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1. INTRODUCTION

Last decades have been characterized by relevant changes in the global macroeconomic
scenario. Naturally, this has affected the way managers make decisions about the future
of firms. Real options theory provides efficient tools to analyze what is the best decision
to make, taking into account all the options faced by the firm. In particular, we can high-
light the following options/problems: the strategy options (see Huisman and Kort (2003) [11],
Pawlina and Kort (2006) [18], and Brealey et al.(2012) [3]), valuation of options for real assets
(see Dixit and Pindyck (1994) [6]), investment options (see Bjerksund and Ekern (1990) [2],
Dixit and Pindyck (1994) [6], Majd and Pindyck (1987) [13], and McDonald and Siegel (1985) [14]),
technology adoption problem (see Farzin et al. (1998) [8], and Hagspiel et al. (2016) [10]),
or abandonment problem (see Brennan and Schwartz (1985) [4], and Myers and Majd (2001) [15]).

During the last economic crisis, many firms felt the need to adjust their production
process, to face declining markets and to avoid large losses. An example of a strategy used
by decision-makers to decrease the costs associated with the production process is the layoff.
Companies like Merck, Yahoo, General Electric, Xerox, Pratt & Whitney, Goldman Sachs,
Whirlpool, Bank of America, Alcoa and Coca-Cola implemented layoff periods, to reduce
costs and face adverse market conditions1. The main goal of firms adopting this type of
strategies is to reduce the risk of having large losses by adopting a production process which
results in a “flat payoff function”: the profits would not be very large if the demand is large
but in case the demand decreases, the firm faces also small losses; the resulting is a sort of
a compromise situation. The idea of flat payoff function is already used in Decision Theory,
with a similar meaning; see, for instance, Pannell (2006) [17]. On the other side of the
scale, you also find companies with a more aggressive behavior, meaning, in this particular
framework, that the firm adapts its production process in order to obtain large profits for
high levels of demand, even if the losses may be large, for small levels of demand. There
are, of course, many strategies which lead to intermediate payoff functions: between the flat
payoff functions (less risky, in terms of potential losses) and the more aggressive ones (more
risky, in terms of potential losses).

The changes in the profit function may be due to several causes, such as technology
innovation or improvement in the production process. Indeed, nowadays, companies face
many challenges, as the markets are very competitive, and technology innovations can radi-
cally change the costs and profits. Technology innovation may change the production costs,
as it gets more advanced, prices drop and products get better. However, it can exist some
drawbacks, such as the costs associated with the technological process or even a chance that
the switch to the new technology does not lead to positive profits but leads to losses, due to
declining markets, for instance. These challenges amplify with the large uncertainty that is
inherent to the market, as Ward et al. (1995) [20] refer.

There are several examples of such a situation. One of such examples occurs in the
area of IT (information technology), the decision of where and when to allocate resources to
IT programs is risky, as although there are many positive outcomes, the executives struggle
with the massive costs and high uncertainty. According to Clemons and Weber (1990) [5],

1Uchitelle, L. (2008, October 26). U.S. layoffs increase as businesses confront the crisis, The New York Times.

Retrieved from http://www.nytimes.com/2008/10/26/business/worldbusiness/26iht-layoffs.1.17246245.html

http://www.nytimes.com/2008/10/26/business/worldbusiness/26iht-layoffs.1.17246245.html
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IT can confer advantage under appropriate conditions, and equally important, even when it fails
to confer advantage, it may still prove crucial. The same authors mention the case of Manu-
facturers Hanover, that in the early 80’s invested 300 million dollars in a telecommunication
network. The actual volumes reached only 50% of the estimates, well below the capacity, and
leading to massive losses, as they could not recover the system cost. See Benaroch (2002) [1].

Another such example is the present situation of ASML: the largest supplier in the world
of photolithography systems for the semiconductor industry. ASML is one of the 8th foreign
companies that have sales of at least 1 billion dollars in South Korea. Recent investments in
the next-generation technologies have allowed ASML to reduce their potential costs by 30%
or 40%. But a serious flare-up between North and South Korea would cause a huge disruption
to commerce. And if operations in the country were suspended or set back for a long time
due to the destruction of facilities, that would disrupt the supply chain of companies around
the world. And ASML, which is vulnerable to this situation, would then face major losses.2

Therefore investments in this area of the planet, although lead to potentially large profits,
also may lead the massive losses.

The last example that we provide is related to the use of statistical process control (SPC)
charts to monitor quality. Control charts are used to keep a process in statistical control,
where the output quality is at a target level; the design of the control chart is usually known as
economic design (see Lorenzen and Vance (1986) [12]). But the implementation of statistical
control can be quite expensive, as Nembhard et al.(2002) [16] refer. But, on the other hand, if
a control chart is not used, the manufacturer may not be aware that the system is producing
low-quality parts. And this may have a cost, as these products may be returned, with extra
replacement costs. Therefore the choice between implementing a production scheme with or
without a rigorous statistical control is a relevant decision in terms of profits and losses, and
the decision must take into account the dynamics in the market conditions.

These examples show a common feature: firms have the opportunity to change their
production systems, due to several reasons, but when deciding about it they need to balance
between potential losses and gains, as these investments do not lead only to larger profits.
Our main objective is to study the time at which the firm should optimally change its produc-
tion system. Reporting to the literature of real options, this problem falls into the category of
single-switch or replacement problems, a problem that is crucial from the management view-
point. We will be mainly concerned with the implications of adjusting the current production
process in a risky or less risky way, where we use the following interpretation:

• The risk increases if when compared with the current profit, the gains of the firm
increase when the demand is sufficiently high, but the losses also increase in case
the demand is not sufficiently high;

• The risk decreases if, when compared with the current profit, the losses of the
firm decrease when the demand reaches sufficiently small levels, but the gains also
decrease in case the demand becomes sufficiently high.

Throughout the paper, we use the terms replacement and investing indistinctly, in the sense
that they both mean that the firm will change its original production process (leading to a
profit function Π1) by a different production process (leading to a profit function Π2).

2Wong, S. and Miller, L.J. (2017, August 20). These are the most vulnerable foreign companies in Korea, Bloomberg Politics.

Retrieved from https://www.bloomberg.com/news/articles/2017-08-20/in-shadow-of-red-line-companies-with-a-lot-to-lose-in-korea

https://www.bloomberg.com/news/articles/2017-08-20/in-shadow-of-red-line-companies-with-a-lot-to-lose-in-korea
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Besides the option to change its production process, a firm may still decide to abandon
the market, in case the conditions are no longer favorable in terms of its profits. Therefore
we also analyze the situation where after the investment in the second production process,
the firm may decide to exit. Moreover, we compare the impact of the abandonment option in
the invest moment in the second production market and, as we will see, this impact depends
on whether the firm intends to increase the risk or not, and the relation between the involved
costs and the parameters of the demand process. Here we assume that abandonment only
happens after investing in the second production process, which is equivalent to say that
abandonment out of the first production process is equally costly as first investing in the
second production process and then abandon. This assumption is also considered in chapter 7
of Dixit and Pindyck (1994) [6].

The rest of the paper is organized as follows: in Section 2 we describe the model,
along with some considerations about the economical meaning; in Section 3 we present the
Hamilton–Jacobi–Bellman equation for the optimization problem. In Section 4 we derive
the solution of the problem and in Section 5 we present comparative statics results. Finally,
in Section 6 we consider the option to abandon the market, after investing in the second
production process. The proofs of the propositions and corollaries can be found in Appendix A.

2. MODEL

In this paper, we consider a firm that produces an established product in a stochas-
tic environment, which is characterized by the stochastic demand process X = {Xt : t ≥ 0},
defined on a complete filtered space (Ω, {Ft}t≥0, P). Moreover, we assume that X follows a
geometric Brownian motion, solution of the stochastic differential equation:

dXt = µXt dt + σXt dWt ,

where X0 = x, µ∈R is the drift, the volatility is equal to σ > 0, and {Wt : t≥ 0} is a Brownian
motion.

