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1. INTRODUCTION

Nonlinear time series have attracted much attention in the last four decades. Many
classes of models have been proposed and applied with great success in many important
real-life problems; such as economics (Granger and Andersen [12]), demography (Subba Rao
and Gabr [32]), environmental studies (Guegan [14]), etc. One of the most popular was the
bilinear time series models BL(p, q, P, Q)1. In the first time, these models were proposed and
developed by Granger and Andersen [12]; then becomes Phan and Tran [27], Subba Rao [31],
Guegan [13], Liu and Brockwell [25]. Particularly to those models, we quote the first-order
superdiagonal bilinear models BL(0, 0, 2, 1), who also recognized applications in many fields
(see, for example, [26, 36, 5]).

This paper deals with the presence of a first-order superdiagonal bilinear model in
panel data (a series of T observations made through time over a number n of individuals),
denoted by BLP (0, 0, 2, 1) and defined, for i = 1, 2, ..., n and t = 1, 2, ..., T , as:

(1.1) Xi,t = bXi,t−2εi,t−1 + εi,t,

where Xi,t is a panel observation (for individual i at time t) described by a nonlinear stochas-
tic difference in time equation; (εi,t) is a white noise process, i.e. a sequence of independent,
identically distributed random variables with mean zero, finite variance σ2 and density dis-
tribution ε 7→ f(ε) := (1/σ)f1(ε/σ) (where f1 ∈ F0, see (2.1)) and b is a constant in R. The
probabilistic properties of a first-order superdiagonal time series model BL(0, 0, 2, 1) processes
(such as invertibility and stationarity) have been studied by several references [28, 13]. These
properties also remain valid under a first-order superdiagonal panel model BLP (0, 0, 2, 1). Let
us denote by Fi,t(ε) and Fi,t(X) the σ-algebras generated by {εi,s|s 6 t} and {Xi,s|s 6 t},
respectively. Then:

1. Equation (1.1) admits a unique stationary solution (Xi,t) (i.e., Fi,t(ε)-measurable)
iff b2σ2 < 1, in this case, one can write

Xi,t =
∞∑

j=1

bjεi,t−2j

j∏
k=1

εi,t−2k+1 + εi,t;(1.2)

2. Equation (1.1) is invertible (i.e., εi,t is Fi,t(X)-measurable) iff 2b2σ2 < 1, in this
case, one can write

εi,t = Xi,t +
∞∑

j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1.(1.3)

1 These models are defined as:

Xt =

pX

j=1

ajXt−j +

qX

j=1

cjεt−j +

PX

j=1

QX

k=1

bjkεt−jXt−k + εt.
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Several methods — such as the method of moments, the least squares method and
the repeated residual method — have been established in the literature for estimating the
parameters of bilinear models, see, for example, Pham and Tran [28], Sesay and Subba Rao
[30], Grahn [11], Bouzaachane [5] and Tan and Wang [34].

Before turning to the problem of estimating the parameters of model (1.1), it is very
important to know if it is indeed a BLP (0, 0, 2, 1), and how the test proposed for testing
randomness against first-order superdiagonal bilinear panel dependence is efficient. Note that
if b = 0, Xi,t reduces to white noise (Xi,t = εi,t), else b 6= 0, panel data follows a BLP (0, 0, 2, 1)
(alternative hypothesis) — such a test is bilateral.

To start with, locally and asymptotically optimal parametric tests are constructed
using the Local Asymptotic Normality LAN property. Then, the special case of the pseudo-
Gaussian tests (optimal under Gaussian densities and valid under finite-variance non-Gaussian
ones) is derived. Unfortunately, their local asymptotic power, under non-Gaussian g1 (es-
pecially the skew and heavy-tailed ones), can be extremely poor. Which leads us to the
construction of rank-based optimal tests (van der Waerden, Wilcoxon, Laplace, data-driven
scores, etc.).

Asymptotic relative efficiencies with respect to the pseudo-Gaussian procedure show
that the van der Waerden version of our rank-based tests uniformly dominates its pseudo-
Gaussian countepart.

The paper is organized as follow: Section 2.1 provides the main definitions and assump-
tions. The local asymptotic normality, with respect to b and σ2, in the vicinity of b = 0, of the
family of distributions associated with (1.1) (with specified f1), is established in Section 2.2.
In Section 3.1, we propose (still, for specified f1) the optimal parametric test. The particular
case of the pseudo-Gaussian test is proposed in Section 3.2. Section 4 proposes rank-based
procedures that remain valid irrespective of f1. Particular cases (van der Warden, Wilcoxon,
Laplace scores, ...) are considered in Section 4.3. Asymptotic relative efficiencies with respect
to the pseudo-Gaussian test is derived in Section 5. Section 6 provides some simulation re-
sults assessing the finite-sample performance of the various tests proposed. Finally, Section 7
concludes.

