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1. INTRODUCTION

Assume that X is a Z+-valued random variable (rv) and α ∈ (0, 1). The binomial
thinning operator (Steutel and van Harn ([22])) of X, denoted by α�X, is defined by

(1.1) α�X =
X∑

i=1

Yi,

where {Yi} is a sequence of independent identically distributed (iid) Bernoulli(α) (Ber(α))
rv’s independent of X. The operation � acts as the analogue of the standard multiplication
used in standard time series models.

The main results of this paper use the two facts below without further reference. For
α and β in (0, 1),

α� (β �X) d= β � (α�X) d= (αβ)�X

and for X and Y independent Z+-valued rv’s,

α� (X + Y ) d= α�X + α� Y.

Assume that {εt} is a sequence of iid Z+-valued rv’s. A sequence {Xt} of Z+-valued
rv’s is said to be an INAR (1) process if

(1.2) Xt = α�Xt−1 + εt (t ≥ 1),

where {εt} is the innovation sequence and α is the coefficient of the process. The binomial
thinning α�Xt−1 in (1.2) is performed independently for each t. More precisely, we assume
the existence of an array (Yi,t, i ≥ 1, t ≥ 0) of iid Ber(α) rv’s, independent of {εt}, such that

α�Xt−1 =
Xt−1∑
i=1

Yi,t−1.

Let ϕXt(z) be the pgf of Xt of (1.2) and Ψ(z) be the pgf εt. Then we have by (1.2)

ϕXt(z) = ϕXt−1(1− α + αz)Ψ(z).

If one further assumes that {Xt} is stationary with ϕX(z) as the pgf of its marginal distri-
bution, then the following functional equation holds

(1.3) ϕX(z) = ϕX(1− α + αz)Ψ(z).

It is a well known result that if α ∈ (0, 1) and ϕX(z) and Ψ(z) are pgf’s that satisfy
(1.3), then there exists a stationary INAR (1) process {Xt} on some probability space such
that ϕX(z) and Ψ(z) are respectively the pgf of its marginal distribution and the pgf of its
innovation sequence {εt}.

In the backward approach, one starts out with the pgf Ψ(z) of the innovation sequence and
solve (1.3) for the pgf ϕX(·) of the marginal distribution of the INAR (1) process. In this case

ϕX(z) = lim
n−→∞

n∏
i=0

Ψ(1− αi + αiz),

provided that the limit exists and is a pgf (see [2]).
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The main focus of the present paper is on the development of stationary INAR (1)
models driven by (1.2) with an infinitely divisible (Compound Poisson) innovation whose
mean is finite. In Section 2, we prove a number of basic results in the context of the backward
approach for these models. The results of Section 2 are used in Sections 3–9 to obtain in
detail key distributional properties of the marginal distributions of some important INAR (1)
processes. We discuss models whose innovations follow the Polya–Aeppli distribution, the
non-central Polya–Aeppli distribution, the negative binomial distribution, the noncentral
negative binomial distribution, the Poisson–Lindley distribution, and the Euler-type and
Euler distributions.

The above INAR (1) models are necessarily overdispersed. An example of a data set
which is empirically overdispersed is presented and analyzed in [4]. This data set gives the
monthly claim counts by workers in the heavy manufacturing industry who were collecting
benefits due to a burn related injury. The same data set was further analyzed in [23] and
[18] and shown to have an INAR (1)-like autocorrelation structure. Another example of an
overdispersed data set was introduced in [11] and was further analyzed in [12]. This data
set involves the number of publications produced by Ph.D. biochemists. Several examples of
underdispersed data sets are reported and analyzed in [20].

In the rest of this paper we will assume that α ∈ (0, 1) and a = 1− a for a ∈ (0, 1).
We will also use the notation µ

(u)
r (κ(u)

r ) and µ
(u)
[r] (κ(u)

[r] ) to designate the r-th moment (cumu-
lant) and the r-th factorial moment (factorial cumulant) of the pmf {ur}, respectively.

The backward approach rests heavily on the following important result found in [2].

Theorem 1.1. Assume that Ψ′(1) < ∞. The function

(1.4) ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz)

is a pgf. Moreover, the convergence of the infinite product is uniform over the interval [0, 1]
and ϕ(z) satisfies (1.3).

2. PROCESSES WITH COMPOUND POISSON INNOVATIONS

2.1. Basic Results

We start out by specializing Theorem 1.1 to infinitely divisible distributions with finite
mean. Recall that a distribution on Z+ is infinitely divisible if and only if it is a discrete
compound Poisson distribution with pgf

(2.1) Ψ(z) = exp{λ(H(z)− 1)},

for some λ > 0 and some unique pgf H(z) =
∑∞

r=1 hrz
r with pmf {hr} and H(0) = h0 = 0.

We will refer to such distributions as DCP (λ, H) distributions.

First, we need a lemma.
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Lemma 2.1. Assume that Ψ(z) is the pgf of a DCP (λ, H) distribution. Then for

each i ≥ 0,Ψ(1−αi + αiz) is the pgf of a DCP (λ′i,Hi) distribution which is described below:

(i) For every i ≥ 0,

(2.2) λ′i = λmi, mi = 1−H(1− αi),

and

(2.3) Hi(z) = 1− 1
mi

(
1−H(1− αi + αiz)

)
.

(ii) The pmf {h(i)
r } with pgf Hi(z) is

(2.4) h(i)
r =

αir

mi

∞∑
n=r

(
n

r

)
(1− αi)n−rhn (r ≥ 1).

Note that H0(z) = H(z) and {h(0)
r } = {hr}.

(iii) If the factorial moment generating function (fmgf) H(1+ t) of the pmf {hr} exists

for |t| < ρ0 for some ρ0 > 0, then for every i ≥ 0, the pmf {h(i)
r } has finite factorial

moments {µ(h(i))
[r] } for all r ≥ 1, and

(2.5) µ
(h(i))
[r] =

αir

mi
µ

(h)
[r] .

Proof: By (2.1), we have lnΨ(1− αi + αiz) = λ(H(1− αi + αiz)− 1), i ≥ 0, which
can be rewritten as

lnΨ(1− αi + αiz) = λ(1−H(1− αi))
(H(1− αi + αiz)−H(1− αi)

1−H(1− αi)
− 1
)
.

Letting mi and λ′i be as in (2.2), we have

lnΨ(1− αi + αiz) = λ′i

(H(1− αi + αiz) + mi − 1
mi

− 1
)
,

which leads to (2.3). The identity (a + b)n =
∑n

r=0

(
n
r

)
arbn−r implies

H(1− αi + αiz)−H(1− αi) =
∞∑

r=1

( ∞∑
n=r

(
n

r

)
αir(1− αi)n−rhn

)
zr.

Hence, Hi(z) is the pgf of {h(i)
r } of (2.4). This establishes (i)–(ii). To prove (iii), we note

that since the fmgf H(1 + t) of the pmf {hr} exists, then {hr} has finite factorial moments
µ

(h)
[r] of all orders r ≥ 1. It follows by equation (1.274), p. 59, in [6] and (2.3) that

(2.6) Hi(1 + t) = 1 +
1

mi

∞∑
r=1

µ
(h)
[r] αir tr

r!
(|t| < ρ0),

which in turn leads to (2.5).

