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1. Appendix T

Table 1: The table contains estimates of power for the test of exponential vs. Pareto distribution.
Values of α are in the first column and sample sizes are in the first row of the table.
The entries are power values for the corresponding combinations of α and sample size.

alpha=w n=20 n=50 n=100 n=250 n=500 n=1000 n=5000 n=10000

2 0.9842 1 1 1 1 1 1 1
1 0.8546 0.9923 0.9997 1 1 1 1 1

0.833333 0.7867 0.9796 0.9996 1 1 1 1 1
0.666667 0.674 0.9362 0.9969 1 1 1 1 1
0.555556 0.5924 0.8839 0.9865 1 1 1 1 1

0.5 0.532 0.8366 0.9759 0.9999 1 1 1 1
0.333333 0.3644 0.6424 0.8645 0.9929 0.9999 1 1 1

0.25 0.2726 0.4845 0.7093 0.9577 0.9984 1 1 1
0.2 0.216 0.3808 0.5815 0.8723 0.9872 0.9998 1 1

0.166667 0.1889 0.3141 0.4797 0.7781 0.954 0.9988 1 1
0.142857 0.1584 0.2591 0.3994 0.693 0.8974 0.9896 1 1

0.125 0.138 0.2332 0.344 0.6131 0.8311 0.9748 1 1
0.111111 0.1328 0.2097 0.3096 0.5342 0.7586 0.9443 1 1

0.1 0.12 0.1893 0.2738 0.476 0.6903 0.9064 1 1
0.090909 0.1161 0.1708 0.2428 0.4095 0.6255 0.8601 1 1
0.083333 0.1046 0.1547 0.2278 0.3778 0.5822 0.8119 0.9999 1
0.076923 0.1032 0.1485 0.2074 0.3462 0.5354 0.7625 0.9993 1
0.071429 0.0933 0.1435 0.1943 0.3121 0.4822 0.7107 0.999 1
0.066667 0.0958 0.1276 0.1793 0.2869 0.4524 0.6643 0.9983 1
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Table 2: Power estimates for testing H0 : α≤ 0 vs. H1: α > 0 based on the test statistics Tn and Rn.
Values of α are in the first column and the sample sizes n are in the first row of the table.
The entries are approximate power values for various combinations of α and n.

H0 : α ≤ 0 vs. H1 : α > 0

Greenwood Tn Rn

n n

α 5 10 20 50 100 5 10 20 50 100

0.5 0.195 0.34 0.545 0.843 0.975 0.199 0.302 0.472 0.707 0.877
1 0.351 0.613 0.859 0.994 1 0.344 0.554 0.777 0.953 0.994

1.5 0.467 0.781 0.968 1 1 0.448 0.715 0.907 0.996 1
2 0.58 0.868 0.983 1 1 0.557 0.799 0.948 1 1

2.5 0.687 0.905 0.995 1 1 0.655 0.862 0.981 1 1
3 0.735 0.948 0.996 1 1 0.702 0.912 0.983 1 1

3.5 0.761 0.972 0.997 1 1 0.727 0.932 0.99 1 1
4 0.809 0.976 1 1 1 0.776 0.944 0.994 1 1

4.5 0.84 0.976 1 1 1 0.804 0.945 0.998 1 1
5 0.85 0.988 1 1 1 0.818 0.965 1 1 1

Table 3: Power estimates for testing H0 : α≥ 0 vs. H1: α < 0 based on the test statistics Tn and Rn.
Values of α are in the first column and the sample sizes n are in the first row of the table.
The entries are approximate power values for various combinations of α and n.

