rn within the GPD family

As shown below, the statistic Rn behaves very similarly to the Greenwood statistic Tn

as the parameter α approaches ±∞ within the GPD family. The proof of the following new
result is included in Section 7.

Proposition 3.2. Suppose that n ∈ N and X1, ..., Xn are IID and GP (α, β) dis-

tributed with the SF (1.2). Then

(3.4) Rn
d→ 1/n as α → −∞ and Rn

d→ 1 as α →∞.
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4. TESTING AND INTERVAL ESTIMATION FOR α WITHIN THE GPD
FAMILY

In this section we develop exact tests and provide a rigorous derivation of confidence
intervals for the parameter α within the GPD family based on the Greenwood statistic. The
CIs are constructed using the standard “inversion of the test” method. In particular, our
methodology is very convenient to test for exponential distribution (GPD with α = 0) versus
Pareto II distribution (GPD with α > 0), and has essentially the same power as the likelihood
ratio test developed for this special case in Kozubowski et al. (2009) [34].

Let X1, ..., Xn be a random sample from the GPD model (1.2). Since the test statistic
Tn is scale-invariant, we can assume for convenience that β = 1. We start with one-sided
tests, followed by two-sided tests, and conclude with procedures for constructing confidence
intervals for α.

4.1. One-sided tests for α within the GPD family

Consider the problem of testing

(4.1) H0 : α ≤ α0 vs. H1 : α > α0,

where α ∈ R is the (unknown) index of the GPD and α0 ∈ R is a known constant. We
denote the corresponding partition of the parameter space by Ω0 = {α : −∞ < α ≤ α0} and
Ω1 = {α : α > α0}.

Our objective is a test δ of size γ ∈ (0, 1) for the hypotheses specified in (4.1). Note
that when α0 = 0 this test is a test of a light-tail versus a heavy-tail (Pareto II) distribution
within the GPD class. Let Tn be the test statistic for δ. Since the statistic Tn is stochastically
increasing with respect to α, the values of α larger than α0 will be indicated by relatively
large values of Tn computed from the sample. Consider the following decision rule for the
test δ: Reject H0 when Tn > cn, where cn is such that P(Tn(α0) > cn) = γ, and P(Tn(α) ∈ A)
denotes the probability of the event {Tn ∈ A} assuming the true value of the parameter is α.
That is, the critical number cn is the (1− γ)× 100% percentile of the distribution of Tn when
α = α0.

Proposition 4.1. The test δ described above has size γ and is unbiased for the

hypotheses specified in (4.1).

Remark 4.1. The same decision rule δ can also be used for testing the hypotheses

(4.2) H0 : α = α0 vs. H1 : α > α0,

with the test being unbiased as well.
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Next, we consider the problem of testing

(4.3) H0 : α ≥ α0 vs. H1 : α < α0 or H0 : α = α0 vs. H1 : α < α0

with decision rule to reject H0 when Tn < dn, where dn is such that

(4.4) P(Tn(α0) < dn) = γ.

These tests are also of size γ and unbiased.

Proposition 4.2. The test δ for the hypotheses in (4.3) that rejects H0 whenever

Tn < dn with dn such that P(Tn(α0) < dn) = γ, has size γ and is unbiased.

Since the computation of the p-values is straightforward, we chose to implement our
tests using the p-value method. We note that the p-value approach we describe is equivalent
to the critical number approach. For the hypotheses in (4.1) and (4.2), the p-value is given
by

(4.5) p-value = P(Tn(α0) > tn),

where tn is the observed value of the test statistic Tn. This can be easily seen from the
stochasticity of Tn. Similarly, the p-value for the hypotheses in (4.3) is given by

(4.6) p-value = P(Tn(α0) < tn).

In practice, one can approximate the p-values for these tests via Monte-Carlo simulation of
the probabilities on the right-hand-side in (4.5) or (4.6).

4.2. Two-sided test for α

We now consider the problem of testing

(4.7) H0 : α = α0 vs. H1 : α 6= α0.