Next, we study the pgf ϕ(·) of (1.4) when Ψ(z) is the pgf of a DCP (λ, H) distribution.
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Theorem 2.1. Let ϕ(·) and Ψ(·) be as in (1.4). If Ψ(z) is the pgf of a DCP (λ, H)
distribution with Ψ′(1) < ∞, then the following assertions hold:

(i) ϕ(z) is the pgf of the infinite convolution of the distributions (DCP (λmi,Hi), i≥ 0),
as described in Lemma 2.1.

(ii) ϕ(z) is the pgf of a DCP (λ̃, G) distribution, where

(2.7) λ̃ = λM > 0, M =
∞∑
i=0

mi =
∞∑
i=0

(1−H(1− αi)),

and

(2.8) G(z) =
∞∑
i=0

mi

M
Hi(z) (G(0) = 0).

Moreover, the pmf {gr} with pgf G(z) is the infinite countable mixture

(2.9) gr =
∞∑
i=0

mi

M
h(i)

r (r ≥ 1),

with
(
{h(i)

r }, i ≥ 0
)

of (2.4) and mixing probabilities
(

mi
M , i ≥ 0

)
.

Proof: By Theorem 1.1, ϕ(z) is a pgf. Part (i) follows directly from Lemma 2.1.
To prove (ii), first we note Ψ(z) is the pgf of an infinitely divisible distribution. There-
fore, there exists a pgf Ψn(z) such that Ψ(z) = (Ψn(z))n for every n ≥ 1. Since Ψ′(z) =
n(Ψn(z))n−1Ψ′

n(z) and Ψ′(1) < ∞, we have Ψ′
n(1) < ∞. Applying Theorem 1.1 to Ψn, it

follows that
∞∏
i=0

Ψn(1− αi + αiz) is a pgf. Note that

ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz) =

{ ∞∏
i=0

Ψn(1− αi + αiz)

}n

(n ≥ 1).

Hence, ϕ(z) is the the pgf of an infinitely divisible distribution, or a DCP (λ̃, G) distribution
for some λ̃ > 0 and pgf G(z). We have by Theorem 1.1 and (2.1)

ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz) = exp

{
λ

∞∑
i=0

(H(1− αi + αiz)− 1)

}
.

It is clear that ϕ′(1) < ∞ implies H ′(1) < ∞. Let QH(z) = 1−H(z)
1−z (z 6= 1) be the generating

function of the tail probabilities qr =
∞∑

i=r+1
hi of {hr}. It follows that 1−H(1− αi + αiz) ≤

αiH ′(1) (recall QH(1) = H ′(1)) and thus
∑∞

i=0(1−H(1−αi +αiz)) converges uniformly over
[0, 1]. This implies that M =

∑∞
i=0 mi < ∞ (see (2.2)). The fact that λ̃ = λM follows by

setting z = 0 in the equation λ
∑∞

i=0(H(1− αi + αiz)− 1) = λ̃(G(z)− 1). Solving for G(z)
and using (2.3) leads to (2.8) and (2.9) follows from (2.4) and (2.8).

The following result is a direct consequence of Theorem 2.1 and equation (9.43), p. 390,
in [6], for infinitely divisible distributions.
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Corollary 2.1. Under the assumptions and notation of Theorem 2.1, the pmf {pr}
with pgf ϕ(z) can be derived via the recurrence formula

(2.10) (r + 1)pr+1 = λ
r∑

j=0

(r + 1− j)gr+1−jpj with p0 = e−λM (r ≥ 0).

Remark 2.1. A distribution on Z+ with pgf Ψ(z) is discrete self-decomposable (DSD)
(cf. Steutel and van Harn [22]) if for any β ∈ (0, 1),

(2.11) Ψ(z) = Ψ(1− β + βz)Ψβ(z),

for some pgf Ψβ(z). If Ψ(z) is the pgf of a DSD distribution with finite mean, then ϕ(z) of
(1.4) is the pgf of a DSD distribution. Indeed, basic properties of infinite products and the
fact that Ψ′

β(1) < ∞ lead to

ϕ(z) = ϕ(1− β + βz)
∞∏
i=0

Ψβ(1− αi + αiz).

We conclude by Theorem 1.1 applied to Ψβ(z) that
∞∏
i=0

Ψβ(1− αi + αiz) is a pgf.

We proceed to discuss the case of INAR (1) processes with a DCP (λ, H) innovation.
We will add to results obtained in [18], [19] and [24]. These papers deal mainly with DCP (λ, H)
innovation when the compounding distribution has a pgf of the form H(z) =

∑n
i=1 hiz

i,
n < ∞. For example, on page 355 in [24], it is mentioned, quoting, “Let (Xt) be a station-
ary CP∞ − INAR(1) process. In general, a closed-form expression for the observations’ pmf
is not available”. In addition, on page 624 in [19], it is mentioned that “the structural impli-
cations of Theorem 2.1 can be extended to the case of compound Poisson arrival distributions
with an infinite compounding structure. The stationary distribution in this general case is
again compound Poisson distributed with infinite compounding structure. However, a way
to explicitly calculate the stationary distribution in this case is not known”.

The next result asserts the existence of a stationary INAR (1) process whose innovation
is DCP with infinite compounding structure. It is a consequence of Theorem 2.1 and the
standard result on the existence of stationary INAR (1) processes recalled in the introduction.
The proof is omitted.

Theorem 2.2. Any DCP (λ,H) distribution with pgf Ψ(z) of (2.1) such that H ′(1) <∞
gives rise to a stationary INAR (1) process {Xt} defined on some probability space and driven

by equation (1.2). Its innovation has pgf Ψ(z) and its marginal distribution is the DCP (λ̃, G)
distribution described by (2.7)–(2.10).

Next, we list key distributional properties of a stationary INAR (1) process {Xt} with
a DCP (λ, H) innovation:

1. The 1-step transition probabilities of {Xt} are given by

(2.12) P (Xt = k|Xt−1 = l) =
min(l,k)∑

j=0

(
l

j

)
αj(1− α)l−jfk−j ,
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where

(2.13) fx = P (ε = x) =


e−λ, if x = 0,

∞∑
n=1

e−λ λn

n!
h∗nx , if x > 0,

and {h∗nx } is the n-fold convolution of the pmf {hr} with pgf H(z). Similarly to
(2.10), fx can be obtained by the recurrence formula

(2.14) (x + 1)fx+1 = λ

x∑
j=0

(x + 1− j)hx+1−jfj , with f0 = e−λ (x ≥ 0).

2. The k-step-ahead version of (1.2) for k ≥ 1 is given by

(2.15) Xt+k
d= αk �Xt +

k∑
j=1

αj−1 � εt+k−j+1.

Consequently, the conditional pgf of Xt+k given Xt satisfies

(2.16) ϕXt+k|Xt
(z) =

(
1− αk + αkz

)Xt

×
k−1∏
i=0

Ψ(1− αi + αiz).

3. It follows by Lemma 2.1 and (2.16) that the conditional distribution of Xt+k given
Xt = n results from the convolution of a binomial distribution, Bin(n, αk), and the
distributions (DCP (λmi,Hi), 0 ≤ i ≤ k − 1) with characteristics (2.2)–(2.4).