Currently, the profit of the firm is Π1, that depends on X, and the firm has the option
to change its profit function to Π2, but staying in the same market (and thus the uncertainty
process, X, does not change its dynamics as a consequence of this change). If the firm decides
to materialize this option at time τ , then its value is given by

J(x, τ) = Ex

 τ∫
0

e−γs Π1(Xs) ds − e−γτR +

∞∫
τ

e−γs Π2(Xs) ds


= Ex

 τ∫
0

e−γs Π1(Xs) ds +

∞∫
τ

e−γs
(
Π2(Xs)− γR

)
ds

 ,

where R ≥ 0 is the cost of adjusting its production process, γ > 0 is the interest rate and Ex

represents the conditional expectation when X0 = x . Defining by S the set of all admissible
{Ft}-stopping times, we are looking for the right moment of changing the production process.
Thus, we define the value function V, given by:

(2.1) V(x) = sup
τ∈S

J(x, τ) = J(x, τ∗) .
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If in the problem (2.1), one has Π1(x) ≤ Π2(x)− γR, for all x > 0, then the decision is
trivial: τ∗ = 0, and therefore the firm must change immediately. On the other hand, when
Π2(x)− γR ≤ Π1(x), for all x > 0, then the decision is also trivial: τ∗ = ∞, and therefore
the firm never takes the decision to invest in the second production process. However, the
most interesting situation is illustrated in Figure 1. In fact, assuming that there is c > 0,
such that Π1(c) = Π2(c)− γR ≡ d > 0, then, we have the following situations:

a) Π1(x) < Π2(x)− γR if and only if x > c. In this case, for lower values of the
demand process, Π1 leads to larger profits or lower losses than Π2, whereas for
large values of demand, Π2 is more profitable. For this reason, we say that in this
situation the risk increases, when we switch from Π1 to Π2;

b) Π1(x) > Π2(x)− γR if and only if x > c. Then Π2 leads to smaller losses/smaller
earnings in case the demand decreases/increases, when compared with Π1. For this
reason, we say that in this situation the risk decreases.

Here, we use isoelastic profit functions, with some constant linear factor:

Πi(x) = ai x
θi − bi , with θi ≥ 1 , ai, bi ≥ 0 ,

where θi is the elasticity coefficient and bi denotes a fixed cost.

Figure 1: Representation of the functions Πs, with s = i, j and i 6= j ∈ {1, 2}, where
Πs(x) = Π1(x) if s = 1 or Πs(x) = Π2(x)− γR, if s = 2, for all x > 0.

Additionally, we will discuss how the option to abandon definitely the market after the
replacement influences the value of the firm as well as the economic mechanisms behind the
decisions. Then, the problem can be re-stated as follows:

W(x) = sup
τ1≤τ2∈S

E

[∫ τ1

0
e−γs Π1(Xs) ds − e−γτ1R +

∫ τ2

τ1

e−γs Π2(Xs) ds − e−γτ2 S

]
≡ sup

τ1≤τ2∈S
I(x, τ1, τ2) ,

(2.2)

where τ1 is the time to replace Π1 by Π2, and τ2 is the time to abandon the market. In (2.2),
S represents the abandonment cost, when S is positive (meaning that the firm needs to pay
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to abandon the market) or a salvage value/disinvestment subsidy, when S is negative
(meaning that the firm receives money upon the exit of the market).

In order to have a well-posed problem, in the sense that the next integrability condition
holds:

(2.3) Ex

[∫ ∞

0
e−γs

∣∣Πi(Xs)
∣∣ ds

]
< ∞ , for i = 1, 2 ,

we assume the following relation on the parameters:

γ >
σ2

2
(θi − 1) θi + θiµ ≡ µθi

, for i = 1, 2 .

See Guerra et al. (2016) [9] for further mathematical explanations about the integrability
condition (2.3). Additionally, for (γ, µ, σ) fixed, let β1 and β2 denote the two roots of the
quadratic equation

γ =
σ2

2
(y − 1) y + µy ,

with β1 < 0 < β2. We notice that the condition (2.3) implies that β2 > θ > 1.

Although the natural economic modeling of this problem relies on the set of parameters
(r, µ, σ), it can be, equivalently, modeled by using the set of parameters (β1, β2, σ), since

γ = −σ2

2
β1β2 and µ =

σ2

2
(1− β1 − β2) .

For future reference, we note that the functions (µ, σ) → βi(µ, σ), with i = 1, 2, are such
that the function β1(·, σ), β2(·, σ) and β2(µ, ·) 3 are decreasing, while β1(µ, ·) is increasing.
This follows in view of the following derivatives:

∂βi

∂σ
= (−1)i+1 σβi (βi − 1)√(

µ− 1
2 σ2

)2 + 2 σ2γ
and

∂βi

∂µ
= (−1)i+1 βi√(

µ− 1
2 σ2

)2 + 2 σ2γ
.

3. HAMILTON–JACOBI–BELLMAN EQUATIONS

In this section, we introduce the HJB equations that lead to the solution of the opti-
mization problems. We start by noticing that for the replacement problem, we may write the
functional J as follows:

J(x, τ) = Ex

 τ∫
0

e−γs
(
Π1(Xs)−Π2(Xs) + γR

)
ds

 + Ex

 ∞∫
0

e−γs
(
Π2(Xs)− γR

)
ds


= Ex

 τ∫
0

e−γs
(
a1X

θ1
s − a2Xθ2

s − b + γR
)

ds

 + a2
xθ2

γ − µ2
− b2 + γR

γ
,

3Along this paper, we use f(·, y) to denote the function f as a function of the first variable, keeping the
second fixed and equal to y.
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for every (x, τ) ∈ ]0,∞[×S, with b = b1 − b2.4 Then, for all x > 0,

(3.1) V(x) = V (x) + a2
xθ2

γ − µ2
− b2 + γR

γ
,

with

(3.2) V (x) = sup
τ∈S

Ex

 τ∫
0

e−γs
(
a1X

θ1
s − a2Xθ2

s − b + γR
)

ds

 ,

and the remaining part of the right-hand side of Equation (3.1) representing the net present
value associated to the second production process. Thus, henceforward, we will be concerned
about the optimal stopping problem defined in (3.2).

In light of the classical Theory of Optimal Stopping (see, for instance, Peskir and
Shiryaev (2006) [19]), V satisfies the HJB equation:

min
{

γv(x)− µxv′(x)− σ2

2
x2v′′(x)−

(
Π1(x)−Π2(x) + γR

)
, v(x)

}
= 0 .

From this equation, it follows that V (x) ≥ 0, for x > 0. Additionally, if there is x0 > 0 such
that V (x0) > 0, then V should satisfy the ODE

(3.3) γv(x)− µxv′(x)− σ2

2
x2v′′(x)−

(
Π1(x)−Π2(x) + γR

)
= 0 ,

in the set
{
x > 0: |x−x0| < ε

}
, for some ε > 0. Equation (3.3) is an Euler–Cauchy differential

equation and admits as solution the function

v(x) = Axβ1 + Bxβ2 + αxθ1 − βxθ2 − b

γ
+ R ,(3.4)

with
α =

a1

γ − µθ1

and β =
a2

γ − µθ2

,

for every A,B ∈ R.

When we consider the exit option after investing in the second process production
process, one may see that standard arguments (see, for instance, Duckworth and Zervos
(2000) [7]) allow us to get an equivalent expression to (2.2), that is:

W(x) = sup
τ1∈S

E

[∫ τ1

0
e−γs

(
Π1(Xs) + γR + γS

)
ds + e−γτ1 W̃(Xτ1)

]
− R − S

≡ sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x) − R − S ,
(3.5)

where

W̃(x) = sup
τ∈S

E

[∫ τ

0
e−γs

(
Π2(Xs) + γS

)
ds

]
.

Thus the corresponding HJB equation is the following:

min
{

γw(x)− µxw′(x)− σ2

2
x2w′′(x)−Π1(x)− γ(R +S), w(x)− W̃(x)

}
= 0

where, in its turn, W̃ is a solution of the HJB equation corresponding to the exit problem:

min
{

γW̃(x)− µxW̃ ′(x)− σ2

2
x2W̃ ′′(x)−Π2(x)− γS, W̃(x)

}
= 0 .