H0 : α ≥ 0 vs. H1 : α < 0

Greenwood Tn Rn

n n

α 5 10 20 50 100 5 10 20 50 100

−0.5 0.108 0.232 0.465 0.886 0.998 0.112 0.234 0.478 0.935 1
−1 0.241 0.535 0.847 0.999 1 0.271 0.606 0.952 1 1
−1.5 0.35 0.72 0.971 1 1 0.437 0.854 0.998 1 1
−2 0.475 0.839 0.988 1 1 0.592 0.931 1 1 1
−2.5 0.535 0.895 0.999 1 1 0.689 0.975 1 1 1
−3 0.611 0.94 1 1 1 0.757 0.993 1 1 1
−3.5 0.692 0.963 1 1 1 0.841 0.996 1 1 1
−4 0.701 0.969 1 1 1 0.859 1 1 1 1
−4.5 0.735 0.971 1 1 1 0.889 1 1 1 1
−5 0.749 0.985 1 1 1 0.92 1 1 1 1
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Table 4: Power estimates for testing H0 : α≤ 1 vs. H1: α > 1 based on the test statistics Tn and Rn.
Values of α are in the first column and the sample sizes n are in the first row of the table.
The entries are approximate power values for various combinations of α and n.

H0 : α ≤ 1 vs. H1 : α > 1

Greenwood Tn Rn

n n

α 5 10 20 50 100 5 10 20 50 100

1.5 0.134 0.13 0.157 0.186 0.2 0.129 0.132 0.157 0.184 0.194
2 0.219 0.244 0.295 0.331 0.317 0.211 0.242 0.287 0.33 0.32

2.5 0.276 0.326 0.35 0.399 0.46 0.276 0.322 0.347 0.4 0.455
3 0.37 0.393 0.462 0.5 0.531 0.367 0.381 0.462 0.494 0.521

3.5 0.417 0.433 0.53 0.553 0.613 0.414 0.436 0.52 0.541 0.602
4 0.466 0.51 0.593 0.637 0.663 0.465 0.506 0.588 0.63 0.64

4.5 0.509 0.522 0.612 0.643 0.668 0.509 0.53 0.602 0.63 0.65
5 0.548 0.606 0.646 0.695 0.748 0.548 0.6 0.645 0.683 0.727

Table 5: Power estimates for testing H0 : α≥−1 vs. H1: α<−1 based on the test statistics Tn and Rn.
Values of α are in the first column and the sample sizes n are in the first row of the table.
The entries are approximate power values for various combinations of α and n.

H0 : α ≥ −1 vs. H1 : α < −1

Greenwood Tn Rn

n n

α 5 10 20 50 100 5 10 20 50 100

−1.5 0.115 0.152 0.228 0.38 0.625 0.142 0.224 0.393 0.716 0.95
−2 0.178 0.27 0.417 0.722 0.926 0.227 0.433 0.727 0.984 1
−2.5 0.2 0.357 0.594 0.906 0.994 0.304 0.615 0.92 0.999 1
−3 0.304 0.438 0.719 0.976 1 0.422 0.743 0.965 1 1
−3.5 0.378 0.513 0.814 0.987 1 0.518 0.821 0.991 1 1
−4 0.437 0.575 0.87 0.995 1 0.602 0.884 0.995 1 1
−4.5 0.461 0.691 0.898 1 1 0.663 0.926 0.999 1 1
−5 0.472 0.701 0.925 1 1 0.684 0.959 0.999 1 1
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2. Appendix A: Estimation of Lomax/GPD parameters and the Greenwood
statistic Tn

The purpose of this review section is to note and discuss various challenges and er-
rors in the literature about estimation of parameters for GPD, and illustrate connections
with the statistic Tn. There is a substantial literature on this topic, with several excellent
reviews, including de Zea Bermudez and Kotz (2010ab). We also note that there are two
alternative parameterizations of the GPD family in the literature, which differ in the sign of
the main shape parameter. We review them in two subsections below, following a relatively
straightforward special case of Pareto II (Lomax) distribution.

2.1. Parameter estimation: the Lomax case

Here we show how the Greenwood statistic Tn comes up in maximum likelihood esti-
mation of the tail index α based on the random sample X1, ..., Xn from Pareto II (Lomax)
distribution given by the survival function (SF)

(2.1) P(Xi > x) = (1 + αβx)−1/α, x ∈ R+,

with α ≥ 0. To maximize the the log-likelihood function

(2.2) l(α, β) = n log β −
(

1
α

+ 1
) n∑

i=1

log(1 + αβxi)

with respect to (α, β) ∈ Θ, where Θ = {(α, β) : α ≥ 0, β > 0} is the parameter space, we first
show that there exists a unique β(α) that maximizes l(α, β) with respect to β > 0 for each
fixed α ≥ 0. To this end, we note that the condition

(2.3)
∂

∂β
l(α, β) > 0

is equivalent to h(β) < 1, where

h(β) =
1 + α

n

n∑
i=1

βxi

1 + αβxi
.