Because of the stochastic increasing of Tn with respect to α, the critical region CR for a
test δ of the hypotheses in (4.7) should consist of two sections: CR = [1/n, CL) ∪ (CR, 1].
To build a test of size γ, we have a choice of the portion of γ covered by each part of the
CR. In general, we can choose any 0 < r < 1 and assign the following probabilities to the two
parts of the critical region:

(4.8) P(1/n < Tn(α0) < CL) = (1− r)γ and P(CR < Tn(α0) < 1) = rγ.

Thus, the two critical numbers are: CL equal to the (1− r)γ100% percentile, and CR equal
to the (1− rγ)100% percentile of the distribution of Tn under the null hypothesis. To build
the test, consider R ∈ (1/n, 1) such that P(Tn(α0) < R) = 1− r and P(Tn(α0) > R) = r.
We will consider two cases of the observed value tn of the test statistic Tn in relation to R.
Again, we use the p-value approach to make decisions.
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Case 1: The observed value of Tn satisfies 1/n < tn < R. Then, P(Tn(α0) < tn) =
(1− r)γp for some γp ∈ (0, 1). We claim that this γp is actually the p-value, so that

(4.9) p-value =
P(Tn(α0) < tn)

1− r
.

Indeed, if the right-hand-side in (4.9) is less than γ, then we must have P(Tn(α0) < tn) <

γ(1− r), so that by (4.8) we have tn < CL. Since the value of the test statistic is in the
rejection region, the null hypothesis is rejected. On the other hand, if the right-hand-side in
(4.9) is greater than γ, so that P(Tn(α0) < tn) > γ(1− r), then we must have tn > CL. At
the same time, since tn < R and P(Tn(α0) < R) = 1− r, we clearly have tn < CR. Thus, the
observed value of the test statistic is not in the CR, and we fail to reject H0. Consequently,
the p-value is indeed given by (4.9).

Remark 4.2. Many standard tests use r = 0.5 in a similar setting, and in practice we
recommend that standard choice of r.

Case 2: The observed value of Tn satisfies R < tn < 1. Then, using an argument
similar to that used in Case 1, we obtain the following expression for the p-value:

(4.10) p-value =
P(Tn(α0) > tn)

r
.

Again, one can easily approximate the above p-values via Monte-Carlo simulation of the
probabilities on the right-hand-side in (4.9) or (4.10). Sample R-codes that return p-values
described above are available from the authors upon request.

4.3. Construction of the confidence intervals

We now turn to the derivation of confidence intervals for the index α of the GPD
family. We use the classical procedure of “inverting the test” to derive confidence regions, see
for example Casella and Berger (2002) [8], Section 9.2.1. We start with one-sided confidence
intervals, also known as upper and lower confidence bounds. First, consider the size-γ test δ

for the hypotheses in (4.1). Then, a (1− γ)100% confidence set for α is the set of all α0 for
which the null hypothesis is not rejected for a given value tn of the test statistic Tn. The null
hypothesis is not rejected when the p-value given in (4.5) is greater than γ, so that

(4.11) P(Tn(α0) > tn) > γ.

By the stochasticity of the test statistic Tn with respect to the parameter α, the set of all
α0 that satisfy this condition is an interval of the form (α,∞), where the quantity α = α(tn)
satisfies the condition

(4.12) P(Tn(α) > tn) = γ.

Note that in view of Proposition 2.2 and the remark following it, the quantity α(tn) can always
be found for any tn ∈ (1/n, 1) and any γ ∈ (0, 1). In fact, α(·) is a well defined function on
the interval (1/n, 1) onto the real line R. This discussion leads to the following result, which
provides a lower confidence bound (LCB) for the parameter α within the GPD family.
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Proposition 4.3. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.13) P(α0 > α(Tn(α0))) = 1− γ,

so that (α(tn),∞) is a (1− γ)× 100% LCB for the parameter α.

Next, consider a size-γ test δ for the hypotheses in (4.3). We can obtain the upper
confidence bound (UCB) using similar methods to those employed to find the LCB.