4From now on we will use the notation a = a1 − a2.
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4. THE REPLACEMENT OPTION

In this section we present the solution to the problem (3.2), assuming that θi = 1 and
θj = θ ≥ 1, for i 6= j ∈ {1, 2}. With this assumption, we may derive analytical expressions
for the relevant quantities. Recall that c > 0 is such that Π1(c)−Π2(c) + γR = 0; moreover,
we let d = Π1(c) = Π2(c)− γR.

To solve the problem (3.2), we need to use the smooth pasting conditions in order to find
the unknown terms of (3.4), and its domain. Therefore we need to propose a continuation
region. In fact, depending on the sign of Π1 − Π2 + γR, the geometry of the problem is
different and, consequently, the continuation region is also distinct.

In case of the increasing risk, we expect that the continuation region is of the form
C =

{
x > 0: x < δ

}
, with δ ≥ c, as in that case one should only invest in the more risky

production process when the demand is high (and higher than c, because for x < c, Π2(x)−
γR − Π1(x) < 0). But if the risk decreases, then we expect the continuation region to be
C =

{
x > 0: x > ζ

}
, with ζ ≤ c, since in that case the replacement should be undertaken

when the levels of demand are low. Therefore we need to study the two cases separately, as
we present in the next sections.

4.1. INCREASING RISK

Here, we assume that the profit functions Π1 and Π2 are given by:

(4.1) Π1(x) = a1x− b1 and Π2(x) = a2xθ − b2 ,

with θ > 1, and

(4.2) b1 ≤ b2 + γR .

Note that this inequality may be interpreted as follows: the fixed cost when using Π1 must
be lower than or equal to the sum of the investment rate cost plus the fixed cost of using Π2.
If this condition does not hold, then replacement would be optimal right away (i.e., the
optimal time would be zero).

Proposition 4.1. Let Πi, with i = 1, 2 be given by (4.1). Then, the solution of (3.2)
is as follows:

(4.3) V (x) =

Bxβ2 +
a1

γ − µ
x− a2

γ − µθ
xθ − b− γR

γ
, x < δ ,

0 , x ≥ δ ,

where B is given by

B =
(

a2 δθ

γ − µθ
− a1δ

γ − µ
+

b− γR

γ

)
δ−β2 ≥ 0 .(4.4)
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Additionally, δ is the unique positive solution to

(4.5) f(x) :=
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
x + β2

b− γR

γ
= 0 ,

and verifies δ ≥ c. The result remains true when θ = 1, a1 < a2 and b1 < b2 + γR.

Taking into account the explanations provided in Section 3, it follows that

V(x) =


Bxβ2 +

a1

γ − µ
x− b1

γ
, x < δ ,

a2

γ − µθ
xθ − b2 + γR

γ
, x ≥ δ ,

which means that for large levels of demand (x > δ) it is always optimal to switch from
the actual production process to the new one. This reinforce the idea that this type of
strategy may be useful in markets that are in expansion. While the terms a1

γ−µ −
b1
γ and

a2
γ−µθ

− b2
γ represent the net present value associated to the first and second production process,

respectively, the term Bxβ2 gives the value associated with the replacement option when the
current value of the demand is x.

Corollary 4.1. If b̃ ≡ b− γR = 0, then the replacement threshold δ can be explicitly

given by:

δ0 ≡ δ
∣∣∣
b̃=0

= θ−1

√
a1

a2

β2 − 1
γ − µ

γ − µθ

β2 − θ
= θ−1

√
a1

a2

β1 − θ

β1 − 1
.

If θ = 1, a1 < a2 and b1 < b2 + γR, then δ can be explicitly given by:

δ
∣∣∣
θ=1

=
b− γR

a

(
γ − µ

γ

β2

β2 − 1

)
=

b− γR

a

(
1− 1

β1

)
≥ b− γR

a
= c .

For future reference, one can note that δ0 is a lower bound to δ since the function
b̃ → δ(b̃) is decreasing and consequently δ0 ≤ δ. Indeed, in light of the calculations presented
in the proof of Lemma A.1, we get

∂δ

∂b̃
(b̃) = −β2

γ
f ′(δ) < 0 .

4.2. DECREASING RISK

Consider now the case:

(4.6) Π1(x) = a1x
θ − b1 and Π2(x) = a2x− b2 ,

with θ > 1, and
b1 ≥ b2 + γR .

Similarly to the previous situation, the interpretation of this condition is also clear. In order
to have a non-trivial problem, we need to impose that the fixed cost associated with Π1 is
larger than the investment cost rate plus the fixed cost of Π2. Otherwise, replacement would
never be optimal and we would have the optimal time equal to ∞.
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Proposition 4.2. The value function defined by (3.2) is given by:

(4.7) V (x) =


0 , x < ζ ,

Axβ1 +
a1

γ − µθ
xθ − a2

γ − µ
x− b− γR

γ
, x ≥ ζ ,

where A is given by

A =
(

a2 ζ

γ − µ
− a1ζ

θ

γ − µθ
+

b− γR

γ

)
ζ−β1 ≥ 0(4.8)

and ζ is the unique positive solution to

g(x) :=
a1(θ − β1)

γ − µθ
xθ − a2 (1− β1)

γ − µ
x + β1

b− γR

γ
= 0 ,(4.9)

and verifies ζ ≤ c. The result remains true when θ = 1, a1 > a2 and b1 > b2 + γR.

In this case, the value function V is given by

V(x) =


a2

γ − µ
x− b2 + γR

γ
, x < ζ ,

Axβ1 +
a1

γ − µθ
xθ − b1

γ
, x ≥ ζ ,

and, consequently, it is always optimal to reduce the risk associated with the production
process when the demand is sufficiently small (x < ζ). This strategy may be very useful in
declining markets, since it allows the firm to protect itself against the possibility of having
large losses. The term Axβ1 represents the value of the replacement option when the current
value is x > ζ ; otherwise is zero.

Corollary 4.2. If b̃ ≡ b− γR = 0, then, the replacement threshold ζ can be given by:

(4.10) ζ0 ≡ ζ
∣∣∣
b̃=0

= θ−1

√
a2

a1

1− β1

γ − µ

γ − µθ

θ − β1
= θ−1

√
a2

a1

β2 − θ

β2 − 1
.

If θ = 1, a1 > a2 and b1 > b2 + γR, then, the replacement threshold ζ can be given by:

ζ
∣∣∣
θ=1

=
b− γR

a

(
γ − µ

γ

β1

β1 − 1

)
=

b− γR

a

(
1− 1

β2

)
≤ b− γR

a
= c .(4.11)

For future reference, we note that the function b̃ → ζ(b̃) admits the derivative

∂ζ

∂b̃
(b̃) = −β1

γ
g′(ζ) > 0 ,

which means that ζ ≥ ζ0.
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5. COMPARATIVE STATICS

In this section, we assess the impact of changing the demand parameters µ and σ on the
decision strategy. We expect that this behavior depends on whether the replacement leads
to higher or lower risks. We also analyze the effect of increasing /decreasing, even more, the
risk. This will be analyzed by studying the movement of the respective threshold when ai is
replaced by ai + ∆ and bi ≡ bi(ai) = ai c− d is replaced by bi(ai + ∆), where i is such that
Πi(x; ai) = aix− bi(ai). This is illustrated in Figure 2.

Figure 2: Representation of the functions Πj(x) = aj xθ− bj and the function Πi(x; a) = ax1− bi(a),
when a = ai and a = ai + ∆, bs(a), with s = i, j and i 6= j ∈ {1, 2}, verifies bs(a) = b1(a)
if s = 1 or bs(a) = b2(a) + γR if s = 2.

In Proposition 5.1 we show that when the market becomes more uncertain, the firm
waits longer until makes the decision of adjusting the production process. This is coherent
with the classical Theory of Real Options, which postulates that more uncertainty postpones
decisions. Furthermore, when the market becomes more attractive, i.e., the trend associated
with the demand process increases, the decision of replacing the production process reacts in
two ways: if the firm intends to increase the risk then it anticipates the decision, otherwise,
it postpones the decision.