Since the function h(·) is continuous and monotonically increasing on the interval (0,∞) with

lim
β→0+

h(β) = 0 and lim
β→∞

h(β) = 1 +
1
α

> 1,

there exists unique β(α) so that condition (2.3) is fulfilled if and only if β < β(α). This
shows that β(α) is a unique value that maximizes the function l(α, β) with respect to β > 0,
as desired. The following result provides crucial properties of the function

(2.4) v(α) = l(α, β(α))/n, α ≥ 0,

which needs to be maximized in order to find the MLE of the tail index α.
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Lemma 2.1. In the above setting, we have the following:

(i) v(0) = −1− log(X̄), lim
α→∞

v(α) = −∞.

(ii) If

(2.5)
n

2

∑n
i=1 X2

i

(
∑n

i=1 Xi)
2 > 1

then v(α) is increasing in a (right) neighborhood of α = 0, and if

(2.6)
n

2

∑n
i=1 X2

i

(
∑n

i=1 Xi)
2 < 1

then v(α) is decreasing in a (right) neighborhood of α = 0.

Proof: The result follows from Proposition 3.2 in Arendarczyk et al. (2018), where
similar problem is discussed in a more general setting. Indeed, we note that the log-likelihood
function (2.2) is the same as ng(α, β), where g is the function defined by (3.4) in Arendarczyk
et al. (2018) with Ni = 1 for i = 1, ...m and m = n. With these choices of m and Ni, the
function v(α) defined by (3.7) in Arendarczyk et al. (2018) is exactly the same as our v(α)
in (2.4). Thus, Part (i) of Lemma 2.1 follows directly from Parts (i) and (iii) of Proposition
3.2 of Arendarczyk et al. (2018) while Part (ii) follows from Part (ii) of Proposition 3.2 of
Arendarczyk et al. (2018), since the relations (3.8) and (3.9) of that proposition simplify to
(2.5) and (2.6), respectively.

The above result shows that the MLE of α is closely related to the value of the statistic
Tn. Positive values of nTn/2− 1 (so that condition (2.5) is fulfilled) point towards a strictly
positive estimate α̂, whose computation requires a numerical search. On the other hand, for
negative values of nTn/2−1, when we have (2.6), the function v(·) may have a maximum value
at its boundary, so that α̂ = 0 corresponding to exponentiality (in which case we also have
β̂ = 1/X̄). In particular, it follows that the MLEs of α and β always exist and are relatively
straightforward to obtain (cf. Castillo and Daoudi, 2009; Kozubowski et al., 2009).

2.2. Parameter estimation: the GPD case

In contrast with the Lomax case, parameter estimation via maximum likelihood pro-
vides a considerable challenge in the extended GPD family, with some inconsistencies in the
literature regarding the existence of the estimates and convergence of the numerical algo-
rithms that find them. We discuss the main issues below, following a brief account of the
method of moments, where the statistic Tn plays an important role. We start with the two
parameterizations of the GPD family that are often found in the literature. One version (see,
e.g., Chaouche and Bacro, 2006; Castillo and Daoudi, 2009) is essentially the same as (2.1)
with the reciprocal of the scale parameter. Here, the PDF of the GPD model is of the form

(2.7) f(x) =
1
β

(
1 +

ξx

β

)−1/ξ−1
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where the domain is the set (0,∞) for ξ ≥ 0 (Pareto-exponential case) and (0,−β/ξ) when
ξ < 0 (light-tail case). Alternatively, some authors (see, e.g., Grimshaw, 1993; Choulakian
and Stephens, 2001; Castillo and Serra, 2015) use the following form of the PDF:

(2.8) f(x) =
1
σ

(
1− κx

σ

)1/κ−1
,

with the domain of (0,∞) for κ ≤ 0 (Pareto-exponential case) and (0, σ/κ) for κ > 0 (light-
tail case). While the two parameterizations are clearly equivalent (with the corresponding
parameters connected via ξ = −κ and β = σ), the domains are often not properly accounted
for in the literature.