Proposition 4.4. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.14) P(α0 < α(Tn(α0))) = 1− γ,

so that (−∞, α(tn)) is a (1− γ)× 100% UCB for the parameter α.

Finally, we derive a two-sided (1− γ)100% confidence set for the parameter α by in-
verting the two-tail test δ for the hypotheses in (4.7). To determine the p-value, we first find
the value α∗ such that P(Tn(α∗) < tn) = 1− r. Then, by the stochasticity of Tn, whenever
α0 ≥ α∗ we have P(Tn(α0) < tn) ≤ 1− r, so that the p-value is given by (4.9). Thus, the null
hypothesis is not rejected whenever

(4.15) P(Tn(α0) < tn) > (1− r)γ.

Since P(Tn(α∗) < tn) = 1− r and the probability on the left-hand-side of (4.15) is mono-
tonically decreasing from 1− r to zero as α0 is increasing from α∗ to ∞, we can find an
α ∈ (α∗,∞) such that

(4.16) P(Tn(α) < tn) = (1− r)γ.

Moreover, for all α0 ∈ [α∗, α) the condition (4.15) will be fulfilled. Thus, for these values of
α0 the null hypothesis in (4.7) will not be rejected and consequently the interval [α∗, α) is
part of the confidence set. Similar analysis shows that the interval (α, α∗], where the quantity
α satisfies the condition

(4.17) P(Tn(α) < tn) = 1− rγ,

is part of the confidence set as well. Indeed, when α0 ≤ α∗ we have Pα0(Tn < tn) ≥ 1− r,
so that the p-value is given by (4.10). Thus, the null hypothesis is not rejected whenever

(4.18) P(Tn(α0) > tn) > rγ.

Since P(Tn(α∗) > tn) = r and the probability on the left-hand-side of (4.18) is monotonically
increasing from zero to r as α0 increases from −∞ to α∗, we can find an α ∈ (−∞, α∗) such
that P(Tn(α) > tn) = rγ, which is equivalent to (4.17). Moreover, for all α0 ∈ (α, α∗] the
condition (4.18) will be fulfilled. Thus, for these values of α0 the null hypothesis in (4.7) will
not be rejected. At the same time, the above analysis shows that for the values α0 < α and
α0 > α the null hypothesis is rejected, so these are not part of the confidence set. In summary,
the confidence set obtained by inverting the test is indeed an interval. The following result
summarizes this discussion.
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Proposition 4.5. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.19) P(α(Tn(α0))) < α0 < α(Tn(α0))) = 1− γ,

so that (α(tn), α(tn)) is a (1− γ)× 100% confidence interval for the parameter α.

5. SIMULATION EXPERIMENTS

To assess the performance of our testing procedures discussed in Section 4, we performed
two simulation experiments. First, we did power analysis of the testing procedure based on
the statistic Tn in the context of testing H0 : α = 0 vs. H1 : α > 0 (exponentiality against
Lomax), which is an important practical problem of detecting a power tail in the context of
the GPDs (see, e.g., Kozubowski et al., 2009 [34]). The results are reported in subsection 5.1.
In addition, we compared the power functions of tests for α based on Tn and its major
competitor Rn within the GPD family. The results are discussed in subsection 5.2.

5.1. Power analysis: Exponential vs. Pareto test

Kozubowski et al. (2009) [34] discussed testing exponentiality vs. Pareto distribution,
finding the likelihood ratio (LR) approach to be superior (in terms of power) to several other
common tests. To compare the performance of the test based on the statistic Tn with that
of the LR test, we ran power analysis for the Greenwood test using the same values of α and
sample sizes as those used in Kozubowski et al. (2009) [34]. The results are shown in Table 1
in Appendix T, which should be compared with Table 4 in Kozubowski et al. (2009) [34]. As
it turns out, the power of the test based on Tn is very similar as that of the LR test across
all values of the parameters, with the LR test having a slight edge. However, it should be
noted that the test based on Tn is easier to implement, as it avoids calculating the MLE of
the parameter α. In addition, it leads to a confidence interval for α, which is not guaranteed
when inverting the LR test.