Proposition 5.1. Let δ and ζ be implicitly defined by Equations (4.5) and (4.9).
Then, the functions (µ, σ2) → δ(µ, σ2) and (µ, σ2) → ζ(µ, σ2) are such that

∂δ

∂µ
(µ, σ) ≤ 0 and

∂ζ

∂µ
(µ, σ) ≤ 0 ,

∂δ

∂σ
(µ, σ) ≥ 0 and

∂ζ

∂σ
(µ, σ) ≤ 0 .

First of all, we materialize the situation described in Figure 2 by setting that one of
the following situations happen: (a) i = 1 and j = 2 or (b) j = 1 and i = 2. In the situation
(a), changing ai to ai + ∆ makes the scenario of adjusting the production process less risky
than the original one. Consequently, when we decrease the slope of Π1, the replacement is
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even riskier. In the case (b) by changing ai to ai + ∆, the second production process becomes
a bit riskier, and, consequently, such adjustment would be more contained in terms of gains
and losses. Therefore, we can say that all the process of adjustment comes riskier.

We prove that for θ > 1, the riskier the replacement process the later is made the
decision of replacement. Note that in the case θ = 1 (i.e., both Π1 and Π2 are linear functions),
changing the risk does not have any impact on the thresholds, as in this case both δ and ε

depend on a1, a2, b1 and b2 through c, which we assume to be constant.

Proposition 5.2. Let δ and ζ be implicitly defined by Equations (4.5) and (4.9).
Then the functions (a1, b1) → δ(a1, b1) and (a2, b2) → ζ(a2, b2) are such that

∂δ

∂a1

(
a1, a1c− d; θ

)
< 0 , and

∂ζ

∂a2

(
a2, a2 c− d; θ

)
< 0 for all θ > 1 ,

∂δ

∂a1

(
a1, a1c− d; θ=1

)
= 0 , and

∂ζ

∂a2

(
a2, a2 c− d; θ=1

)
= 0 .

6. THE EFFECT OF THE EXIT OPTION

In this section we discuss how the abandonment option may influence the replacement
decision. We denote by α the exit threshold, and thus, once the firm invests in the second
production process, the firm stays active as long as the demand is above α; then it abandons
the market. To avoid trivial problems we assume that

(6.1) b2 > γS ,

which means that the abandonment problem is not trivial, in the sense that the time to
abandon is finite, as the fixed cost (in the second production process) is larger than the exit
rate cost.

For future reference, assuming that Π2 is such that Π2(x) = a2xθ2 − b2, with θ2 ≥ 1,
then

W̃(x) =


0 , x ≤ α ,

Ãxβ1 +
a2

γ − µθ2

xθ2 − b2 − γS

γ
, x > α ,

where

(6.2) Ã = − 1
β1

a2

γ − µθ2

αθ2−β1 > 0 and α = θ2

√
b2 − γS

a2

(
1− θ2

β2

)
.

These results follow in light of the Propositions 4.1 and 4.2 presented in the previous section.
Additionally, the firm postpones the exit decision when either the uncertainty or the drift
of the demand process increase. One can obtain such conclusions noticing that the function
(µ, σ) → α(µ, σ) verifies

∂α

∂η
(µ, σ) =

α1−θ2

β2
2

b2 − γS

a2

∂β2

∂η
< 0 , with η = µ, σ .

Next we analyze separately the two cases: increasing and decreasing risk.
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6.1. Increasing risk

In this section we consider the framework described in Section 4.1. In addition to the
conditions (4.2) and (6.1), we also assume that

b1 ≤ γS + γR ,

which means that the replacement followed by the abandonment is more costly than the fixed
cost in the less risky production process, and therefore the time to invest is strictly positive.

The optimal strategy is depicted in Figure 3, and should be interpreted as follows: the
firm stays in the first production process as long as the demand is below δ̃. Then, as soon
as it reaches this value, the firm replaces the production process, investing in the risky one.
If the demand decreases below α, the firm exits the market.

PP1

PP2 -

-uδ̃
?? ? ?

(stay with the PP1) (replacement)

u
α

(stay with the PP2)(exit)

Figure 3: Replacement and abandonment strategy, when investing in the risky market.

Note that in this case the firm will stay in production after replacement for a strictly
positive time, as δ̃ > α. Thus, the value function is such that

(6.3) W(x) =


B̃xβ2 +

a1

γ − µ
x− b1

γ
, x < δ̃ ,

Ãxβ1 +
a2

γ − µθ
xθ − b2

γ
−R , x ≥ δ̃ ,

where Ã is as in Equation (6.2), when we assume that θ2 = θ, and B̃ is given by

B̃ =

(
Ãδ̃β1 +

a2 δ̃θ

γ − µθ
− a1δ̃

γ − µ
+

b

γ
−R

)
δ̃−β2 .(6.4)

Additionally, δ̃ satisfies the following equation

(6.5) h(x) := Ã(β2 − β1) xβ1 +
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
x + β2

b− γR

γ
= 0 .

As in Section 4, the terms a1
γ−µ x− b1

γ and a2
γ−µθ

xθ − b2
γ represent the net present value

associated with the first and second production processes, respectively. Additionally, the
terms B̃xβ2 and Ãxβ1 represent, respectively, the value added by the replacement and exit
options when the demand is x.
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Proposition 6.1. Let Πi, with i = 1, 2 be given by (4.1) and Ã and α be defined as

in Equation (6.2) by setting that θ2 = θ. Then, the solution of (3.5), W, is given by (6.3),
with B̃ > 0 given by (6.4). Additionally, δ̃ is the unique positive solution to the Equation

(6.5) satisfying δ̃ > α.

In the next proposition we discuss the influence of the exit option in the investment
threshold. As expected, in the case we invest in a more risky production process, the decision
is anticipated in case we still have the option to abandon the market. The proof of next
proposition is trivial since Ã(β2 − β1) xβ1 > 0.

Proposition 6.2. Let δ be the unique positive solution to Equation (4.5) and δ̃ is the

unique solution of Equation (6.5) such that δ̃ > α. Then, δ̃ < δ.

Additionally, we can say that, as it holds when there is no option to abandon the
market, a risky scenario, in the sense that a1 is replaced by a1−∆ and bi ≡ bi(ai) = ai c− d

is replaced by bi(ai−∆), postpones the replacement decision, when compared with the initial
situation. The proof of this result follows in light of the proof of Proposition 5.2.

Proposition 6.3. Let δ̃ be implicitly defined by Equation (6.5). Then, the function

(a1, b1) → δ̃(a1, b1) is such that

∂δ̃

∂a1

(
a1, a1c− d

)
< 0 .

The following table presents a numerical example which illustrates that although both
replacement thresholds (δ, without the abandonment option, and δ̃, with the abandonment
option) increase with risk, the pace is not the same: δ̃ increases faster with increasing risk
(here measured by ∆) than δ.

Table 1: Thresholds δ and δ̃ considering the parameters: µ = 0.001, σ2 = 0.005, γ = 0.01,
a1 = 1, b1 = 1, a2 = 1, b2 = 10, θ = 2, R = 10, S = 110.

∆ δ̃(a1 − ∆) δ(a1 − ∆) δ(a1 − ∆) − δ̃(a1 − ∆)

0 5.046 5.171 0.125
0.1 5.194 5.311 0.117
0.2 5.342 5.451 0.109
0.3 5.488 5.591 0.103

6.2. Decreasing risk

In this section we consider the set up introduced in Section 4.2. From conditions
b1 ≥ b2 + γR and b2 > γS, trivially follows that:

b1 ≥ γR + γS .
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This condition means that replacement occurs in finite time, as the fixed cost rate, before
replacement, is larger than the total cost of replacement and abandonment.