2. LOCAL ASYMPTOTIC NORMALITY

2.1. Notations and main technical assumptions

Denote by P(n)
σ2,0;f1

the probability distribution under the null Xi,t = εi,t. Under the al-

ternative, the probability distribution is denoted by P(n)
σ2,b;f1

(b 6= 0), the observations X(n) :=

(X(n)′

1 , X
(n)′

2 , ..., X
(n)′
n )′ with X

(n)
i := (Xi,1, ..., Xi,T )′ is generated by (1.1).

We suppose that the vector X
(n)
0 := {(X(n)

i,−1εi,0, X
(n)
i,0 ), i = 1, 2, ..., n} is observable for

each individual i, and admits a density hθ(.) continuous in θ. The influence of these starting
values is asymptotically negligible (see Hallin and Werker (1999) [20] for a detailed discussion).
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Throughout, we consider the class of standardized densities

(2.1) F0 :=
{

f1 :
∫ 0

−∞
f1(u)du = 0.5 =

∫ 1

−1
f1(u)du

}
.

Under f1 ∈ F0, the median and median absolute deviation are 0 and σ respectively; this
standardization avoids all moment assumptions and has no impact on subsequent results.

Our derivation of locally asymptotically optimal tests at density f1 will be based on
the local asymptotic normality, with respect to (σ2, b)′, of the families of distributions

(2.2) P(n)
f1

:=
{
P(n)

σ2,b;f1
|(σ2, b)′ ∈ R∗+ × R and 2b2σ2 < 1

}
at any θ := (σ2, 0)′.

This LAN property requires some technical assumptions on the innovation density f1.
Denote by FA the class of all densities f1 satisfying the following technical assumptions:

(A.1) f1 ∈ F0;

(A.2) f1(u) > 0, ∀u ∈ R;

(A.3) f1 is absolutely continuous on bounded intervals, i.e., there exists f ′1 such that

f1(b)− f1(a) =
∫ b

a
f ′1(u)du for all a < b,

and, letting Φf1 = −f ′1/f1, assume that

I(f1) :=
∫

R
Φ2

f1
(u)f1(u)du and J(f1) :=

∫
R

u2Φ2
f1

(u)f1(u)du

are finite.

For instance, interesting special cases of f1 are obtained:

• The double-exponential or Laplace distribution, with standardized density

f1(u) = fL(u) := (1/2d) exp(−|u|/d),

with I(f1) = 1/d2 and J(f1) = 2; the normalizing constant d := 1/ ln(2) ' 1.4426
is such that fL ∈ FA.

• The logistic distribution, with standardized density

f1(u) = fLog(u) :=
√

b exp(−
√

bu)/(1 + exp(−
√

bu))2,

with I(f1) = b/3 and J(f1) = (12 + π2)/9; the normalizing constant b := (ln 3)2) '
1.2069 is such that fL ∈ FA.

• The Student distributions (with ν > 2 degrees of freedom), with standardized den-
sity

f1(u) = ftν (u) :=
Γ((ν + 1)/2)

Γ(ν/2)

√
aν/πν(1 + aνu

2/ν)−(ν+1)/2,

with I(f1) = aν(ν + 1)/(ν + 3) and J(f1) = 3(ν + 1)/(ν + 3); the normalizing con-
stant aν > 0 is such that ftν ∈ FA.

• The Gaussian distribution, with standardized density (with mean zero and variance
1/a)

f1(u) = fN (u) :=
√

a/2π exp(−au2/2),

with I(f1) = a ' 0.4549 and J(f1) = 3.
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2.2. LAN

Let us denote by θ(n) the local sequences of perturbations of θ = (σ2, 0)′, where

θ(n) = θ + n
−1
2 τ with τ =

(
τ1, τ2

)′ ∈ R2.

The bilateral test is equivalent to: P(n)
θ;f1

: τ2 = 0,

P(n)

θ(n);f1
: τ2 6= 0.

Under the null, the likelihood function for (X(n)
0 , X(n)) is

(2.3) Lθ;f (X(n)
0 , X(n)) = hθ(X

(n)
0 )

n∏
i=1

T∏
t=1

f(Xi,t).