4. Assume the fmgf H(1 + t) of the pmf {hr} exists for |t| < ρ0 for some ρ0 > 0. By
Lemma 2.1-(iii), the fmgf Hi(1 + t) of the pmf {h(i)

r } admits the representation
(2.6), for every i ≥ 0 and |t| < ρ0. Using (2.8) and a standard argument, one can
show that G(1 + t) =

∑∞
i=0

mi
M Hi(1 + t) converges uniformly in the interval |t| ≤ ρ

for every 0 < ρ < ρ0. Therefore, by Weierstrass Theorem, p. 430 in [8], we have

G(1 + t) = 1 +
∞∑

r=1

[ ∞∑
i=0

mi

M
µ

(h(i))
[r]

]
tr

r!
(|t| < ρ0),

which implies

(2.17) µ
(g)
[r] =

∞∑
i=0

mi

M
µ

(h(i))
[r] .

By (2.5), (2.17) and equation (1.246), p. 53, in [6], the factorial moments and the
moments of {gr} are

(2.18) µ
(g)
[r] =

µ
(h)
[r]

M(1− αr)
and µ(g)

r =
1
M

r∑
j=1

S(r, j)
µ

(h)
[j]

1− αj
(r ≥ 1),

where {S(r, j)} are the Stirling numbers of the second kind defined as

S(r, j) =
1
j!

j∑
k=0

(−1)j−k

(
j

k

)
kr (S(0, 0) = 1, S(0, k) = S(r, 0) = 0).
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5. By (2.18), equations (9.49), p. 391, and (1.257), p. 55, in [6], the factorial cumulants
and cumulants of Xt are:

(2.19) κ
(p)
[r] =

λ

1− αr
µ

(h)
[r] and κ(p)

r = λ
r∑

j=1

S(r, j)
µ

(h)
[j]

1− αj
(r ≥ 1).

6. The first and second cumulants of a pmf are its mean and variance, respectively.
The mean µ

(p)
1 and the variance (σ(p))2 of Xt follow from the above formulas:

(2.20) µ
(p)
1 =

λµ
(h)
1

1− α
and (σ(p))2 =

λ(µ(h)
2 + αµ

(h)
1 )

1− α2
.

7. The moments and factorial moments of Xt can be computed recursively by a for-
mula in [21] for the former and equation (1.244) in [6] for the latter:

(2.21) µ(p)
r =

r−1∑
i=0

(
r − 1

i

)
κ

(p)
r−iµ

(p)
i and µ

(p)
[r] =

r∑
j=0

s(r, j)µ(p)
j ,

where {s(r, j)} are the Stirling numbers of the first kind satisfying the recurrence
relation

s(r + 1, j) = s(r, j − 1)− rs(r, j) (s(n, 0) = 0, s(1, 1) = 1).

We note that the moments and factorial moments of the marginal distributions of the
INAR (1) models we introduce here are only obtainable through (2.21). Except for a couple
of instances, we will make no further reference to these moments.

2.2. Processes whose innovations are convolutions of DCP distributions

We consider stationary INAR (1) processes whose innovation is the finite convolution
of DCP distributions with finite means.

Let ν be a positive integer. We assume throughout the section that (H̃k, 1 ≤ k ≤ ν) is a
collection of pgf’s such that H̃k(0) = 0, H̃ ′

k(1) < ∞ and (λk, 1 ≤ k ≤ ν) are positive constants.
We denote by {h(k)

r } the pmf of H̃k(z).

Lemma 2.2. Let Ψk(z) be the pgf of a DCP (λk, H̃k) distribution, 1 ≤ k ≤ ν. The

following assertions hold:

(i) The convolution of the DCP (λk, H̃k) distributions, 1 ≤ k ≤ ν, is DCP (λ, H),
where

(2.22) λ =
ν∑

k=1

λk and H(z) =
ν∑

k=1

λk

λ
H̃k(z).

(ii) For each k = 1, 2, ..., ν, Ψk(1− αi + αiz) is the pgf of a DCP (λkm
(k)
i , H̃ki(z))

distribution, where m
(k)
i = 1− H̃k(1− αi) and H̃ki(z) is the pgf of a pmf we

denote {h(k,i)
r }, with H̃ki(0) = 0 and H̃ ′

ki(1) < ∞.
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(iii) Ψ(1− αi + αiz) is the pgf of a DCP (λmi,Hi) distribution, where mi = 1−
H(1− αi) =

∑ν
k=1

λk
λ m

(k)
i , with λ and H of (2.22), and

(2.23) Hi(z) =
ν∑

k=1

λkm
(k)
i

λmi
H̃ki(z) and h(i)

r =
ν∑

k=1

λkm
(k)
i

λmi
h(k,i)

r (r ≥ 1).

(iv) For every i ≥ 0, the DCP (λmi,Hi) distribution admits the following represen-

tation, with λ
(k)
i = λkm

(k)
i (1 ≤ k ≤ ν),

(2.24) DCP (λmi,Hi) ∼ DCP (λ(1)
i , H̃1i) ∗DCP (λ(2)

i , H̃2i) ∗ ··· ∗DCP (λ(ν)
i , H̃νi).

Proof: (i) is clear and (ii) follows from Lemma 2.1. For (iii), mi follows from (2.22)
by Theorem 2.1. We have by (i) Ψk(1− αi + αiz) = exp{λkm

(k)
i (H̃ki(z)− 1)}, which implies

ϕ(z) = exp
{ ν∑

k=1

λkm
(k)
i (H̃ki(z)− 1)

}
= exp

{( ν∑
k=1

λkm
(k)
i H̃ki(z)

)
− λmi

}

and (2.23), as
∑ν

k=1
λkm

(k)
i

λmi
= 1. (iv) follows from (iii) and (2.23).

Next, we present key distributional properties of a stationary INAR (1) with an inno-
vation that is the convolution of DCP distributions. The proofs are omitted as the results
are a direct consequence of Lemma 2.2 and Theorem 2.1.

Theorem 2.3. Let {Xt} be a stationary INAR (1) process driven by (1.2) with the

DCP (λ, H) innovation that results from the convolution of the DCP (λk, H̃k) distributions,

1 ≤ k ≤ ν (as described in Lemma 2.2). Let Mk =
∞∑
i=0

m
(k)
i , 1 ≤ k ≤ ν. The following asser-

tions hold:

(i) The marginal distribution of {Xt} is the infinite convolution of the sequence of

distributions
(
DCP (λmi,Hi), i ≥ 0

)
with the representation (2.24).

(ii) The marginal distribution of {Xt} is DCP (λ̃, G), where

(2.25) M =
ν∑

k=1

λk

λ
Mk; λ̃ = λM =

ν∑
k=1

λkMk

and G(z) admits the representation (2.8).

(iii) The pmf {gr} is the infinite mixture of the pmf’s ({h(i)
r }, i ≥ 0) of (2.23) with

mixing probabilities (mi
M , i ≥ 0).

We discuss additional properties of the process {Xt} of Theorem 2.3.