Remark 5.1. The expected loss of power as the sample size goes down is clearly
visible in Table 1 of Appendix T. This fact is important for practical consideration of formal
test results as well as other measures of fit. In particular, when deciding whether a data set
has exponential or Pareto-type tails, it is a common practice to consider a large threshold
and perform the analysis on the resulting exceedances of the data over the threshold. As
one increases the threshold, the number of exceedances used in model fitting and testing
decreases, and the test looses power. This may lead to not rejecting exponentiality, when
in fact the data have Pareto tails. While the “best” choice of the threshold remains one
of the most difficult albeit important problems in analysis of data from the GPD domain
of attraction, there are many methods already available for threshold selection, including
automatic procedures. Excellent reviews of the existing methods and new methodologies can
be found in the following works and the references therein: Kiran and Srinivas (2021) [32],
Schneider et al. (2021) [47], Silva Lomba and Fraga Alves (2020) [48], and Caeiro and Gomes
(2016) [7].
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5.2. Power analysis: Tests based on Tn and Rn

Below we provide the results of a limited simulation study of the power of the tests
based on Tn and Rn. Note that the process of calculating the p-values is essentially the same
for tests based on the Rn and Tn, and it was described in Section 4.

Before presenting the results of the comparison, let us note one slight advantage of the
test based on Rn: the probability density function of the test statistic Rn has an explicit form
when sampling from the exponential distribution (see, e.g., Qeadan et al., 2012 [43]). In our
numerical experiments, we considered four different sets of one-sided hypotheses as follows:

(1) H0 : α ≤ 0 vs. H1 : α > 0;

(2) H0 : α ≥ 0 vs. H1 : α < 0;

(3) H0 : α ≤ 1 vs. H1 : α > 1;

(4) H0 : α ≥ 1 vs. H1 : α < 1.

For the selected combinations of α and n = 5, 10, 20, 50, 100, we generated 1000 samples
from the GPD(α, n) and tested the four sets of hypotheses using the statistics Tn and Rn.
We then calculated the proportion of times the null hypothesis was rejected in each case, as
an approximation of the value of the power function for that α. The results are presented
in Tables 2, 3, 5, and 6 in Appendix T. While the two procedures have very similar power
overall, the test based on the Rn performs slightly better when testing left-sided alternatives,
and the test based on Tn performs a bit better for the right-sided alternatives. We conclude
that in practice one may select Rn or Tn based on the alternative hypothesis.

6. ILLUSTRATIVE DATA EXAMPLES

We applied our test and built confidence intervals for α for two commonly used data sets.
The purpose of this data analysis is checking if the results from the literature are confirmed
by our test. We did not study the fit of the GPD models to the data, as that was beyond the
scope of this work. The first data set contains 154 exceedances over 65 m3/s flow threshold
of river Nidd at Hunsingore Weir between 1934 and 1969. This data set was analyzed by
Hosking and Wallis (1987) [31], Davison and Smith (1990) [20], Papastahopoulos and Tawn
(2012) [41] and Castillo and Serra (2015) [15]. We obtained the data set “nidd.thresh” from
R package “evir”. The second data set contains 197 exceedances above 7s of zero-crossing
hourly mean periods (in seconds) of the waves measured at Bilbao Bay in Spain. This data
set was also used in the literature. Notably, it was first used by Castillo and Hadi (1997) [10],
and then by Luceño (2006) [36], and Zhang and Stephens (2009) [50]. One can obtain the data
“bilbao” from the R package “ercv”. Since the data sets were analyzed by many researchers in
the past, we only report on the results of the new analysis using the exact methods presented
in this paper: test results and CIs. For computation of the p-values we used 10,000 simulations
of the values of Tn from data with the distribution specified in the null hypothesis.
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6.1. Analysis of the Nidd data

In search for the answer to the question whether the Nidd exceedances are Pareto or
exponential, we performed our exact test on exceedances over the same threshold as those
reported on p. 126 of Castillo and Serra (2015) [15], that is 65 m3/s, 75 m3/s, 85 m3/s, 95 m3/s,
100 m3/s, 110 m3/s, and 120 m3/s. We tested the null hypothesis H0: α ≤ 0 versus a one
sided alternative of Pareto, H1: α > 0. We also computed exact 90% and 95% confidence
intervals for α for exceedances over each threshold. We report the value of the number of
exceedances used, the test statistic Tn, the p-value of the test, decision (P for Pareto, E for
exponential), and the CIs in Table 1. Our conclusion is that the exponential model for the
Nidd exceedances can not be rejected.