If τ2 6= 0, the likelihood function for (X(n)
0 , X(n)) in this case is

(2.4)

Lθ(n);f (X(n)
0 , X(n)) = hθ(n)(X(n)

0 )
n∏

i=1

T∏
t=1

f
(
Xi,t +

∞∑
j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1

)
= hθ(n)(X(n)

0 )
n∏

i=1

T∏
t=1

f
(
Xi,t + Υn(τ2)

)
,

where Υn(τ2) :=
∞∑

j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1.

Denote by Λ(n)

θ(n)/θ;f
the logarithm of the likelihood ratio (conditional on X

(n)
0 ) for P(n)

θ(n);f

against P(n)
θ;f :

(2.5) Λ(n)

θ(n)/θ;f
:= log

(
Lθ(n);f (X(n)

0 , X(n))/Lθ;f (X(n)
0 , X(n))

)
.

It can be expressed as follows:

Λ(n)

θ(n)/θ;f
=

n∑
i=1

T∑
t=1

(
log f(Xi,t + Υn(τ2))− log f(Xi,t)

)
+ op(1).

The op(1) term (under P(n)
θ;f , as n →∞) corresponds to the influence of the starting value

X
(n)
0 .

Write Zi,t for the standardized residual

Zi,t(σ2, b) := σ−1

(
Xi,t +

∞∑
j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1

)
,

and note that, under P(n)
θ;f1

, these residuals coincide with σ−1εi,t. The local asymptotic nor-
mality result, with respect to σ2 and the parameter of interest b for a fixed density f1, is
established in the next proposition.
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Proposition 2.1. Let f1 ∈ FA. Then the family P(n)
f1

is LAN at any θ = (σ2, 0)′, with

central sequence

(2.6) ∆(n)
f1

(θ) :=

(
∆(n)

f1;1(θ)

∆(n)
f1;2(θ)

)
:=


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
Φf1(Zi,t)Zi,t − 1

]
n
−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2

 ,

and information matrix

(2.7) Γf1(θ) :=
(
Γf1;ij(θ)

)
1≤i,j≤2

:=

 T

4σ4

(
J(f1)− 1

)
0

0 σ2(T − 2)I(f1)σ4
f1

 .

More precisely, for any τ = (τ1, τ2)′ ∈ R2, under P
(n)
θ;f1

, as n →∞ and fixed T , we have

(2.8) Λ(n)

θ(n)/θ;f1
= τ ′∆(n)

f1
(θ)− 1

2
τ ′Γf1(θ)τ + op(1),

and ∆(n)
f1

(θ) is asymptotically normal, with mean zero under P
(n)
θ;f1

, mean Γf1(θ)τ under

P
(n)

θ(n);f1
and variance Γf1(θ) under both.

Proof: The proof relies on Swensen’s conditions 1.2 to 1.7 of lemma 1 in [33]. More
precisely, the only delicate one is the condition 1.2. The main point consists in showing that

(σ2, b) 7→ q
1
2

σ2,b;f1
(z) :=

[
1
σ

f1

(
z +

∑∞
j=1(−b)jxj

∏j
k=1 xk−1

σ

)] 1
2

is differentiable in mean quadratic. It is established in the following lemma.

Lemma 2.1. Let f1 ∈ FA. Define, for z ∈ R,

Dσ2q
1
2

σ2,0;f1
(z) =

1
4σ2

q
1
2

σ2,0;f1
(z)
(

z
σΦf1

(
z
σ

)
− 1
)
,

Dbq
1
2

σ2,b;f1
(z)|b=0

=
1
2σ

q
1
2

σ2,0;f1
(z)Φf1

(
z
σ

)
x1x0.

Then, as s and l → 0,

1.
∫

R

[
q

1
2

σ2+s,l;f1
(z)− q

1
2

σ2+s,0;f1
(z)− lDbq

1
2

σ2+s,b;f1
(z)|b=0

]2

dz = o(l2),

2.
∫

R

[
q

1
2

σ2+s,0;f1
(z)− q

1
2

σ2,0;f1
(z)− sDσ2q

1
2

σ2,0;f1
(z)
]2

dz = o(s2),

3.
∫

R

[
q

1
2

σ2+s,l;f1
(z)− q

1
2

σ2,0;f1
(z)− (s, l)

 Dσ2q
1
2

σ2,0;f1
(z)

Dbq
1
2

σ2,b;f1
(z)|b=0

]2

dz = o(‖ (s, l)′ ‖2).
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Proof of Lemma 2.1:

1. Let Υ(b) =
∞∑

j=1

(−b)jxj

j∏
k=1

xk−1. Then 1 takes the form

∫
R

[
1√

σ2 + s
f

1
2
1

(
z + Υ(l)√

σ2 + s

)
− 1√

σ2 + s
f

1
2
1

(
z√

σ2 + s

)
− l

1
2
√

σ2 + s
q

1
2

σ2+s,0;f1
(z)Φf1

( z√
σ2 + s

)
x1x0

]2

dz = o(l2),

is equivalent to ∫
R

[
f

1
2
(
z + Υ(l)

)
− f

1
2
(
z
)
− l

2
f

1
2
(
z
)
Φf

(
z
)
x1x0

]2

dz = o(l2),

which is equivalent to∫
R

l2
[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = o(l2),

hence, for proving that, it is sufficient to prove that

lim
l→0

∫
R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = 0.

We have

lim
l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
= lim

l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

Υ(l)
× Υ(l)

l

=
(
f

1
2

(
z
))′ × (−x1x0)

= −1
2

f ′
(
z
)

f
1
2

(
z
)x1x0.

And just show that
∫

R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz 6
∫

R

[
−1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz < ∞.

We know that f
1
2

(
z + Υ(l)

)
− f

1
2 (z) =

∫ z+Υ(l)

z

1
2
f ′(t)f

−1
2 (t)dt, then

∫ +∞

z=−∞

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz =
∫ +∞

z=−∞

1
l2

[ ∫ z+Υ(l)

t=z

1
2
f ′(t)f

−1
2 (t)dt

]2

dz

6
Υ(l)
l2

∫ +∞

z=−∞

∫ z+Υ(l)

t=z

[
1
2
f ′(t)f

−1
2 (t)

]2

dt dz

6
Υ(l)
l2

∫ +∞

t=−∞

∫ t

z=t−Υ(l)

[
1
2
f ′(t)f

−1
2 (t)

]2

dt dz

6

[
Υ(l)

l

]2 ∫ +∞

t=−∞

[
1
2
f ′(t)f

−1
2 (t)

]2

dt

6 (−x1x0)2
∫ +∞

t=−∞

[
1
2
f ′(t)f

−1
2 (t)

]2

dt

6
∫

R

[
−1
2

f ′(t)f
−1
2 (t)x1x0

]2

dt.

This completes the proof of part 1 of Lemma 2.1.
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2. The problem here is reduced to the classical case of linear models considered by
Swensen (1985) [33].

3. The result here follows from 1 and 2 above. This completes the proof of
Lemma 2.1.

The diagonal form of the information matrix confirms that σ2 and b are not related, in
the parametric family (2.2). They play distinct and well separated roles.

The Gaussian versions (f1 = fN ) of (2.6) and (2.7) are

∆(n)
N (θ) =


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
aZ2

i,t − 1
]

n
−1
2 σa

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

 and ΓN (θ) =

 T

2σ4
0

0
σ2

a
(T − 2)

 ,

respectively.

The result of Proposition 2.1, implies that, under assumptions FA, as n →∞, the
family of first-order superdiagonal panel models BLP (0, 0, 2, 1) possesses the LAN property
in a neighbourhood of white noise. This result leads us to construct asymptotically optimal
parametric tests under a specified f1. Note that these tests are valid under a specified f1,
and thereafter we will propose more general tests such as Pseudo-Gaussian and Rank-based
procedures which are valid under general densities.

3. OPTIMAL PARAMETRIC AND PSEUDO-GAUSSIAN TESTS

As mentioned above, the Le Cam theory of LAN experiments allows for constructing
tests which are locally asymptotically optimal (namely, most stringent). The basic idea is
the weak convergence concept of the sequence of local experiments to the Gaussian shift two-
dimensional model ∆ ∼ N

(
Γτ,Γ

)
. For a general theory on locally asymptotically optimal

testing in LAN families, the reader is referred to Le Cam (1986) [23] and van der Vaart (1998)
[35].