We find two different strategies according to the value of the replacement cost. On the
one hand, when R is sufficiently large, meaning that R > R∗, where

(6.6) R∗ ≡ 1
β1

(
a1

θ − β1

γ − µθ
αθ + β1

b− γS

γ

)
,

the optimal strategy is depicted in Figure 4. In this case the value function takes the form

(6.7) W(x) =


−R− S , x ≤ ζ̃ ,

Ã1x
β1 +

a1

γ − µθ
xθ − b1

γ
, x > ζ̃ ,

where

(6.8) Ã1 = − 1
β1

a1

γ − µ
ζ̃θ−β1 and ζ̃ = θ

√
b1 − γ (R + S)

a1

(
1− 1

β2

)
.

Here, Ã1x
−β1 represents the value of the abandonment option. Therefore, the firm produces

using the first production process for large values of the demand, as long as they are above ζ̃.
Once the demand hits ζ̃, it decides to abandon the market, paying a sunk cost equal to R+S.
In this case, the firm does not actually produce with the second production process, as the
time elapsed between replacement and abandonment is zero.

PP1 -uζ̃
(Exit) (Stay with the PP1)

Figure 4: Abandonment strategy, when investing in the less risky market.

On the other hand, when R < R∗, the firm decides either to replace its production
process by a second one when the demand reaches any level in ]α, ζ], or to abandon the
market when the demand is smaller than or equal to the level α. The optimal strategy, in
this case, is depicted in Figure 5. Furthermore, the value function is given by

(6.9) W(x) =



−R− S , x ≤ α ,

Ãxβ1 +
a2

γ − µ
x− b2

γ
−R , α < x ≤ ζ ,

Ã2xβ1 +
a1

γ − µθ
xθ − b1

γ
, x > ζ ,

where Ã and α are defined in Equation (6.2) by setting that θ2 = 1, and

Ã2 − Ã =
1
β1

(
a2

γ − µ
ζ − a1θ

γ − µθ
ζθ

)
ζ−β1(6.10)

and ζ is the unique solution to the equation (4.9).
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PP1

PP2 -

-uζ
??????

(Replacement) (Stay with the PP1)

u
α

(stay with the PP2)(exit)

Figure 5: Replacement and abandonment strategy, when investing in the less risky market.

We start by noting that Ãxβ1 represents the value of the abandonment option, while
Ã2xβ1 represents the value of the replacement option when the demand is x. This repre-
sentation is coherent with the classical theory since we are assuming that the exit option is
only available after the replacement. Therefore in each moment until the scrapping, it is only
possible to make one decision.

Proposition 6.4. Let Πi, with i = 1, 2 be given by (4.6) and Ã and α be defined as

in Equation (6.2) by setting that θ2 = 1. Then, the solution of (3.5) is as follows:

• When R ≥ R∗, the value function, W, is given by (6.7), and Ã1 > 0 given by (6.8);

• When R < R∗, the value function, W, is given by (6.9), and Ã2 > 0 given by (6.10).
Additionally, ζ is the unique positive solution to Equation (4.9) satisfying ζ > α.

Finally, we study the impact of changing the drift and/or the volatility in the parameter R∗.
As we show in the next proposition, the situation depicted in Figure 5 is more likely to occur
than the situation depicted in Figure 4 with increasing the drift or the volatility.

Proposition 6.5. Consider R∗(µ, σ) ≡ R∗, with R∗ defined as in (6.6). Then the

functions R∗(·, σ) and R∗(µ, ·) are both decreasing.

7. CONCLUSION

This paper considers the problem of a producing firm that has the option to replace its
current production process by a riskier / less risky one. The concept of risk here considered
relies on the structure of the running payoff function, as described before.

Our main result is that the time until the decision of replacement increases when the
risk associated with the replacement option increases. Additionally, if the firm evaluates the
replacement option taking into account the abandonment option, then its decision regarding
replacement is anticipated. But not only the timing changes, but also there is a clear change
in the structure of the values of the economic indicator that lead to the decision. In fact, if,
on the one hand, when we increase the level of risk of the alternative production process the
replacement is optimal for large levels of the economic indicator, on the other hand, if we
decrease, the replacement is optimal for small levels of the economic indicator.
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A. APPENDIX – Proofs

Unless otherwise stated, we assume, without loss of generality, that R = 0.

A.1. Section 4

Before we prove Propositions 4.1 and 4.2, we state an auxiliary lemma, which will
simplify the proof of this proposition.

Lemma A.1. Equation (4.5) (resp., (4.9)) has a unique solution, δ (resp., ζ).

Proof: To prove that δ is the unique root of Equation (4.5), we calculate f ′:

(A.1) f ′(x) =
a2θ(β2 − θ)

γ − µθ
xθ−1 − a1(β2 − 1)

γ − µ
.

Then, f ′(x) ≥ 0, for x ∈ [x1,∞[, where x1 is the unique zero of f ′(x), given by

x1 =
(

a1

θa2

β2 − 1
γ − µ

γ − µθ

β2 − θ

) 1
θ−1

.

Furthermore, as

f(0) =
β2 b

γ
≤ 0 and lim

x→∞
f(x) = ∞ ,

we conclude that there is a unique positive solution to the equation f(x) = 0, denoted by δ.

To prove that there is a unique positive solution ζ to Equation (4.9), we can follow the
same strategy. For future reference, we note that g′(x) ≥ 0 for x ∈ [x2,∞[, where x2 is the
unique zero of g′(x). Furthermore, as

g(0) =
β1b

γ
≤ 0 and lim

x→∞
g(x) = ∞ ,

we conclude that there is a unique positive solution to the equation g(x) = 0, denoted by ζ.

Proof of Proposition 4.1: To find the parameter B and the threshold δ we use the
smooth pasting conditions

a1

γ − µ
δ − a2

γ − µθ
δθ + Bδβ2 − b

γ
= 0 ,

a1

γ − µ
− a2

γ − µθ
θδθ−1 + β2 Bδβ2−1 = 0 .

Consequently, we obtain B given by (4.4) and δ as a solution to Equation (4.5). Additionally,
Lemma A.1 states that δ is the unique solution to Equation (4.5).
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To prove that the function V defined by (4.3) satisfies the HJB equation, we need to
prove the following relationships:

γV (x)− µxV ′(x)− σ2

2
x2V ′′(x)−Π1(x) + Π2(x) ≥ 0 , for all x ≥ δ ,(A.2)

V (x) ≥ 0 , for all x ≤ δ .(A.3)

First, we note that the inequality in (A.2) may be written as

(A.4) f1(x) := Π1(x)−Π2(x) ≤ 0 , for all x ≥ δ ,

as for x ≥ δ, V = 0. Since f ′1(x) = a1 − a2θxθ−1, then f1 is increasing for x <
(

a2
a1θ

) 1
θ−1 and

decreasing for x >
(

a2
a1θ

) 1
θ−1 . Taking into account that

f1(0) = −b ≥ 0 and lim
x→+∞

f1(x) = −∞ ,

then (A.4) holds true if and only if

(A.5) Π1(δ)−Π2(δ) ≤ 0 .

To prove this, we note that

Π1(δ)−Π2(δ) = −1
2

σ2(δ)2 V ′′(δ) ,

where the equality follows because γV (δ)− µδV ′(δ)− σ2

2 ζ2V ′′(δ)−Π1(δ) + Π2(δ) = 0 and
the smooth pasting conditions. Additionally, we can calculate

V ′′(δ) = β2 (β2 − 1)Bδβ2−2 − a2θ(θ − 1)
γ − µθ

,

which, combined with the smooth pasting conditions, allow us to obtain

−1
2

σ2δ2V ′′(δ) = −1
2

σ2

[
a2 (β2 − θ) θ

γ − µθ
δθ − a1(β2 − 1)

γ − µ
δ

]
< −1

2
σ2

[
a2 (β2 − θ)

γ − µθ
δθ − a1(β2 − 1)

γ − µ
δ

]
=

1
2

σ2 β2 b

γ
≤ 0 .

This proves (A.5) and allow us to conclude that

δ ≥ c .

Finally, to prove the inequality in (A.3), we notice that, in light of the relationship
f(δ) = 0, the parameter B can be written as

B = − 1
β2

[
a1

γ − µ
δ − a2θ

γ − µθ
δθ

]
δ−β2 .