2.2.1. GPD: the method of moments

Estimation of the two parameters via the method of moments is relatively straightfor-
ward. As is well-known, the mean and the variance of the GPD random variable X in the
(2.8) parametrization are

(2.9) E(X) =
σ

1 + κ
(κ > −1) and Var(X) =

σ2

(1 + κ)2(1 + 2κ)
(κ > −1/2),

and lead directly to the method of moment estimators of the form (see, e.g., de Zea Bermudez
and Kotz, 2010a),

(2.10) κ̂ =
1
2

(
X

2

S2
− 1

)
and σ̂ =

1
2
X

(
X

2

S2
+ 1

)
(κ > −1/2),

where the quantities X and S2 are the sample mean and variance, respectively. Thus, when-
ever X

2
/S2 − 1 < 0 the estimator of κ is negative, pointing towards the heavy-tail Pareto

case. Since this is equivalent to Tn > 2/n, the Greenwood statistic emerges naturally in the
method of moments estimation of the GPD shape parameter.

2.2.2. GPD: maximum likelihood

In contrast with the method of moments, maximum likelihood estimation for the GPD
family is a challenging problem, both theoretically and computationally. While there is a
substantial literature on this topic, so far the existence and uniqueness of the solution to the
likelihood equations has not been established, and there are some disagreements regarding the
convergence of the algorithms (see, e.g., Hosking and Wallis, 1987, Ashkar and Tatsambon,
2007). Additionally, some analyses of this problem in the literature are not quite correct. Our
brief (and selective!) journey through this mathematically interesting and practically relevant
problem will be limited to several highly cited key papers, presenting different perspectives
on this problem.

We start with the log-likelihood function for a random sample X1, ..., Xn from the the
GPD model given by (2.8), which is given by

(2.11) l(κ, σ) = −n log σ +
(

1
κ
− 1
) n∑

i=1

log(1− κXi/σ),

where the parameters are restricted as follows: −∞ < κ < ∞ and σ > max(0, κX(n)).
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In particular, we have σ > 0 for κ < 0 (Pareto case) and for κ = 0 (exponential case). More-
over, by a continuous extension, in the exponential case the log-likelihood reduces to that for
an exponential sample:

(2.12) l(κ, σ) = −n log σ − 1
σ

n∑
i=1

Xi, κ = 0.

Two standard (and related) approaches for finding the pair of estimators that maximize
the above function are: (i) solving the likelihood equations obtained by taking the partial
derivatives (see, e.g. Chaouche and Bacro, 2006) and (ii) dealing with one parameter at a time
by considering an appropriate profile log-likelihood (see, e.g., Grimshaw, 1993; Choulakian
and Stephens, 2001; Castillo and Serra, 2015). We start with the latter, and first consider
the problem of maximizing the function in (2.11) with respect to σ when the parameter κ is
held fixed. By straightforward differentiation, we find the partial derivative with respect to
σ to be

(2.13)
∂l(κ, σ)

∂σ
=

1
σ

{
−n + (1− κ)

n∑
i=1

Xi

σ − κXi

}
, σ > max(0, κX(n)).

A close examination of the above derivative and elementary calculations lead to several im-
portant facts, observed by numerous authors and summarized below.

Lemma 2.2. When κ ≥ 1, the function lp(σ) = l(κ, σ) is strictly decreasing in σ on

its domain, while for κ < 1 the function lp(σ) is increasing in σ for max(0, κX(n)) < σ < σ̂

and is decreasing in σ for σ̂ < σ < ∞. In the latter case, the unique mode σ̂ satisfies the

equation

(2.14)
1
n

n∑
i=1

Xi

σ − κXi
=

1
1− k

.

Moreover, we have limσ→∞ lp(σ) = −∞ while

(2.15) lim
σ→max(0,κX(n))

lp(σ) =


−∞ for κ < 1
−n log X(n) for κ = 1
∞ for κ > 1.