Table 1: The table contains results of analysis of the Nidd data. Column labeled T
contains the threshold, column labeled D contains the decision.

T (m3/s) n Tn p-value D 90% CI for α 95% CI for α

65 154 0.0165 0.0041 P (0.0679, 0.4446) (0.0456, 0.4916)
75 117 0.0248 0.0006 P (0.1217, 0.6212) (0.0941, 0.6859)
85 72 0.0349 0.0255 P (0.0330, 0.6035) (0.0021, 0.6999)
95 49 0.0458 0.1282 E (−0.0634, 0.5863) (−0.0973, 0.6927)

100 39 0.0514 0.3539 E (−0.1886, 0.4900) (−0.2422, 0.6007)
110 31 0.0622 0.4388 E (−0.2658, 0.5322) (−0.3323, 0.6533)
120 24 0.0729 0.6509 E (−0.4920, 0.4334) (−0.5787, 0.5682)

6.2. Analysis of Bilbao waves data

The question in the literature regarding Bilbao waves data was whether the exceedances
are uniform or not. This is equivalent to testing null hypothesis of uniformity, H0: α = −1,
versus a two sided alternative of Pareto, H1: α 6= −1, within the GPD family. We also
computed exact 90% and 95% confidence intervals for α for exceedances over each threshold.
We report the value of the number of exceedances used, test statistic Tn, p-value of the test,
decision (P for Pareto, U for uniform), and the CIs in Table 2. Our conclusion is that the
uniform model for the Bilbao waves’ exceedances can not be rejected.

Table 2: The table contains results of analysis of the Bilbao waves data. Column labeled T
contains the threshold, column labeled D contains the decision.

T (s) n Tn p-value D 90% CI for α 95% CI for α

7 179 0.0074 0.74 U (−1.3813, −0.8014) (−1.4534, −0.759)
7.5 154 0.0094 0.006 P (−0.8304, −0.4208) (−0.8788, −0.3890)
8 106 0.0135 0.054 U (−0.9373, −0.4188) (−1.0060, −0.3771)
8.5 69 0.0203 0.232 U (−1.1346, −0.4274) (−1.2420, −0.3755)
9 41 0.0333 0.632 U (−1.4806, −0.4232) (−1.6507, −0.3596)
9.5 17 0.0714 0.298 U (−4.4557, −0.7056) (−5.4287, −0.5671)

In summary, our results confirm the conclusions in Castillo and Serra (2015) [15] that
the distribution of Nidd exceedances is likely exponential (for large thresholds) and the dis-
tribution of the Bilbao waves exceedances is likely uniform.
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7. PROOFS

7.1. Proof of Proposition 2.1

Since for k = 0 the result is trivial, we shall assume that k ≥ 1. We assume further that
the two random samples are from a GPD with the same index α. By proceeding as in the
proof of Proposition 5 in Arendarczyk et al. (2021) [2], we can express the statistic Tn,k as

(7.1) Tn,k
d=

∑n−k
j=1

[
eαZj − 1

]2(∑n−k
j=1

[
eαZj − 1

])2 ,

where

(7.2) Zj =
En−k

n− k
+

En−k−1

n− k − 1
+ ···+

En−k−j+1

n− k − j + 1
, j = 1, ..., n− k,

and the {Ei} are IID standard exponential variables. A similar calculation shows that the
distribution of Tn−k coincides with that of the right-hand-side in (7.1) with the same {Zj}.
This proves the result.