We are interested in testing the null hypothesis b = 0 of randomness in (1.1), with
unspecified standardized error density in F0. To do, let us start with the case when f1 ∈ F0

is specified, i.e., the null hypothesis is such that

H(n)
0 (f1) :=

⋃
σ2>0

{P(n)
σ2,0;f1

},

and parametric alternatives take the form

H(n)
1 (f1) :=

⋃
σ2>0

⋃
b∈R
{P(n)

σ2,b;f1
}.
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3.1. Optimal parametric tests

Since θ = (σ2, 0)′ = (1, 0)′σ2 =: Ωσ2, then θ ∈ M(Ω), where M(Ω) is the linear sub-
space of dimension 1 of R2 generated by the vector Ω := (1, 0)′. Recall that we are testing
τ2 = 0 against τ2 6= 0, which is equivalent to testing τ ∈M(Ω) against τ /∈M(Ω). Such tests
should be based on the asymptotically chi-square distribution (see S. Ghosh (1999) [10]) and
therefore the test statistic takes the form

(3.1) Qf1(θ) := ∆(n)′

f1
(θ)
[
Γ−1

f1
(θ)− Ω

(
Ω′Γf1(θ)Ω

)−1Ω′
]
∆(n)

f1
(θ).

By algebra calculations, one can write

(3.2) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ) = ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) =: Q

f1
,

with ∆(n)
f1

= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2.

The test based on (3.2) is locally asymptotically most stringent for the problem of
detecting the BLP (0, 0, 2, 1) dependance in white noise process. The application of Le Cam’s
Third Lemma provides the asymptotic law of Q

f1
under P(n)

θ(n);f1
, so we have the following

proposition.

Proposition 3.1. Let f1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2,

(i) Q
f1

is asymptotically central chi-square with 1 degree of freedom under P
(n)
θ;f1

,

and asymptotically noncentral chi-square, still with 1 degrees of freedom and with

noncentrality parameter λf1 := (T − 2)I(f1)σ2σ4
f1

τ2
2 under P

(n)

θ(n);f1
;

(ii) The sequence of tests rejecting the null hypothesis P
(n)
θ;f1

whenever Q
f1

>χ2
1,1−α, 2

is locally asymptotically most stringent, at asymptotic level α, for
⋃
σ2

{P(n)
σ2,0;f1

}

against
⋃

σ2∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) The asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1).
3

Proof:

(i) From Proposition 2.1, one can write

(3.3) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ),

with

∆(n)
f1;2(θ) = n

−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2 = σ∆(n)
f1

,

2 χ2
1,1−α is the (1− α)-quantile of the central chi-square distribution with one degree of freedom.

3 F (., λf1) is the noncentral chi-square distribution function with one degree of freedom and noncentrality
parameter λf1 .
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where ∆(n)
f1

:= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2, then

Qf1(θ) =
[
σ2(T − 2)I(f1)σ4

f1

]−1[
σ∆(n)

f1

]2 = ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) = Q

f1
.

(ii) Under P(n)
θ;f1

: ∆(n)
f1
∼N

(
0, (T−2)I(f1)σ4

f1

)
, then ∆(n)2

f1
/((T−2)I(f1)σ4

f1
) = Q

f1
∼χ2

1.

Under P(n)

θ(n);f1
, from Le Cam’s Third Lemma, we have

∆(n)
f1
∼ N

(
(T − 2)I(f1)σσ4

f1
τ2, (T − 2)I(f1)σ4

f1
),

hence ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) = Q

f1
∼ χ2

1(λf1): noncentral chi-square of one degree of free-
dom and non-centrality parameter

λf1 :=
(√

(T − 2)I(f1)σ4
f1

στ2

)2 = (T − 2)I(f1)σ2σ4
f1

τ2
2 .

(iii) We know that the power of the test is defined by

1− β := Prob
[

rejecting H(n)
f (θ) / H(n)

f (θ(n))
]

= Prob
[
Q

f1
> χ2

1,1−α / τ2 6= 0
]

where β is the second species risk and defined by

Prob
[
Q

f1
< χ2

1,1−α / τ2 6= 0
]

= F (χ2
1,1−α, λf1).

Hence, the power of the test is 1− F (χ2
1,1−α, λf1).

The Gaussian versions of Q
f1

is

(3.4) QN =
a3

T − 2

[
n
−1
2

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

]2

.

Unfortunately, this test statistic needs f1 to be specified as a standardized Gaussian one,
so the parameter a also has to be given. In the next, we will show that an appropriate
version remains asymptotically valid under arbitrary f1 with finite variance and optimal
under Gaussian one (pseudo-Gaussian test).