In view of the above result, it is clear that maximum likelihood estimators cannot be
found if the parameter space allows for any κ > 1, as, due to the monotonic behavior of the
profile log-likelihood lp(σ), there are no critical numbers in the region κ > 1, σ > X(n)κ of
the parameter space and the likelihood is infinite along its lower boundary. Thus, one needs
to restrict the parameter space to the values κ ≤ 1, σ > max(0, κX(n)) when searching for the
MLEs1. To find them, it is enough to examine the log-likelihood along the curve (κ, σ̂(κ)),
referred to as the Choulakian-Stephens curve by Castillo and Sierra (2015), where one can
find further details of this approach. Under the above restrictions on the parameters, the
MLEs can be shown to exist, although their uniqueness is still an open question.

1There is no universal agreement that the parameters should be restricted in any way, as the data at hand
may actually connect with the parameters that are beyond such artificial restrictions (see, e.g., Castillo and
Hadi, 1997).
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An alternative process of finding the MLEs, considered by several authors (see, e.g.,
Grimshaw, 1993; Choulakian and Stephens, 2001; Ashkar and Tatsambon, 2007) follows
Davison (1984), where an appropriate re-parameterization allows to reduce the problem to a
one-dimensional search (see also Kozubowski et al., 2009, for the exponential-Pareto case).
This method was extensively studied in Grimshaw (1993), which is a key reference in this
connection. However, as explained below, there are some issues with the analysis in Grimshaw
(1993). Under the parameterization in (2.8), this approach can be described as follows.
Consider the (entire) parameter space as being composed of half straight lines that originate
at the origin. The slopes of these lines are written as 1/θ where −∞ < θ < 1/X(n). There
are three distinct cases of these lines:

(i) −∞ < θ < 0, κ < 0 and σ = κ/θ (Pareto case);

(ii) θ = 0, σ > 0 (exponential case);

(iii) 0 < θ < 1/X(n), κ > 0, and σ = κ/θ (light-tail case).

The analysis of case (iii) should be further restricted to κ ≤ 1 as discussed above (and done in
Grimshaw, 1993). Now, in cases (i) and (iii), the log-likelihood (2.11) evaluated along these
lines can be written as

(2.16) l(κ, κ/θ) = n log |θ| − n log |κ|+
(

1
κ
− 1
) n∑

i=1

log(1− θXi).

Elementary calculus shows that under case (i), the function in (2.16) is increasing in κ on the
interval (−∞, κ̂) while it is decreasing on the interval (κ̂, 0), where

(2.17) κ̂ = − 1
n

n∑
i=1

log(1− θXi),

see Grimshaw (1993, p. 188). Thus, the largest value of the log-likelihood (2.16) is equal to

(2.18) L(θ) = l(κ̂, κ̂/θ) = −n log
(

κ̂

θ

)
− n + nκ̂.

Remark 2.1. This is exactly the same function as that given by equation (2.1) in
Grimshaw (1993) or equation (7) in Choulakian and Stephens (2001). Elementary calculus
again shows that at the boundary of case (i), when θ → 0−, the function L(θ) above converges
to

(2.19) −n(log X + 1),

which is the largest likelihood corresponding to case (ii) where we maximize the function
(2.12). In particular, when we are only interested in Pareto/exponential case κ ≤ 0, finding
the MLEs is equivalent to maximizing the function L(θ) given above with respect to θ ∈
(−∞, 0]. Note that in this case the function L in (2.18) can be written as

(2.20) L(θ) = n(log(−θ) + κ̂)− n(log(−κ̂) + 1).

Moreover, as θ → −∞ then −κ̂ converges to infinity. In addition, we have

log(−θ) + κ̂ = − 1
n

n∑
i=1

log
1− θXi

−θ
→ − 1

n

n∑
i=1

log Xi as θ → −∞.