7.2. Proof of Theorem 3.1

For i = 1, 2, let Qi(·) be the quantile function of X(θi). By standard probability transfer
theorem, we have

R(θi)
n

d=
Qi(U(n))∑n

k=1 Qi(U(k))
, n ≥ 2, i = 1, 2,

where the {U(k)} are the (ascending) standard uniform order statistics based on a sample of

size n. To establish (3.1), we need to prove that P(R(θ1)
n > x) ≤ P(R(θ2)

n > x) for all x > 0.
We establish this by showing that for each choice of 0 < u1 ≤ u2 ≤ ··· ≤ un < 1 we have

(7.3) r(1)
n (u1, ..., un) ≤ r(2)

n (u1, ..., un),

where

(7.4) r(i)
n (u1, ..., un) =

Qi(un)∑n
k=1 Qi(uk)

, n ≥ 2, i = 1, 2.

We proceed by induction to establish (7.3). First, assume that n = 2. Straightforward calcu-
lations show that in this case the inequality (7.3) is equivalent to

Q1(u2)
Q1(u1)

≤ Q2(u2)
Q2(u1)

, 0 < u1 ≤ u2 < 1.

However, the above is true by the assumption that X(θ1) ≤∗ X(θ2). Next, we assume that the
inequality (7.3) holds for n ≥ 2 and show its validity for n + 1 where

(7.5) 0 < u1 ≤ u2 ≤ ··· ≤ un+1 < 1.
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To see this, write

(7.6) r
(i)
n+1(u1, ..., un+1) = H

(
r(i)
n (u2, ..., un+1), wi(u1, ..., un+1)

)
,

where H(x, y) = x/(1 + y), x, y ∈ R+, and

(7.7) wi(u1, ..., un+1) =
Qi(u1)∑n+1

k=2 Qi(uk)
, i = 1, 2.

Since by the induction step we have r
(1)
n (u2, ..., un+1) ≤ r

(2)
n (u2, ..., un+1) and the function

H(x, y) is increasing in x and decreasing in y, the inequality

(7.8) r
(1)
n+1(u1, ..., un+1) ≤ r

(2)
n+1(u1, ..., un+1)

would follow by (7.6) if we could show that

(7.9) w2(u1, ..., un+1) ≤ w1(u1, ..., un+1).

However, it is easy to see that the inequality in (7.9) is equivalent to

n+1∑
k=2

Q1(uk)
Q1(u1)

≤
n+1∑
k=2

Q2(uk)
Q2(u1)

,

which holds in view of (7.5) since we have

Q1(uk)
Q1(u1)

≤ Q2(uk)
Q2(u1)

, k = 2, ..., n + 1,

due to X(θ1) ≤∗ X(θ2). This completes the induction argument, and the proof.

7.3. Proof of Proposition 3.1

As in the proof of Proposition 5 in Arendarczyk et al. (2021) [2], we express Rn,k and
Rn−k+1,1 in terms of exponential spacings using the stochastic representation (1.1). We first
assume that k > 0 and start with Rn,k. By (1.1), we have

(7.10) Rn,k
d=

1
α

(
eαEn:n − 1

)
− 1

α

(
eαEk:n − 1

)∑n−k
i=1

[
1
α

(
eαEk+i:n − 1

)
− 1

α(eαEk:n − 1)
] ,

where the E1:n ≤ ··· ≤ En:n are the order statistics based on a random sample of size n from
standard exponential distribution. Further simplifications produce

(7.11) Rn,k
d=

eα(En:n−Ek:n) − 1∑n−k
j=1

[
eα(Ek+j:n−Ek:n) − 1

] .

We now write Ek+j:n − Ek:n =
∑j

i=1 Dk+i:n, where Di:n = Ei:n − Ei−1:n, i = 2, ..., n (with
D1:n = E1:n) are the associated exponential spacings. Since these are independent and ex-
ponentially distributed with parameter n− i + 1 (see, e.g., Rényi, 1953 [45]), we can express
Rn,k as

(7.12) Rn,k
d=

eαZn−k − 1∑n−k
j=1

[
eαZj − 1

] ,
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where

(7.13) Zj =
En−k

n− k
+

En−k−1

n− k − 1
+ ···+

En−k−j+1

n− k − j + 1
, j = 1, ..., n− k,

and the {Ei}, i = 1, ..., n− k, are independent standard exponential random variables. A
similar approach shows that the Rn−k+1,1 in (3.3) has the same distribution as the right-
hand-side in (7.12) with the {Zj} given by (7.13). This proves the result for k > 0. The case
k = 0 can be established along the same lines.