Now, calculating the derivative of the function f2(x) := − 1
β2

(
a1

γ−µ x− a2 θ
γ−µθ

xθ
)
, we obtain

f ′2(x) = − 1
β2

(
a1

γ−µ −
a2 θ2

γ−µθ
xθ−1

)
. Consequently, the function f2 is increasing for x ∈ ]δ1,∞[,

where δ1 is the unique positive root of f ′2. Combining this with the fact that f2(δ0) =
β2

a1δ0
γ−µ

θ−1
β2−θ > 0, then δ1 < δ0 ≤ δ, and, consequently, B ≥ 0.
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Taking into account Equation (4.3) and the smooth pasting conditions, we have that

(A.6) V (0) = − b

γ
> 0 and V (δ) = V ′(δ) = 0 .

Additionally,

V ′(x) = β2Bxβ2−1 +
a1

γ − µ
− a2θ

γ − µ
xθ−1 ,

and, consequently, V ′(0) = a1
γ−µ > 0. Since

V ′′(x) =
(

β2 (β2 − 1)Bxβ2−θ − a2θ(θ − 1)
γ − µθ

)
xθ−2 ,

then V ′ is decreasing for all x ∈ ]0, δ2[ and increasing for all x ∈ ]δ2,∞[, where δ2 is the unique
positive root of the equation V ′′(x) = 0. This means that one of two situations may happen:
(1) V ′(x) > 0 for all x∈ ]0, δ[ or (2) V ′(x) > 0 for all x∈ ]0, δ2[ and V ′(x) < 0 for all x∈ ]δ2, δ[.
The situation (1) cannot happen in light of (A.6). Naturally, this implies that V ≥ 0.

Proof of Proposition 4.2: In order to determine values for A and ζ, we use the
smooth pasting conditions

a1ζ
θ

γ − µθ
− a2 ζ

γ − µ
+ Aζβ1 − b

γ
= 0 ,

a1θ

γ − µθ
ζθ−1 − a2

γ − µ
+ β1Aζβ1−1 = 0 ,

which allow us to obtain the parameter A, as defined in (4.8), and ζ as a solution to Equation
(4.9). Additionally, Lemma A.1 states that ζ is the unique solution to Equation (4.9).

To prove that the function V defined by (4.7) satisfies the HJB equation, we need to
prove the following relationships:

γV (x)− µxV ′(x)− σ2

2
x2V ′′(x)−Π1(x) + Π2(x) ≥ 0 , for all x ≤ ζ ,(A.7)

V (x) ≥ 0 , for all x ≥ ζ .(A.8)

First, we note that the inequality in (A.7) can be written as

(A.9) Π1(x)−Π2(x) ≤ 0 , for all x ≤ ζ .

In fact, a similar argument to the one used to prove the inequality in (A.2) proves that the
inequality in (A.9) is satisfied. Additionally, we get that

ζ ≤ c .

To prove the inequality in (A.8), we note that, in light of the relationship g(ζ) = 0, the
parameter A can be written as

(A.10) A = − 1
β1

(
a1θ

γ − µθ
ζθ − a2

γ − µ
ζ

)
ζ−β1 .
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Additionally, V (ζ) = 0 in light of the smooth pasting conditions. Taking into account Equa-
tion (A.10), we can calculate

V ′(x) = a1θ
xθ−1

γ − µθ
− a2

γ − µ
+ A1β1xβ1−1

=
a1θ

γ − µθ
xθ−1 − a2

γ − µ
−
(

a1θ

γ − µθ
ζθ−1 − a2

γ − µ

)
xβ−1

ζβ1−1
≥ 0 ,

where the last inequality follows from:

x → a1θ

γ − µθ
xθ−1 − a2

γ − µ
is an increasing function, and

xβ−1

ζβ1−1
≤ 1 for all x ≥ ζ .

As a consequence, the inequality (A.8) holds true, because V is increasing. To finish the
proof, we just need to verify that A > 0. Consider the function

(A.11) g1(x) :=
a1θ

γ − µθ
xθ − a2

γ − µ
x .

Taking into account that g′1(x) := a1θ2

γ−µθ
xθ−1 − a2

γ−µ , then g1 is increasing in ]ζ1,∞[, where
ζ1 is the unique positive root of g′1. The results follow in light of the facts:

g(0) = 0 , g(ζ0) = ζ0
a2

γ − µ

β1(1− θ)
θ − β1

> 0 and ζ ≥ ζ0 .

A.2. Section 5

Proof of Proposition 5.1: By using the Implicit Function Theorem, we obtain that

∂δ

∂µ
(µ) = −∂f

∂µ
(δ;µ)

(
∂f

∂δ

)−1

(δ;µ) and
∂ζ

∂µ
(µ) = −∂g

∂µ
(ζ;µ)

(
∂g

∂ζ

)−1

(ζ;µ) .

Taking into account Lemma A.1, we note that ∂f
∂δ (δ;µ) > 0 and ∂g

∂δ (δ;µ) > 0, and conse-
quently, we just need to study the sign of ∂f

∂µ(δ;µ) and ∂g
∂µ(δ;µ). Taking into account the

smooth pasting conditions we get, after some simplifications,

∂f

∂µ
(δ;µ) =

a2θ

γ − µθ

(
1
β2

∂β2

∂µ
+

β2 − θ

γ − µθ

)
δθ − a1

γ − µ

(
1
β2

∂β2

∂µ
+

β2 − 1
γ − µ

)
δ := p1(δ; θ) ,

∂g

∂µ
(ζ;µ) =

a1θ

γ − µθ

(
− 1

β1

∂β1

∂µ
+

θ − β1

γ − µθ

)
ζθ +

a2

γ − µ

(
1
β1

∂β1

∂µ
− 1− β1

γ − µ

)
ζ := p2(ζ; θ) .

Assume for now that (i) θ = 1, a1 < a2 and b1 < b2 and (ii) θ = 1, a1 > a2 and and b1 > b2.
Then, we can calculate explicitly the following derivatives (see Corollaries 4.1 and 4.2):

(i)
∂δ

∂µ
(µ) =

b

a

1
γ

∂β2

∂µ

(β2 − 1)2
≤ 0 and (ii)

∂ζ

∂µ
(µ) =

b

a

1
γ

∂β1

∂µ

(β1 − 1)2
≤ 0 .

Combining these derivatives with the expressions of ∂f
∂µ(δ;µ) and ∂g

∂µ(ζ;µ), it is easy to note
that

(A.12)
1
β2

∂β2

∂µ
+

β2 − 1
γ − µ

≥ 0 and
1
β1

∂β1

∂µ
− 1− β1

γ − µ
≤ 0 .
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Indeed, the previous inequalities do not depend on a1 neither on a2, and thus this means
that the result is true for every a1, a2 > 0. Additionally, returning to the case θ > 1, it is a
matter of calculations to see that ∂δ0

∂µ (µ) ≤ 0. In fact, this implies that 0 ≤ ∂f
∂µ(δ0;µ), and,

consequently,
1
β2

∂β2

∂µ
+

β2 − θ

γ − µθ
≥ 0 .

Furthermore, noticing that θ−β1

γ−µθ
= θ−β1

− 1
2

σ2 (θ−β1) (θ−β2)
= 2

σ2
1

(β2−θ) and that

∂

∂θ

(
θ − β1

γ − µθ

)
=

2
σ2

1
(β2 − θ)2

> 0 ,

we obtain:

− 1
β1

∂β1

∂µ
+

(θ − β1)
γ − µθ

≥ − 1
β1

∂β1

∂µ
+

(1− β1)
γ − µ

≥ 0 .

Note now that the function p1(x; θ) has two roots: x = 0 and x = a∗, where a∗ is
its unique positive root. Additionally, it is a matter of calculations to see that there is
a unique b∗ such that ∂p1

∂x (b∗; θ) = 0 and that, in light of Equation (A.12), ∂p1

∂x (0; θ) < 0.
Therefore, p1(x; θ) is increasing for all x > b∗, and decreasing for all x < b∗, and, consequently,
0 ≤ p1(δ0; θ) ≤ p1(δ, θ), since ∂δ

∂b < 0. Finally, we can observe that p2(x, θ) = 0 if and only if
x = 0 and x = c∗ > 0, where

c∗ = θ−1

√√√√√ a2

a1θ

γ − µθ

γ − µ

(
− 1

β1

∂β1

∂µ + 1−β1

γ−µ

)
(
− 1

β1

∂β1

∂µ + θ−β1

γ−µθ

) ≤ ζ0
θ−1

√√√√− 1
β1

∂β1

∂µ + 1−β1

γ−µ

− 1
β1

∂β1

∂µ + θ−β1

γ−µθ

≤ ζ0 .