Consequently, L(θ) approaches −∞ as θ → −∞. Since the function L(θ) is continuous with
a finite limit (2.19) at θ = 0, this shows the MLEs exist in this special sub-case.
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The analysis connected with the case (iii) is very similar, and the conclusion is essen-
tially the same: the function in (2.16) is increasing in κ on the interval (0, κ̂) while it is
decreasing on the interval (κ̂,∞), where κ̂ is again given by (2.17). However, this quantity
is not necessarily restricted to the interval (0, 1). Consequently, if we are restricting the pa-
rameter space so that κ ≤ 1, we need to pay a close attention to the magnitude of κ̂. Let us
make several observations regarding the function κ̂ = κ̂(θ) defined through (2.17):

(A) limθ→0 κ̂(θ) = 0 = κ̂(0), limθ→−∞ κ̂(θ) = −∞; limθ→1/X−
(n)

κ̂(θ) = ∞;

(B) d
dθ κ̂(θ) = 1

n

∑n
i=1

Xi
1−θXi

> 0 and limθ→0
d
dθ κ̂(θ) = X;

(C) d2

dθ2 κ̂(θ) = 1
n

∑n
i=1

(
Xi

1−θXi

)2
> 0 and limθ→0

d2

dθ2 κ̂(θ) = 1
n

∑n
i=1 X2

i .

It follows that the function κ̂(θ) is increasing in θ. In particular, under case (iii) with positive
θ and κ, there is a unique θ∗ ∈ (0, 1/X(n)) such that κ̂(θ∗) = 1 (while κ̂(θ) < 1 for θ ∈ (0, θ∗)
and κ̂(θ) > 1 for θ ∈ (θ∗, 1/X(n)). As a consequence, under case (iii) with the restriction
κ ≤ 1, the largest value of the log-likelihood (2.16) becomes l(κ̂, κ̂/θ) whenever 0 ≤ θ ≤ θ∗

but then turns into l(1, 1/θ) when θ∗ ≤ θ ≤ 1/X(n). Thus, maximizing the log-likelihood over
the region with κ ∈ [0, 1] reduces to finding θ̂ that maximizes the function

(2.21) g(θ) = n log θ +
{
−n log κ̂− n + nκ̂ for 0 ≤ θ < θ∗

0 for θ∗ ≤ θ ≤ 1/X(n).

Note that g(θ) is a continuous function on a closed interval, so a global maximum of g on
[0, 1/X(n)] always exists. Moreover, we have g(0) = −n(log X +1), g(1/X(n)) = −n log(X(n)),
and g is strictly increasing on the interval (θ∗ ≤ θ ≤ 1/X(n)).

Remark 2.2. Let us note that the analysis in Grimshaw (1993) that begins on p. 188
and onward does not seem to be quite correct, for two reasons. First, the value of κ̂ is not
restricted there to be less than 1, and the function (2.18) is studied over its entire domain
[0, 1/X(n)], which likely results with “complications” with multiple local maxima discussed
on p. 188 and in subsequent numerical routines. Second, the derivative h(θ) of the profile
log-likelihood presented in the appendix (see also (2.2) on p. 188) does not seem to be quite
correct as well, which propagates into the subsequent analysis and numerical routines. In
particular, the theorem on top of p. 188 in Grimshaw (1993) seems to be in error. This
derivative, that plays a crucial role in the analysis, should be as follows:

(2.22)
d

dθ
g(θ) = −n

{
− d

dθ
κ̂(θ)− 1

θ
+

d
dθ κ̂(θ)
κ̂(θ)

}
, θ < θ∗.

Going back to the function g(θ) in (2.21), we have the following explicit expression for
its derivative:

(2.23)
d

dθ
g(θ) =

n

θ
+

n∑
i=1

Xi

1− θXi
+ n

n∑
i=1

Xi

1− θXi
/

n∑
i=1

log(1− θXi), θ < θ∗.

An important property of the derivative is its value at zero, presented below.
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Proposition 2.1. Let g be defined as in (2.23). Then

(2.24) lim
θ→0

d

dθ
g(θ) =

n∑
i=1

Xi

(
1− n

2
Tn

)
.

This property, which is similar to the analysis of the Pareto-exponential case discussed
in Section 2.1, makes it possible to conclude that when the derivative is negative (so that
Tn > 2/n, that is the statistic Tn is relatively large) then likelihood will be larger at some
Pareto case with κ < 0, as compared with its value at zero, corresponding to exponentiality.