The 1-step transition probabilities of {Xt} can be obtained from equations (2.12)–
(2.14). By (2.16), the conditional distribution of Xt+k given Xt = n results from the convo-
lution of a Bin(n, αk) distribution and the distributions

(
DCP (λmi,Hi), 0 ≤ i ≤ k − 1

)
of

(2.24).
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If we assume that for each k = 1, 2, ..., ν, the fmgf H̃k(1 + t) of the pmf {h(k)
r } exists

for |t| < ρ
(k)
0 for some ρ

(k)
0 > 0, then it is easily seen that the fmgf H(1 + t) of (2.22) exists

for |t| < min1≤k≤ν ρ
(k)
0 . It follows by Lemma 2.1-(iii), Theorem 2.1, and (2.18) applied to λ

and H(z) of (2.22) that the r-th factorial moment of {gr} is

(2.26) µ
(g)
[r] =

1
M(1− αr)

ν∑
k=1

λk

λ
µ

(h(k))
[r] .

By (2.19), the factorial cumulants and the cumulants of Xt are (for r ≥ 1)

(2.27) κ
(p)
[r] =

1
1− αr

ν∑
k=1

λkµ
(h(k))
[r] and κ(p)

r =
ν∑

k=1

λk

[ r∑
j=1

S(r, j)
1− αj

µ
(h(k))
[j]

]
.

The mean and variance of Xt can be obtained from (2.20). We omit the details.

3. PROCESSES WITH POLYA-AEPPLI INNOVATIONS

A Z+-valued random variable with pgf Ψ(z) = exp
(
−λ 1−z

1−θz

)
and pmf

(3.1) fr =


e−λ, if r = 0,

e−λθr
r∑

j=1

(
r − 1
j − 1

)
(λθ/θ)j

j!
, if r > 0,

is said to have a Polya–Aeppli (or Poisson Geometric) distribution (PA(λ, θ)) with parameters
(λ, θ), λ > 0 and θ ∈ (0, 1). The PA(λ, θ) is DCP (λ, H), where H(z) is the pgf of the shifted
geometric (Geo1(θ)) distribution with pmf {hr}:

(3.2) H(z) =
θz

1− θz
and hr = θθr−1 (r ≥ 1).

Theorem 3.1. Let {Xt} be a stationary INAR (1) process with a PA(λ, θ) innovation.

The following assertions hold:

(i) The sequence {mi} of (2.2) satisfies

mi =
αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a Geo1(miθ) distribution, and

(3.3) DCP (λmi,Hi) ∼ PA(λmi,miθ) (i ≥ 0).

(iii) The distribution of {Xt} is the infinite convolution of the PA(λmi,miθ) distri-

butions (i ≥ 0).

(iv) The distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM , M =
∞∑
i=0

mi, and G is

the pgf of the infinite mixture of Geo1(miθ) distributions with respective mixing

probabilities mi
M , i≥ 0.
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Proof: Part (i) and the first part of (ii) follow from Lemma 2.1, (2.4), (3.2), and the
result (1− t)−r−1 =

∑∞
n=r

(
n
r

)
tn−r. In turn, the first part of (ii) implies (3.3). Part (iii) ensues

from Theorem 2.1-(i). Part (iv) is a direct consequence of Theorem 2.1.

We state some additional properties of the process {Xt} of Theorem 3.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (3.1). By (2.16) and (3.3), the conditional distribution of Xt+k given Xt = n

arises as the convolution of a Bin(n, αk) distribution and the PA(λmi,miθ) distributions,
0 ≤ i ≤ k − 1.

The fmgf H(1+ t) of the Geo1(θ) distribution with pmf {hr} of (3.2) exists for |t| < θ/θ.
Its power series expansion yields the factorial moments of {hr},

(3.4) µ
(h)
[r] =

r!
θ

(θ/θ)r (r ≥ 1).

Formulas for the moments of {gr} and the cumulants, mean and variance of Xt are given
below. They are derived from (2.18)–(2.20) and (3.4):

µ
(g)
[r] =

r!(θ/θ)r

Mθ(1− αr)
and µ(g)

r =
1

Mθ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

κ
(p)
[r] =

λr!(θ/θ)r

θ(1− αr)
and κ(p)

r =
λ

θ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

and

µ
(p)
1 =

λ

αθ
and (σ(p))2 =

λ(2− αθ)

(1− α2)θ2 .

Remark 3.1.

(i) The PA(λ, 0) distribution is Poisson (λ) and the corresponding stationary INAR(1)
process simplifies to the Poisson (λ

α) INAR (1) process discussed in [1], [13], and
[14].

(ii) One can extend the model discussed in this section to INAR (1) processes whose
innovations are finite convolutions of Polya–Aeppli distributions. The extension
can be established in fairly straightforward fashion by combining the results in
this section with those in Subsection 2.2.

4. PROCESSES WITH NONCENTRAL POLYA-AEPPLI INNOVATIONS

A noncentral Polya–Aeppli distribution (NPA(λ1, λ2, θ)) with parameters λ1, λ2 > 0
and θ ∈ (0, 1), as introduced in [9], results from the convolution of a Poisson(λ1) distribution
and a PA(λ2, θ) distribution. Its pmf is

(4.1) fr =


e−λ, if r = 0,

e−λθr
r∑

j=1

1
j!

( j∑
k=0

(
j

k

)(
r − j + k − 1

k − 1

)
(λ2θ/θ)k(λ1/θ)j−k

)
, if r > 0.
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An NPA(λ1, λ2, θ) distribution is DCP (λ, H), where λ = λ1 + λ2 and H(z) is the pgf
of a mixture of a Dirac measure δ1 sitting at 1, i.e., δ1({1}) = 1, and a Geo1(θ) distribution,
with respective mixing probabilities λ1/λ and λ2/λ, or

(4.2) H(z) =
λ1

λ
z +

λ2

λ

θz

1− θz
, h1 =

λ1 + θλ2

λ
and hr =

λ2

λ
θθr−1 (r ≥ 2).

Theorem 4.1. Let {Xt} be a stationary INAR (1) process with an NPA(λ1, λ2, θ)
innovation. The following assertions hold:

(i) The sequence {mi} of (2.2) satisfies

mi =
λ1

λ
· αi +

λ2

λ
· αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a mixture of a Dirac measure δ1 sitting at 1 and

a Geo1(βi) distribution, with mixing probabilities bi1 and bi2, where

βi =
θαi

1− θ(1− αi)
, bi1 =

λ1α
i

λmi
, bi2 =

λ2

λmi

αi

1− θ(1− αi)
,

h
(i)
1 = 1− bi2βi and h(i)

r = bi2βiβi
r−1 (r ≥ 2).

Moreover,

(4.3) DCP (λmi,Hi) ∼ NPA(λ1α
i, λ2βi/θ, βi) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the NPA(λ1α
i,

λ2βi/θ, βi) distributions (i ≥ 0).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM,M = λ1
λ(1−α) +

λ2
λθ

∑∞
i=0 βi and G is the pgf of the infinite countable mixture of the sequence of

pmf’s ({h(i)
r }, i ≥ 0), described in (ii) above, with respective mixing probabilities

(mi
M , i≥ 0).

Proof: Parts (i) and (ii) follow essentially from (3.3), (4.2), Lemma 2.2, and Theorem 2.3
(for k = 2). Part (iii) ensues from Theorem 2.1-(i) and part (iv) is a direct consequence of
Theorem 2.1-(ii).