Furthermore, ∂p2

∂x (x; θ) < 0 for all x < d∗ and ∂p2

∂x (x; θ) > 0 for all x > d∗, where d∗ is the
unique root of the function x → ∂p2

∂x (x; θ). Therefore, p2(x; θ) is an increasing function in x,
for a fixed θ, if x ≥ d∗, with c∗ > d∗. Combining this with the roots to the equation p2(x; θ)
we get that ζ > ζ0 ≥ c∗ > d∗ and, consequently,

0 = p2(c∗; θ) ≤ p(ζ; θ) ,

which concludes this part of the proof.

To finish the proof, we use the Implicit Function Theorem

∂δ

∂σ
(σ) = −∂f

∂σ
(δ;σ)

(
∂f

∂δ

)−1

(δ;σ) and
∂ζ

∂σ
(σ) = −∂g

∂σ
(ζ;σ)

(
∂g

∂ζ

)−1

(ζ;σ) .

From the previous considerations, one just need to discuss the signs of ∂f
∂σ (δ;σ) and ∂g

∂σ (δ;σ).
By using the smooth pasting conditions, one can prove that

∂f

∂σ
(δ;σ) =

a2θ

γ − µθ

(
1
β2

∂β2

∂σ
+

(β2 − θ) σ(θ − 1)
γ − µθ

)
δθ − a1

γ − µ

(
1
β2

∂β2

∂σ

)
δ := q1(δ) ,

∂g

∂σ
(ζ;σ) =

a1θ

γ − µθ

(
− 1

β1

∂β1

∂σ
+

(θ − β1) σ(θ − 1)
γ − µθ

)
ζθ +

a2

γ − µ

(
1
β1

∂β1

∂σ

)
ζ := q2(ζ) .

To show that ∂f
∂σ ≤ 0, we note that, since β2 ≥ 0 and ∂β2

∂σ ≤ 0, then − a1
γ−µ

1
β2

∂β2

∂σ ≥ 0.
Assuming now that b = 0, then δ = δ0, it is a matter of calculations to see that ∂δ0

∂σ ≥ 0.
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Consequently, 0 ≥ q(δ0), thus 1
β2

∂β2

∂σ + (β2−θ) σ(θ−1)
γ−µθ

≤ 0. Trivial calculations allow us to con-
clude that q1(x) is decreasing for all x > e∗ and increasing for all x < e∗, where e∗ is the unique
positive root of the function x → q′(x). Since there is x∗ > 0 such that x = 0 and x = x∗ > 0
are the unique non-negative roots of the function x → q(x), it follows that 0 ≥ q(δ0) ≥ q(δ).

Now, one can note that q2(x) = 0 if and only if x = 0 and x = m∗ > 0, where

m∗ = θ−1

√√√√ a2

a1θ

γ − µθ

γ − µ

− 1
β1

∂β1

∂σ

− 1
β1

∂β1

∂σ + (θ−β1) σ(θ−1)
γ−µθ

< θ−1

√
a2

a1θ

γ − µθ

γ − µ
< ζ0 < ζ .

The first inequality follows because ∂β1

∂σ > 0. Moreover, calculating the derivative of q2,
in order to x, we can conclude that q(x) is increasing for x ≥ n∗, where n∗ is such that
q2
′(n∗) = 0. Combining all these facts we have

0 = q2(m∗) ≤ q2(ζ) ,

which ends the proof.

Proof of Proposition 5.2: We will focus our attention in the case θ > 1. To prove
Proposition 5.2 we note that

f(x; a1) =
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
−

β2

(
b1(a1)− b2

)
γ

,

then,

f(x; a1+∆)− f(x; a1) = ∆
(

β2

γ
c− β2 − 1

γ − µ
x

)
.

Therefore, f(x; a1+∆) > f(x; a1) for every x < ỹ, where

ỹ = c
β2

γ

γ − µ

1− β2
.

Note that

f(ỹ) = a2 cθ

(
β2 − θ

γ − µθ

(
β2

γ

γ − µ

β2 − 1

)θ
− β2

γ

)

= a2 cθ

(
1

σ2/2 (θ − β1)

(
1− 1

β1

)θ
+

1
β1σ2/2

)

= a2 cθ 1
σ2/2 (θ − β1)

((
1− 1

β1

)θ
−
(

1− θ

β1

))
,

where we have used the following relationships:

β2

γ

γ − µ

β2 − 1
=

β1(β2 − 1) + 1− β2

β1(β2 − 1)
> 1 and γ − µθ = −σ2

2
(θ − β1) (θ − β2) .

To determine the sign of f(ỹ), we define the function

(θ;β1, σ2) → n(θ;β1, σ2) =
(

1− 1
β1

)θ
−
(

1− θ

β1

)
.
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Then, taking into account that

∂n

∂β1
(θ;β1, σ

2) =
θ

β2
1

((
1− 1

β1

)θ−1

− 1

)
> 0(A.13)

and

lim
β1→−∞

n(θ;β1, σ
2) = 0 ,(A.14)

it follows that f(ỹ) > 0. Consequently, f(x; a1+∆)− f(x; a1) > 0 for all x < ỹ, which implies
that δ

(
a1+∆, b(a1+∆)

)
< δ
(
a1, b(a1)

)
. The case θ = 1 follows in light of similar arguments,

using the relation n(1;β1, σ
2) = 0.

To finish the proof, we can apply the same type of arguments to the function g. In fact,
g(x; a2 +∆) > g(x; a2) for every x < x̃, where

x̃ = −c
β1

γ

γ − µ

1− β
.

Taking into account that

g(x̃) = a1 cθ 1
σ2/2 (β2 − θ)

((
1− 1

β2

)θ
−
(

1− θ

β2

))
,

by using similar arguments to the previous ones, we get that g(x̃) > 0.

A.3. Section 6

Before we start the proofs, we note that the value function may be re-written as follows:

W(x) = sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x)−R− S ,

where Ĩ is defined as in (2.2). Therefore, throughout this section we will use the following
notation:

H(x) ≡ sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x) .

Additionally, we consider R ≥ 0.

Lemma A.2. Equation (6.5) has a unique solution δ̃, which satisfies δ̃ > α, where

α is defined as in Equation (6.2) by setting that θ2 = θ.

Proof: To prove that δ̃ is the unique root of Equation (6.5) satisfying δ̃ > α, we
calculate h′′:

h′′(x) = Ã(β2 − β1) β1(β1 − 1) xβ1−2 +
a2θ (θ − 1) (β2 − θ)

γ − µθ
xθ−2 > 0 .

Taking into account that
lim

x→0+
h(x) = lim

x→+∞
h(x) = +∞ ,
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the result follows in light of the calculations:

h(α) = −a1(β2 − 1)
γ − µ

+ β2
b1 − γR− γS

γ
< 0 ,

where we have used the smooth pasting conditions (used to obtain Ã and α):

Ãαβ1 +
a2

γ − µθ
αθ b2 − γE

γ
= 0 ,

Ãβ1α
β1 +

a2θ

γ − µθ
αθ = 0 .

Proof of Proposition 6.1: The parameters B̃ and δ̃ may be obtained by using the
smooth pasting conditions:

B̃ δ̃β2 +
a1

γ − µ
δ̃ − b1 − γR− γS

γ
= Ã δ̃β

1 +
a2

γ − µθ
δ̃θ − b2 − γS

γ
,

B̃β2 δ̃β2−1 +
a1

γ − µ
= Ãβ1 δ̃

β1−1 +
a2θ

γ − µθ
δ̃θ−1 .