Finally, let us turn to another common approach to maximum likelihood estimation,
consisting of solving the likelihood equations. This approach was revisited in Chaouche and
Bacro (2006), who worked with the (2.7) parameterization of the GPD family. Here, the
log-likelihood takes on the form

(2.25) l(ξ, β) = −n log β −
(

1
ξ

+ 1
) n∑

i=1

log(1 + ξXi/β),

where the parameters are restricted as follows: −∞ < ξ < ∞ and β > max(0,−ξX(n)), so
that β > 0 for ξ > 0 (Pareto case) and for ξ = 0 (exponential case). Similarly to the param-
eterization (2.8), the parameters should be restricted to the case ξ ≥ −1, as otherwise the
log-likelihood has no local extrema and is infinite along the lower boundary of its domain.
By setting the partial derivatives of the log-likelihood to zero, followed by some algebra,
Chaouche and Bacro (2006) obtained the following system of equations:

(2.26)
{ 1

n

∑n
i=1 log (1 + ξXi/β) = ξ

1
n

∑n
i=1

1
1+ξXi/β = 1

1+ξ .

Simple algebra shows that an alternative way of stating (2.26) is to say that both partial
derivatives are zero iff ξ and ρ = ξ/β satisfy the system

(2.27)
{

1
n

∑n
i=1 log (1 + ρXi) = ξ

h(ρ) = 0,

where the function h(ρ) is given by2

(2.28) h(ρ) = 1 +
1
n

n∑
i=1

log (1 + ρXi)−

(
1
n

n∑
i=1

1
1 + ρXi

)−1

.

Clearly, one can find the critical points of the log-likelihood function by solving the equation
h(ρ) = 0 for the parameter ρ and then converting to the parameters ξ and β via β = ξ/ρ

and the first equation in (2.27) (provided that ρ 6= 0). This is the approach undertaken in
Chaouche and Bacro (2006), who focus on the function h(ρ) and its basic properties. It is
easy to see that one of these roots is equal to zero and the limits of the function h(ρ) at
the boundaries of its domain, −1/X(n) < ρ < ∞, are both −∞, as noted by Chaouche and
Bacro (2006). However, some further claims of that paper do not seem to be quite correct, as
explained below. In particular, the authors claim that there is a negative root of this equation
very close to the left boundary of the domain, which they denote by ρ1. Additionally, based

2In Chaouche and Bacro (2006), this function appears in eq. (7), where it is defined through a special
notation related to the geometric and harmonic means.
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on their simulations, the authors make a conjecture that there are actually three roots of this
equation, with the third root (besides 0 and ρ1) being negative or positive according to the
sign of the statistic (2.31). Indeed, our analysis shows that there is a close connection between
that statistic (and ultimately, the statistic Tn) and the roots of the equation h(ρ) = 0, which
can be deduced from the following simple lemma.

Lemma 2.3. Let h(ρ) be the function defined in (2.28). Then, we have h(0) = h′(0) =
0 while

(2.29) h′′(0) =
1
n

n∑
i=1

X2
i − 2

(
1
n

n∑
i=1

Xi

)2

.

Proof: The equation h(0) = 0 is trivial, while the property h′(0) = 0 follows by stan-
dard calculation of the derivative (and can also be deduced from Proposition A.1 in Chaouche
and Bacro, 2006). In turn, routine calculations produce

(2.30) h′′(ρ) = − 1
n

n∑
i=1

1
(1 + ρXi)2

− 2


(

1
n

∑n
i=1

Xi
(1+ρXi)2

)2

(
1
n

∑n
i=1

1
1+ρXi

)3 −
1
n

∑n
i=1

X2
i

(1+ρXi)3(
1
n

∑n
i=1

1
1+ρXi

)2

 ,

which leads to (2.29).

It follows from the above lemma that the second derivative of h at zero is positive if and only
if the expression on the right-hand-side in (2.29) is positive, which in turn is equivalent to
the statistic

(2.31) Sn =
n

2
Tn − 1

being positive. Consequently, if this is the case, then the graph of the function h(ρ) is concave
up at ρ = 0. Since we also have h(0) = h′(0) = 0, under this condition there must be at least
three roots of the equation h(ρ) = 0: a negative root, zero, and a positive root. In particular,
large values of the statistic Tn point towards the existence of the positive root, which may
lead to the positive MLE of the shape parameter ξ connected with Pareto II (heavy-tail) GPD
case. However, when the statistic (2.31) is negative, then nothing really can be deduced from
the concavity of the graph of h at zero regarding the existence of further roots of the equation
h(ρ) = 0. We agree with the comments of Chaouche and Bacro (2006) that further results on
the function h(ρ) are needed to resolve the issue of the existence and the nature of its zeroes.