7.4. Proof of Proposition 3.2

Since Rn does not depend on the scale parameter, we shall assume that β = 1. We start
wit the limit at−∞. Since 1/n ≤ Rn ≤ X(n)/(nX(1)), it is enough to show that X(n)/X(1)

d→ 1
as α → −∞. By (1.1), we have

(7.14)
X(n)

X(1)

d=
eαE(n) − 1
eαE(1) − 1

,

where the E(1) ≤ ··· ≤ E(n) are the order statistics based on a random sample of size n from
standard exponential distribution. Since the two exponential terms on the right-hand-side
in (7.14) both converge in distribution to zero as α → −∞, the right-hand-side in (7.14)
converges to 1 by continuous mapping and Slutsky’s theorems.

Next, we consider the limit at ∞. Straightforward algebra shows that(
1 + (n− 1)

X(n−1)

X(n)

)−1

≤ Rn ≤ 1.

Thus, it is enough to show that X(n−1)/X(n)
d→ 0 as α →∞. Again, by (1.1), we have

(7.15)
X(n−1)

X(n)

d=
1− e−αE(n−1)

eα(E(n)−E(n−1)) − e−αE(n−1)
,

where the {E(i)} are as before. It is easy to see that, as α →∞, the exponential term
e−αE(n−1) in the expression above converges to zero while the term eα(E(n)−E(n−1)) converges
to ∞. Consequently, the expression in (7.15) converges to 0 as desired.

7.5. Proof of Proposition 4.1

To show the test δ has size γ, note that

size(δ) = sup
α≤α0

P(Tn(α) > cn) ≤ P(Tn(α0) > cn) = γ,

since Tn is stochastically increasing in α. Thus, the test δ has size γ. Next, we show that δ is
also unbiased. Let π(α) be the power function of δ. We shall show that the power function
is at least equal to the size for all α ∈ Ω1. Indeed, for any α ∈ Ω1 we have

π(α) = P(Tn(α) > cn) ≥ P(Tn(α0) > cn) = γ,

since Tn is stochastically increasing in α. This shows that δ is unbiased, as desired.
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7.6. Proof of Proposition 4.3

The probability in (4.13) concerns all the values tn of the statistic Tn for which we have
α0 > α(tn). By the definition of the function α and the stochasticity of Tn, this is equivalent to
the condition S(tn|α0) > γ, where S(·|α0) is the SF of Tn when the true value of the parameter
is α0. Equivalently, the event α0 > α(Tn) in (4.13) can be stated as F (Tn|α0) ≤ 1− γ, where
F (·|α0) is the CDF of Tn when the true value of the parameter is α0. However, the quantity
F (Tn|α0) has standard uniform distribution, so that

Pα0(α0 > α(Tn)) = Pα0(F (Tn|α0) ≤ 1− γ) = 1− γ,

as desired.

7.7. Proof of Proposition 4.5

The probability in (4.19) concerns all the values tn of the statistic Tn for which we have
α(tn) < α0 < α(tn). By the definition of the quantities α and α and the stochasticity of Tn,
this is equivalent to the condition γ− rγ < F (tn|α0) < 1− rγ, where F (·|α0) is the CDF of Tn

when the true value of the parameter is α0. Equivalently, the event α(Tn)) < α0 < α(Tn) in
(4.19) can be stated as γ − rγ < F (Tn|α0) < 1− rγ. Since the quantity F (Tn|α0) is standard
uniform, we have

Pα0(α(Tn) < α0 < α(Tn)) = Pα0(γ − rγ < F (Tn|α0) < 1− rγ) = 1− γ,

as desired.
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