Moreover, in light of Lemma A.2, δ̃ is the unique positive solution Equation (6.5) satisfying
the condition δ̃ > α.

To prove that W, where W is defined by (6.7), is the solution to the optimal stopping
problem (2.2), we need to verify that the function H(x) = W(x)+S +R satisfies the following
inequalities:

γH(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
≥ 0 , for all x ≥ δ̃ ,(A.15)

H(x) ≥ W̃(x) , for all x ≤ δ̃ .(A.16)

First of all, we note that (A.15) can be written as

Π1(x)−Π2(x) + γR ≤ 0

because H(x) = W̃(x) and

(A.17) γ W̃(x)− µxW̃ ′(x)− σ2

2
x2 W̃ ′′(x)−Π2(x)− γS = 0

for x ≥ δ̃. Since the function x → Π1(x)− Π2(x) + γR is increasing for x <
(

a1
a2 θ

) 1
θ−1 and

decreasing for x >
(

a1
a2 θ

) 1
θ−1 , we just need to prove that Π1(δ̃)−Π2(δ̃) + γR ≤ 0. Now, com-

bining Equation (A.17) with

γ H(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
= 0 ,

we obtain the following equality:

−σ2

2
δ̃2
(
H ′′(δ̃)− W̃ ′′(δ̃)

)
= Π1(δ̃)−Π2(δ̃) + γR .



Production Processes with Different Levels of Risk: Addressing the Replacement Option 509

It is a matter of calculations to see that

H ′′(δ̃)− W̃ ′′(δ̃) = h′(δ̃) δ̃−1 > 0 ,

where h′ is the derivative of h, defined in (6.5), and the last inequality follows in light of the
calculations in the proof of Lemma A.2.

To prove the inequality (A.16), we note that the function x → H(x) is increasing if
B > 0. In case B > 0, as H(0) = − b1−γR−γS

γ ≥ 0, this proves that H(x) ≥ W̃(x) for all x ≤ α.
To see that α ≤ x ≤ δ̃, we note that δ̃ is the unique solution to the equation H(x) = W̃(x).
Therefore, since H(α)− W̃(α) = H(α) > H(0) ≥ 0, the result is straightforward.

To see that B > 0, one can see that

Bδ̃β2 =
δ̃

β2

(
Ãβ1 δ̃

β1−1 +
a2θ

γ − µθ
δ̃θ−1 − a1

γ − µ

)
.

Additionally, the function x → Ãβ1xβ1−1 + a2 θ
γ−µθ

xθ−1 − a1
γ−µ is increasing and crosses zero

once. By using the smooth pasting conditions (used to obtain Ã and α), we get

Ãβ1α
β1−1 +

a2θ

γ − µθ
αθ−1 − a1

γ − µ
= − a1

γ − µ
< 0 .

Let x̃ be such that Ãβ1 x̃
β1−1 + a2 θ

γ−µθ
x̃θ−1 − a1

γ−µ = 0. Then

h(x̃) = β2

(
A(1− β1) x̃β1 +

a2(1− θ)
γ − µθ

x̃θ +
b− γR

γ

)
≡ h̃(x̃) .

Once again, due to the smooth pasting condition, h̃(α) = 0, and

h̃′(x) = β2

(
A(1− β1) β1 x̃

β1−1 +
a2(1− θ) θ

γ − µθ
xθ−1

)
< 0 .

It follows that h(x̃) < 0, and therefore x̃ < δ̃. Consequently B > 0.

Proof of Proposition 6.4: We start by noticing that, since the terminal cost is
W̃(x), as one can see through (3.5), the smooth pasting conditions are different accord-
ing to ζ > α or ζ ≤ α. Let g be defined as in (4.9). Then it is a matter of calculations to see
that

g(α) = a1
θ − β1

γ − µθ
αθ + β1

b1 − γS − γR

γ
.

Taking into account the analysis made in Lemma A.1, ζ > α ⇔ g(α) < 0, which means that

R < R∗ ≡ 1
β1

(
a1

θ − β1

γ − µθ
αθ + β1

b− γS

γ

)
.

The proof of Proposition 6.4 when R ≥ R∗ follows in light of the arguments used in the proof
of Proposition 4.2. From now on, we will treat the case R < R∗.

By using the smooth pasting conditions, we obtain the following equations

Ã2 ζβ1 +
a1

γ − µθ
ζθ − b1 − γS − γR

γ
= Ãζβ1 +

a2

γ − µ
ζ − b2 − γS

γ
,

Ã2β1ζ
β1−1 +

a1θ

γ − µθ
ζθ−1 = Ãβ1ζ

β1−1 +
a2

γ − µ
.
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These equations allow us to obtain the expression of Ã2 as in (6.10) and Equation (4.9).
In light of Lemma A.1, there is a unique solution ζ to Equation (A.1) and ζ < c.

To prove that W, defined by (6.9), is the solution of the optimal stopping problem (2.2),
we need to verify that H(x) = W(x) + S + R satisfies the following inequalities:

γH(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
≥ 0 , for all x ≤ ζ ,(A.18)

H(x) ≥ W̃ , for all x ≥ ζ .(A.19)

In order to prove the inequality (A.18), we start by noting that, for x < α, we can write this
equation as

(A.20) Π1(x) + γ (S + R) ≤ 0 for all x ≤ α .

Since Π1(0) + γ (S + R) = −b1 + γ (S + R) < 0 and Π1 is an increasing function, it follows
that (A.20) holds true if and only if Π1(α) + γ (S + R) ≤ 0. This is true because

0 ≥ g(α) = −β1

γ

(
a1

θ − β1

γ − µθ

γ

(−β1)
αθ −

(
b1 − γS − γR

))
≥ −β1

γ

(
Π1(α) + γ (S + R)

)
,

where the last inequality follows in light of the fact θ−β1

γ−µθ

γ
(−β1) > 1. For α < x < ζ, we use a

similar argument to the one used in the proof of Proposition 6.1. Therefore, the inequality
(A.18) can be written as

γW̃(x)− µxW̃ ′(x)− σ2

2
x2W̃ ′′(x)−

(
Π1(x) + γR + γS

)
= Π2(x)−Π1(x)− γR ,

which means that we just need to show that Π2(x)−Π1(x)− γR ≥ 0, for all α < x ≤ ζ. We
can easily prove that the function x → Π2(x)−Π1(x)−γR increases for x < a1

θa2
and decreases

for x > a1
θa2

. Combining this with the fact that Π2(0)−Π1(0)− γR = b− γR ≥ 0, we need to
prove that Π2(ζ)−Π1(ζ)− γR ≥ 0, which is true in light of Proposition 4.2.

To prove the inequality (A.19), we note that

H(x)− W̃(x) = (Ã2 − Ã) xβ1 +
a1

γ − µθ
xθ − a2

γ − µ
x− b− γR

γ
, H(ζ)− W̃(ζ) = 0 ,

and
H ′(x)− W̃ ′(x) =

(
a2

γ − µ
− a1θ

γ − µθ
ζθ−1

)(
x

ζ

)β1−1

−
(

a2

γ − µ
− a1θ

γ − µθ
xθ−1

)
.

Taking into account the proof of Proposition 4.2, we have that
a2

γ − µ
− a1θ

γ − µθ
ζθ−1 = β1A1 ζβ1−1 < 0 .

Since A1 is defined in (4.8) and verifies A1 > 0, the result follows because
(

x
ζ

)β1−1
< 1, for all

x > ζ, and the function x → a2
γ−µ −

a1θ
γ−µθ

xθ−1 is decreasing. Additionally, we can conclude
that Ã2 > 0.

Proof of Proposition 6.5: Noticing that R∗ can be written as

R∗(µ, σ) =
a1

γ2

(
b2 − γS

γ

)θ 1
θ
β2
− 1

(
1− 1

β2

)θ

+
b− γS

γ
,

the result follow in light of the following calculations:

∂

∂η

(
1

θ
β2
− 1

(
1− 1

β2

)θ
)

= β2

(
1− 1

β2

)θ−1 θ − 1
(θ − β2)

2

θ

β2
2

∂β2

∂η
< 0 .
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