We obtain additional properties of the process {Xt} of Theorem 4.1.

The 1-step transition probability of {Xt} is obtained from (2.12)–(2.14) with P (ε = x)
= fx of (4.1). By (2.16), Lemma 2.1, and Theorem 4.1-(ii), the conditional distribution of
Xt+k given Xt= n is the convolution of a Bin(n,αk) distribution and the NPA(λ1α

i,λ2βi/θ,βi)
distributions (0 ≤ i ≤ k − 1).

The fcmgf H(1 + t) of the pmf {hn} of (4.2) exists for |t| < θ/θ. Its power series
expansion, (2.18) and (3.4), lead to the factorial moments of {gr}:

µ
(g)
[r] =


1

λM(1− α)
(
λ1 + λ2/θ)

)
, if r = 1,

1
λM(1− αr)

(
λ2r!/θ

)(
θ/θ
)r

, if r ≥ 2.
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Factorial cumulants and cumulants of Xt follow from (2.19):

κ
(p)
[r] =


1

1− α
(λ1 + λ2/θ), if r = 1,

1
1− αr

(
λ2r!/θ

)(
θ/θ
)r

, if r ≥ 2,

and

κ(p)
r =

λ1θ + λ2

αθ
+

λ2

θ

r∑
j=2

S(r, j)
j!
(
θ/θ
)j

1− αj
.

By (2.20), the mean and variance of Xt are

µ
(p)
1 =

λ1θ + λ2

αθ
and (σ(p))2 =

λ1θ
2(1 + α) + λ2(2− αθ)

(1− α2)θ2 .

5. PROCESSES WITH NEGATIVE BINOMIAL INNOVATIONS

The negative binomial (NB) distribution with parameters s > 0 and θ ∈ (0, 1), denoted
by NB(s, θ)), has pgf and pmf

(5.1) Ψ(z) =
{

θ

1− θz

}s

and fr =
(

s + r − 1
r

)
θ

s
θr (r ≥ 0).

The NB(s, θ) distribution is DCP (λ, H), where λ = −s ln θ and H(z) is the pgf of the
logarithmic distribution with pmf {hr} described below:

(5.2) H(z) =
ln(1− θz)

ln θ
and hr = − θr

n ln θ
, (r ≥ 1).

Theorem 5.1. Let {Xt} be a stationary INAR (1) process with an NB(s, θ) innova-

tion. The following assertions hold:

(i) The sequence {mi} of (2.2) is

(5.3) mi =
ln(1− θ̃i)

ln θ
with θ̃i =

θαi

1− θ(1− αi)
(i ≥ 0).

Note 0 < θ̃i ≤ θ and 0 < mi ≤ 1 (i ≥ 0). Moreover,

M =
∞∑
i=0

mi =
ln p(α, θ)

ln θ
, where p(α, θ) =

∞∏
i=0

(1− θ̃i).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is logarithmic(θ̃i) (cf. (5.2)) and

(5.4) DCP (λmi,Hi) ∼ NB(s, θ̃i) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the NB(s, θ̃i)
distributions, i ≥ 0.

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = −s ln p(α, θ) and G

is the pgf of an infinite countable mixture of logarithmic(θ̃i) distributions with

mixing probabilities
(

ln(1−θ̃i)
ln p(α,θ) , i≥ 0

)
.
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Proof: By (5.2), mi = 1−H(1− αi) = (ln θ − ln(1− θ(1− αi))/ ln θ, which implies
(5.3), since 1− θ̃i = θ/(1− θ(1−αi)). Thus (i) holds. Straightforward calculations show that

Hi(z) = 1− 1
mi

(
1−H(1− αi + αiz)

)
=

ln(1− θ̃iz)
ln(1− θ̃i)

,

where H(z) is as in (5.2). This establishes the first part of (ii), which in turn implies (5.4).
Clearly, (iii) follows from Theorem 2.1-(i). Part (iv) is a direct consequence of (i)–(ii) and
Theorem 2.1-(ii).

We give additional proprerties of the process {Xt} of Theorem 5.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (5.1). By (2.16), Lemma 2.1, and Theorem 5.1 (i)–(ii), the conditional
distribution of Xt+k given Xt = n results from the convolution of a Bin(n, αk) distribution
and the NB(s, θ̃i) distributions (0 ≤ i ≤ k − 1).

The fmgf H(1 + t) of the logarithmic(θ) distribution with pgf H(z) and pmf {hr} of
(5.2) exists for |t| < θ/θ. The factorial moments of {hr} are given by (see equation 7.11,
p. 305, in [6])

(5.5) µ
(h)
[r] = −

(r − 1)!
(
θ/θ
)r

ln θ
(r ≥ 1).

Formulas for the moments of {gr} and the cumulants, mean and variance of Xt are
given below. They are derived from (2.18)–(2.20) and (5.5):

µ
(g)
[r] = −

(r − 1)!
(
θ/θ
)r

(1− αr) ln p(α, θ)
and µ(g)

r = − 1
ln p(α, θ)

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

κ
(p)
[r] =

s(r − 1)!
(
θ/θ
)r

1− αr
and κ(p)

r = s
r∑

j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

µ
(p)
1 =

sθ

αθ
and (σ(p))2 =

sθ(1 + αθ)

(1− α2)θ2 .

Remark 5.1.

(i) Note that the special case of s = 1 of Theorem 5.1 covers the important special
case of the unshifted geometric(θ), or Geo0(θ), innovation. These results can be
seen as extensions of some of the work in [5].

(ii) One can extend the model discussed in this section to INAR (1) processes whose
innovations are finite convolutions of negative binomial distributions. The exten-
sion can be established in fairly straightforward fashion by combining the results
in this section with those in Subsection 2.2.
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6. PROCESSES WITH NONCENTRAL NEGATIVE BINOMIAL INNOVA-
TIONS

Assume that θ ∈ (0, 1), s > 0 and λ2 > 0. Ong and Lee ([16]) introduced the noncentral
NB distribution, NNB(λ2, s, θ), as the mixture of NB(v, θ) distributions, where v is a value
of the random variable V = Y + s and Y is Poisson(λ2). The pgf of NNB(λ2, s, θ) is Ψ(z) =(

θ
1−θz

)s
exp
(
−λ2

1−z
1−θz

)
, and

(6.1) fr =


θ

s
e−λ2 , if r = 0,

e−λ2θrθ
s

r∑
k=0

k∑
j=1

(
k − 1
j − 1

)(
s + r − k − 1

r − k

)
λ2(θ/θ)j

j!
, if r > 0.

The NNB(λ2, s, θ) distribution is the convolution of an NB(s, θ) distribution and a PA(λ2, θ)
distribution. Hence, by Lemma 2.2 (for k=2), NNB(λ2, s, θ) ∼ DCP (λ, H), where λ = λ2 −
s ln θ > 0 and

(6.2) H(z) =
1
λ

(
−s ln(1− θz) + λ2

θz

1− θz

)
and hr =

θr

λ

(
s

r
+ λ2

θ

θ

)
(r ≥ 1).