Remark 2.3. Let us note that while ρ = 0 is a root of the equation h(ρ) = 0, it is
actually not relevant in maximization of the log-likelihood function. While it is true that
ξ = 0, which corresponds to ρ = 0, satisfies the equations in (2.26), when these equations are
formally derived by setting both partial derivatives of the log-likelihood to zero, one needs to
actually assume that ξ 6= 0. When ξ = 0, these derivatives require a subtle calculation, which,
when properly done, shows that they cannot both equal zero unless we have (1/n)

∑n
i=1 X2

i =
2X

2 (or, equivalently, Tn = 2/n)3. Since this occurs with probability zero, the case ξ = 0, and
the corresponding special exponential case of the GPD, can be eliminated from consideration.

3This was pointed out by Grimshaw (1993), although the two relevant equations on top of p. 187 in that
paper are not quite correct; the right-hand-side of the first equation should be multiplied by −1.
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While the analysis involving the derivatives of the log-likelihood function undertaken in
Chaouche and Bacro (2006) is an alternative approach to that of Grimshaw (1993), discussed
above, it has common elements with the latter. Consider again the quantity ρ1, which is
defined in Chaouche and Bacro (2006) as a unique solution of the equation

(2.32)
1
n

n∑
i=1

log(1 + ρXi) = −1.

Observe that the first equation in (2.27) provides the value of ξ = ξ(ρ) that maximizes the
log-likelihood function along the straight line β = ξ/ρ. As in the analysis of Grimshaw (1993),
the log-likelihood along this line is increasing in ξ as ξ varies from −∞ to the value given by
the left-hand-side of the first equation in (2.27), ξ = ξ(ρ), and then, passed that value, it is
decreasing. Moreover, as a function of ρ, this ξ = ξ(ρ) is increasing from −∞ to 0 as ρ varies
in −1/X(n) < ρ < 0. Note that as ρ varies in that interval, the lines β = ξ/ρ become steeper
and steeper, and when ρ = −1/X(n) we get the line β = −X(n), which is the lower boundary
of the parameters in the 2nd quadrant, while for ρ = 0 we obtain the vertical line ξ = 0. Thus,
solving the equation (2.32) leads to that value of ρ for which we have ξ(ρ) = −1. This ρ is
precisely what the authors of Chaouche and Bacro (2006) denote by ρ1. This ρ1 cannot be a
solution of the equation h(ρ) = 0, because if it was, then the pair ξ = −1, β = −1/ρ1 would be
a solution of the system (2.27). However, equation (2.26), which is equivalent to (2.27), would
not be satisfied. One fundamental reason for this is the fact that the log-likelihood function is
strictly decreasing in β along any vertical line ξ = c with c ≤ 1, so the partial derivative with
respect to β cannot equal zero at any point on such a line. This shows that we cannot have
h(ρ1) = 0. Additionally, we cannot have h(ρ∗) = 0 for any ρ∗ such that −1/X(n) < ρ∗ < ρ1

either for precisely the same reason. Indeed, if we had, then this would imply that

ξ∗ =
1
n

n∑
i=1

log (1 + ρ∗Xi) , β∗ = ξ∗/ρ∗

would satisfy the system (2.26). However, by the monotonic nature of the function ξ(ρ) dis-
cussed above, we would necessarily have ξ∗ < −1, and we already know that partial derivative
of the log-likelihood function cannot be zero for any point in the interior of the parameter
space for which ξ < −1. The above analysis shows that the claims made in Chaouche and
Bacro (2006) regarding the existence of a root of the equation h(ρ) = 0 that is close to
−1/X(n) are not quite correct. To the contrary, any root of this equation must necessarily
be greater than ρ1, where ρ1 satisfies equation (2.32).
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