We note that {hr} is a mixture of a logarithmic(θ) distribution and a Geo1(θ) distri-
bution with respective mixing probabilities −s ln θ/λ and λ2/λ.

Theorem 6.1. Let {Xt} be a stationary INAR (1) process with an NNB(λ2, s, θ)
innovation of (6.1)–(6.2). Let

θ̃i =
θαi

1− θ(1− αi)
and p(α, θ) =

∞∏
i=0

(1− θ̃i).

The following assertions hold:

(i) For {mi} of (2.2) we have

mi =
1
λ

(
−s ln(1− θ̃i) + λ2

θ̃i

θ

)
and M =

1
λ

(
−s ln p(α, θ) +

λ2

θ

∞∑
i=0

θ̃i

)
.

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a mixture of a logarithmic(θ̃i) distribution and

a Geo1(θ̃i) distribution, with respective mixing probabilities bi1 =
(
−s ln(1− θ̃i)/

(λmi)
)

and bi2 = (λ2θ̃i)/(λmiθ). Moreover,

(6.3) DCP (λmi,Hi) ∼ NB(s, θ̃i) ∗ PA

(
λ2

θ̃i

θ
, θ̃i

)
.

(iii) The marginal distribution of {Xt} is the infinite convolution of the(
DCP (λmi,Hi), i ≥ 0

)
of (6.3).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM and G is the pgf

of an infinite countable mixture of the sequence of pmf’s ({h(i)
r }, i ≥ 0) (described

in (ii) above) with mixing probabilities
(

mi
M , i≥ 0

)
.
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Proof: The proof is similar to that of Theorem 4.1. The results follow from Lemma 2.2,
Theorem 2.3 (with k = 2), Theorem 3.1 and Theorem 5.1. We omit the details.

We give some additional properties of the process {Xt} of Theorem 6.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (6.1). By (2.16), the conditional distribution of Xt+k given Xt = n results
from the convolution of a Bin(n, αk) distribution and the distributions

(
DCP (λmi,Hi),

0 ≤ i ≤ k − 1
)

of (6.3).

As a mixture of a logarithmic(θ) distribution and a Geo1(θ) distribution, the pmf {hr}
of (6.2) has a finite fmgf H(1 + t) for |t| < θ/θ. Therefore, the factorial moments of {gr} are,
by (2.26), (3.4) and (5.5),

µ
(g)
[r] =

(r − 1)!(θ/θ)r

λMθ(1− αr)
(sθ + λ2r).

Combining (2.27) with the moment and cumulant formulas derived in Section 6 yields the
factorial cumulants and the cumulants of Xt:

κ
(p)
[r] =

(r − 1)!(θ/θ)r

θ(1− αr)
(sθ + λ2r)(6.4)

and

κ(p)
r =

1
θ

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
(sθ + λ2j).(6.5)

By (2.20), the mean and variance of {Xt} are

µ
(p)
1 =

λ2 + sθ

αθ
and (σ(p))2 =

λ2(2− αθ) + sθ(1 + αθ)
(1− α2)θ

.

7. PROCESSES WITH POISSON-LINDLEY INNOVATIONS

In this section, we revisit the INAR (1) model with Poisson–Lindley innovation intro-
duced in [10] (see also [17]) and expand on their results. The Poisson–Lindley distribution
(PL(φ)) with parameter φ > 0 is the mixture of a Geo1( 1

1+φ) distribution and an NB(2, 1
1+φ)

distribution with respective mixing probabilities φ
1+φ and 1

1+φ . Its pgf and pmf are

(7.1) Ψ(z) =
φ2

1 + φ
· 2 + φ− z

(1 + φ− z)2
and fr =

φ2

(1 + φ)r+2

(
1 +

r + 1
1 + φ

)
(r ≥ 0).
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For additional details and references on the PL(φ) distribution, we refer to [15].
A PL(φ) distribution is DCP (λ, H) with

(7.2) λ = ln
[

(1 + φ)3

φ2(2 + φ)

]
, H(z) = 1 +

1
λ

ln
[

φ2(2 + φ− z)
(1 + φ)(1 + φ− z)2

]
,

and

(7.3) hr =
1
λr

(
2

(1 + φ)r
− 1

(2 + φ)r

)
(r ≥ 1).

We introduce the Modified Poisson–Lindley distribution (MPL(φ, β)) with parameters
φ > 0 and β ∈ (0, 1] as the distribution of β�X, where X∼ PL(φ). The pgf of the MPL(φ, β))
distribution is Ψ(1− β + βz), with Ψ(z) of (7.1). Note that, MPL(φ, 1) ∼ PL(φ).

Lemma 7.1. An MPL(φ, β) distribution arises as a mixture of a Geo1(β/(β + φ))
distribution and an NB(2, β/(β + φ)) distribution with resp. mixing probabilities φ

1+φ and
1

1+φ . Moreover, MPL(φ, β) ∼ DCP (λβ ,Hβ), where

(7.4) λβ = ln
[
(1 + φ)(β + φ)2

φ2(1 + β + φ)

]
, Hβ(z) = 1 +

1
λβ

ln
[

φ2(1 + β + φ− βz)
(1 + φ)(β + φ− βz)2

]
.

Moreover, the pmf {h(β)
r } of Hβ(z) is

(7.5) h(β)
r =

1
λβr

[
2
(

β

β + φ

)r

−
(

β

1 + β + φ

)r
]

(r ≥ 1).

Proof: If X is Geo1(1/(1+φ)) (resp. NB(2, 1/(1+φ)), then β�X is Geo1(β/(β +φ))
(resp. NB(2, β/(β + φ)). By (7.1), we obtain

Ψ(1− β + βz) =
φ2

1 + φ
· 1 + β + φ− βz

(β + φ− βz)2
.

A standard argument leads to the representation

Ψ(1− β + βz) = exp
{
λβ(Hβ − 1)

}
,

where λβ and Hβ and its pmf are as in (7.4)–(7.5).

Theorem 7.1. Let {Xt} be a stationary INAR (1) process with a PL(φ) innovation

with characteristics (7.1)–(7.3). The following assertions hold:

(i) For every i ≥ 0,

mi =
1
λ

ln
[
(1 + φ)(φ + αi)2

φ2(1 + φ + αi)

]
and M =

1
λ

ln
∞∏
i=0

(1 + ai),

where ai =
αi(φ2 + 2φ + αiφ + αi)

φ2(1 + φ + αi)
.
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(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is given in (7.5) with β = αi and λβ = λmi, and

(7.6) DCP (λmi,Hi) ∼ MPL(φ, αi).

(iii) The marginal distribution of {Xt} is the infinite convolution of the distributions(
MPL(φ, αi), i ≥ 0

)
.

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
∞∏
i=0

(1 + ai), and

G is the pgf of the infinite countable mixture of the pmf’s
(
{h(i)

r }, i ≥ 0
)

with

respective mixing probabilities
(

mi
M , i≥ 0

)
.

Proof: (i) follows from Lemma 2.1, (7.1)–(7.2), and the formula M =
∑∞

i=0 mi. Part
(ii) is a direct consequence of Lemma 9.1 by setting β = αi. Part (iii) and (iv) result from
(ii) and Theorem 2.1-(ii), respectively.

We give additional properties of the process {Xt} of Theorem 7.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (7.1). By (2.16) and Theorem 7.1-(ii), the conditional distribution of Xt+k

given Xt = n results from the convolution of a Bin(n, αk) distribution and the MPL(φ, αi)
distributions, 0 ≤ i ≤ k − 1.

The fcmgf H(1 + t) of the pmf {hr} of (7.2)–(7.3) exists for |t| < φ/2. Its power series
expansion yields the factorial moments of {hr}:

µ
(h)
[r] =

(r − 1)!
λ

(
2
φr

− 1
(1 + φ)r

)
.

Formulas for the factorial moment of {gr} and the cumulants, mean and variance of Xt are
given below. They are derived from (2.18)–(2.20):

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

(
2
φr

− 1
(1 + φ)r

)
,

κ
(p)
[r] =

(r − 1)!
(1− αr)

(
2
φr

− 1
(1 + φ)r

)
and κ(p)

r =
r∑

j=1

S(r, j)
(j − 1)!
(1− αj)

(
2
φj

− 1
(1 + φ)j

)
,

and

µ
(p)
1 =

2 + φ

αφ(1 + φ)
and (σ(p))2 =

(1 + α)φ3 + (4 + 3α)φ2 + 2(3 + α)φ + 2
(1− α2)φ2(1 + φ)2

.

8. PROCESSES WITH EULER-TYPE INNOVATIONS

Let l(0, 1) be the set of sequences Θ = (θk, k ≥ 0) such that θk ∈ (0, 1) for every k ≥ 0
and

(8.1)
∞∑

k=0

θk

1− θk
< ∞.
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Define

(8.2) Sr(Θ) =
∞∑

k=0

θr
k and Tr(Θ) =

∞∑
k=0

(
θk

1− θk

)r

(r ≥ 1).

Note that the condition (8.1) implies Sr(Θ) < ∞ and Tr(Θ) < ∞ for all r ≥ 1.

A Z+-valued rv is said to have an Euler-type distribution (Euler−T (Θ)), Θ ∈ l(0, 1),
if it is an infinite convolution of Geo0(θk) rv’s. Its pgf is

(8.3) Ψ(z) =
∞∏

k=0

(
1− θk

1− θkz

)
.

We gather a few basic properties of an Euler−T (Θ) distribution.

Lemma 8.1. Let {qr} be the pmf of an Euler−T (Θ) for some Θ ∈ l(0, 1). The

following assertions hold:

(i) {qr} is the pmf of a DCP (λ, H) with

(8.4) λ =
∞∑

k=0

(− ln(1− θk)) and H(z) =
∞∑

k=0

− ln(1− θk)
λ

Hk(z),

where, for each k ≥ 0, Hk(z) is the pgf of a logarithmic(θk) distribution. The

pmf {hr} with pgf H(z) is an infinite countable mixture of logarithmic(θk) dis-

tributions (k ≥ 0) with respective mixing probabilities
(− ln(1−θk

)
λ , k ≥ 0

)
, or

hr = Sr(Θ)/(λr), r ≥ 1.

(ii) {qr} satisfies the following recurrence relation:

(8.5) (r + 1)qr+1 =
r∑

k=0

qkSr+1−k(Θ) and q0 =
∞∏

k=0

(1− θk).

(iii) There exists 0 < ρ0 ≤ 1 such that the fcmgf H(1 + t) of the pmf {hr} of part (i)

is finite for |t| < ρ0. Consequently, {hr} has finite factorial moments of all orders:

(8.6) µ
(h)
[r] =

(r − 1)!
λ

Tr(Θ) (r ≥ 1).

(iv) {qr} has finite factorial cumulants of all orders:

(8.7) κ
(q)
[r] = (r − 1)!Tr(Θ) (r ≥ 1).

Proof: Since − ln(1− x) ∼ x, as x → 0, the two infinite series with respective positive
summands − ln(1− θk) and − ln(1− θkz), z ∈ (0, 1), are convergent. Therefore, lnΨ(z) =∑∞

k=0 ln(1− θk)−
∑∞

j=0 ln(1− θkz). Letting λ be as in (8.4), we have

lnΨ(z) = λ

(
− 1 +

∞∑
k=0

− ln(1− θk)
λ

ln(1− θkz)
ln(1− θk)

)
.
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The function Hk(z) = ln(1−θkz)
ln(1−θk) is the pgf of a logarithmic(θk) for each k ≥ 0 (see (5.2)).

Therefore, lnΨ(z) = λ(H(z)− 1), with H(z) of (8.4). Again by (8.4), {hr} is an infi-
nite countable mixture of logarithmic(θk) distributions with the stated mixing probabilities.
We have by (8.4) and (5.2)

hr =
∞∑

k=0

− ln(1− θk)
λ

θr
k

−r ln(1− θk)
(r ≥ 1),

which establishes (i), via (8.2). Note that q0 = e−λ and, similarly to (2.10), qr satisfies the
recurrence formula (8.5). We now prove (iii). By (8.1), there exists k0 > 1 such that θk/θk < 1
for k ≥ k0. Therefore, infk≥k0 θk/θk ≥ 1. Let ρ0 = min

(
1,min0≤k<k0 θk/θk

)
. Since ρ0 ≤ θk/θk

for every k ≥ 0, the fmgf Hk(1 + t) of the logarithmic(θk) distribution exists for |t| < ρ0.
We have by (5.5) and equation (1.274), p. 59, in [6],

Hk(1 + t) = 1 +
∞∑

r=1

(r − 1)!
(
θk/θk

)r
− ln θk

tr

r!
(|t| < ρ0).

A standard argument shows that H(1 + t) =
∑∞

k=0
− ln θk

λ Hk(1 + t) converges uniformly over
the interval |t| ≤ ρ for every 0 < ρ < ρ0. By Weierstrass Theorem, p. 430, in [8], we have

H(1 + t) = 1 +
∞∑

r=1

[ ∞∑
k=0

− ln θk

λ

(r − 1)!
(
θk/θk

)r
− ln θk

]
tr

r!
(|t| < ρ0),

which implies (8.6). Finally, by equation 9.49, p. 391, in [6], we have κ
(q)
[r] = λµ

(h)
[r] which leads

to (8.7).

One can conclude from (8.7) and (2.21) that an Euler−T (Θ) has finite moments {µ(q)
r }

of all orders, and thus finite factorial moments {µ(q)
[r] } of all orders.

Theorem 8.1. Let {Xt} be a stationary INAR (1) process with an Euler−T (Θ)
innovation for some Θ ∈ l(0, 1). For i, k ≥ 0, let

(8.8) θ
(k)
i =

θkα
i

1− θk(1− αi)
and pi(α, Θ) =

∞∏
k=0

(
1 +

θkα
i

1− θk

)
.

The following assertions hold:

(i) The sequence {mi} of (2.2) is

(8.9) mi =
1
λ

∞∑
k=0

(− ln(1− θ
(k)
i )) =

1
λ

ln pi(α, Θ) (i ≥ 0).

Note that 0 < θ
(k)
i ≤ θk and 0 < mi ≤ 1. Moreover,

(8.10) M =
∞∑
i=0

mi =
1
λ

ln

[ ∞∏
i=0

pi(α, Θ)

]
.

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ

(k)
i )

distributions, k ≥ 0, with mixing probabilities
(
− ln(1−θ

(k)
i )

pi(α,Θ) , k ≥ 0
)
, and

(8.11) DCP (λmi,Hi) ∼ Euler−T (Θi), Θi = (θ(k)
i , k ≥ 0).
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(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−T (Θi)

distributions (i ≥ 0) of (8.11).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α, Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h(i)
r , i ≥ 0) of (ii)

with mixing probabilities
(
ln pi(α, Θ)

/
ln
[∏∞

j=0 pj(α, Θ)
]
, i ≥ 0

)
.

Proof: For (i), we have by (8.4),

mi = 1−H(1− αi) =
∞∑

k=0

− ln(1− θk)
λ

(1−Hk(1− αi)).

Since Hk(z) is the pgf of a logarithmic(θk) distribution, it follows that 1−Hk(1− αi) =
ln(1−θ

(k)
i )

ln(1−θk) , from which we deduce the first equation in (8.9). The second equation as well as
(8.10) are easily seen to hold. The convergence of the infinite products in part (i) stems from∑∞

i=0

∑∞
k=0

θkαi

1−θk
< ∞. This leads to

1−Hk(1− αi + αiz) =
ln(1− θ

(k)
i )

ln(1− θk)
(1−Hki(z)),

where Hki(z) is the pgf of a logarithmic(θ(k)
i ). We conclude by (2.3) and (8.4)

(8.12) Hi(z) =
∞∑

k=0

− ln(1− θ
(k)
i )

λmi
Hki(z).

Now, by (5.2),

h(i)
r =

∞∑
k=1

− ln(1− θ
(k)
i )

λmi

[θ(k)
i ]r

−r ln(1− θ
(k)
i )

=
Sr(Θi)

rpi(α, θ)
.

which proves the first part of (ii). Let Ψ(z) be as in (8.3). By Lemma 2.1, (8.9) and (8.12),
the pgf, Ψ(1− αi + αiz), of DCP (λmi,Hi) is shown to be

Ψ(1− αi + αiz) = exp
{
λmi(Hi(z)− 1)

}
=

∞∏
k=0

(
1− θ

(k)
i

1− θ
(k)
i z

)
.

It is easily seen that Θi = (θ(k)
i , k ≥ 0) belongs to l(0, 1). Therefore, (8.11) holds, thus com-

pleting the proof of (ii). Part (iii) follows from (8.11) and Theorem 2.1-(i). Part (iv) is a
direct consequence of (i)–(ii) and Theorem 2.1-(ii).

We discuss additional properties of the process {Xt} of Theorem 8.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) where
the probabilities P (ε = x) = qx, x ≥ 0, can be obtained using (8.5). By (2.16), Lemma 8.1,
and Theorem 8.1 (i)–(ii), the conditional distribution of Xt+k given Xt = n arises as the
convolution of a Bin(n, αk) distribution and the Euler−T (Θi) distributions (0 ≤ i ≤ k − 1)
of (8.11).
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Formulas for the moments of {gr} and the factorial moments, mean and variance of Xt

are obtained from (2.18)–(2.20) and (8.6):

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

Tr(Θ) and µ(g)
r =

1
λM

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(Θ),

κ
(p)
[r] =

(r − 1)!
(1− αr)

Tr(Θ) and κ(p)
r =

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(Θ).,

and
µ

(p)
1 =

T1(Θ)
1− α

and (σ(p))2 =
(1 + α)T1(Θ) + T2(Θ)

1− α2
.

9. PROCESSES WITH EULER INNOVATIONS

The Euler distribution (Euler(η, q)) introduced by Benkherouf and Bather ([3]) (see
[6]) is an Euler−T (Θ) distribution with Θ = (ηqk, k ≥ 0) for 0 < η < 1 and 0 < q < 1.
An application of the ratio test shows that indeed Θ ∈ l(0, 1). We also note that Sr(Θ) = ηr

1−qr ,
r ≥ 1. We use the notation Tr(η, q) in lieu of Tr(Θ).

We recall a few basic properties of the Euler(η, q) distribution (cf., for example, [7]).
Its pmf {qx} is

(9.1) q0 =
∞∏

j=0

(1− ηqj) and qx =
ηx

x∏
l=1

(1− ql)
q0 (x ≥ 1).

Its mean and variance are

µ =
∞∑

x=0

ηqx

1− ηqx
and σ2 =

∞∑
x=0

ηqx

(1− ηqx)2
.

The following result is known. We refer to Lemma 8.1 for convenience.

The Euler(η, q) distribution is DCP (λ, H) with λ = − ln
(∏∞

k=0(1− ηqk)
)

and H(z)
is the pgf of an infinite countable mixture of logarithmic(ηqk) distributions, k ≥ 0, with
respective mixing probabilities

(− ln(1−ηqk)
λ , k ≥ 0

)
. Its pmf is hr = ηk/(λk(1− qk)), r ≥ 1.

The main result of the section is stated without proof as it is a particular case of
Theorem 8.1.

Theorem 9.1. Let {Xt} be a stationary INAR (1) process with an Euler(η, q) inno-

vation for some η, q ∈ (0, 1). For i, k ≥ 0, let

(9.2) θ
(k)
i =

ηqkαi

1− ηqk(1− αi)
and pi(α, η, q) =

∞∏
k=0

(
1 +

ηqkαi

1− ηqk

)
.

The following assertions hold:
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(i) The sequence {mi} of (2.2) and M =
∑∞

i=0 mi are as follows:

(9.3) mi =
1
λ

ln pi(α, η, q) and M =
1
λ

ln

[ ∞∏
i=0

pi(α, η, q)

]
.

Note that 0 < θ
(k)
i ≤ ηqk and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ

(k)
i )

distributions, k ≥ 0, with mixing probabilities
(− ln(1−θ

(k)
i )

pi(α,η,q) , k ≥ 0
)
, and

(9.4) DCP (λmi,Hi) ∼ Euler−T (Θi), Θi = (θ(k)
i , k ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−T (Θi)
distributions (i ≥ 0) of (9.4).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α, Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h(i)
r , i ≥ 0) of (ii)

with mixing probabilities
(
ln pi(α, η, q)

/
ln
[∏∞

j=0 pj(α, η, q)
]
, i ≥ 0

)
.

Additional properties of the process {Xt} of Theorem 9.1 are given next.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) where
the probabilities P (ε = x) = qx, x ≥ 0, are as in (9.1). By (2.16) and Theorem 8.1 (i)–(ii), the
conditional distribution of Xt+k given Xt = n arises as from the convolution of a Bin(n, αk)
distribution and the Euler−T (Θi) distributions (0 ≤ i ≤ k − 1) of (9.4).

Formulas for the moments of {gr} and the factorial moments, mean and variance of Xt

are as follows:

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

Tr(α, η, q) and µ(g)
r =

1
λM

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(α, η, q),

κ
(p)
[r] =

(r − 1)!
(1− αr)

Tr(α, η, q) and κ(p)
r =

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(α, η, q),

and

µ
(p)
1 =

T1(α, η, q)
1− α

and (σ(p))2 =
(1 + α)T1(α, η, q) + T2(α, η, q)

1− α2
.
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