3.2. Pseudo-Gaussian tests

The Gaussian central sequence ∆(n)
N ;2(θ) allows obtaining asymptotically optimal tests

under f1 = fN , as well as efficient detection of panel bilinear models, in the parametric Gaus-
sian model characterized by Gaussian disturbances. Extending the validity of the Gaussian
optimal test to general densities g1 in a broad class of densities is of course highly desirable.
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Let us show that this is indeed possible and that a slight modification, ∆∗(n)
N ;2 , say, of the

efficient central sequence ∆(n)
N ;2 leads to a pseudo-Gaussian test which remaining valid when

the actual density g1 belongs to the class F (2)
A of all densities in FA with finite variance.

Define

∆∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 ),

where m
(n)
1 =

1
nT

n∑
i=1

T∑
t=1

Zi,t is a
√

n-consistent estimator, under P(n)
θ;g1

, of µ1(g1) :=
∫

R
zg1(z)dz.

Decomposing Zi,t −m
(n)
1 into (Zi,t − µ1(g1)) + (µ1(g1)−m

(n)
1 ), then, it is easy to check that

under P(n)
θ;g1

, as n →∞,

∆∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t − µ1(g1))(Zi,t−1 − µ1(g1))(Zi,t−2 − µ1(g1)) + op(1).

Then, still under P(n)
θ;g1

, ∆∗(n)
N ;2 (θ) is asymptotically normal with zero mean and variance

Γ∗N ;g1;22 = a2σ2(T − 2)σ6
g1

,

where σ2
g1

:=
∫

R
(z − µ1(g1))2g1(z)dz.

On the other hand, it is easy to see that, under P(n)

θ(n);g1
, ∆∗(n)

N ;2 (θ) and the log-likelihood

Λ(n)

θ(n)/θ;g1
are jointly binormal; the desired result then follows from a routine application of

Le Cam’s Third Lemma.

A pseudo-Gaussian test may then be based on a statistic of the form

(3.5)
Q∗
N ;g1

(θ) := (Γ∗N ;g1;22(θ))
−1∆∗(n)2

N ;2 (θ)

:=
1

(T − 2)σ6
g1

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 )
]2

.

In practice, the pseudo-Gaussian test will be based on

Q†
N :=

1
(T − 2)s6

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 )
]2

,

where s2 =
1

nT

n∑
i=1

T∑
t=1

(Zi,t −m
(n)
1 )2 is the empirical variance of the (Zi,t −m

(n)
1 )’s.

Showing that, under P(n)
θ;g1

, Q†
N −Q∗

N ;g1
(θ) = op(1)., as n →∞, we thus have the fol-

lowing result.

Proposition 3.2. Let g1 ∈ F (2)
A . Then,

(i) Q†
N is asymptotically central chi-square with 1 degree of freedom under P

(n)
θ;g1

,

and asymptotically noncentral chi-square, still with 1 degree of freedom and with

noncentrality parameter λN := (T − 2)σ2
gτ

2
2 under P

(n)

θ(n);g1
;
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(ii) The sequence of tests rejecting the null hypothesis
⋃

g1∈F(2)
A

⋃
σ∈R∗+

{
P

(n)
σ2,0;g1

}
when-

ever Q†
N > χ2

1,1−α, is locally asymptotically most stringent, at asymptotic level

α, against alternatives of the form
⋃

σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;fN

}
;

(iii) The asymptotic power under P
(n)

θ(n);g1
is 1− F (χ2

1,1−α, λN ).

4. OPTIMAL RANK TESTS

We start by describing the group invariance structure of the testing problem considered.
Then we introduce (and study the properties of) rank-based versions of the central sequences.
This will allow us to develop the resulting (optimal) rank tests and to derive their asymptotic
properties. The general results of Hallin and Werker (2003) indicate that semiparametrically
efficient and rank-based procedures have been established in relation with ranks that are being
maximal invariants under model-generating groups of transformations. It is clearly that the
null hypothesis H(n)

0 is invariant under the group (G(nT ), ?), such as for any transformation
Gh of RnT we define Gh(Y11, ..., YnT ) := (h(Y11), ..., h(YnT )), where y 7→ h(y) is continuous
and monotone increasing and lim

y→±∞
h(y) = ±∞. The invariance principle therefore suggests

restricting to tests that are invariant with respect to this group. The maximal invariant
associated with (G(nT ), ?) is the rank R(n) :=

(
R

(n)
1,1 , ..., R

(n)
n,T

)
, where R

(n)
i,t denotes the rank of

Z
(n)
i,t among

(
Z

(n)
1,1 , ..., Z

(n)
n,T

)
. It is easy to check that (G(nT ), ?) is actually a generating group

for the null hypothesis H(n)
0 . As a direct corollary, rank tests are distribution-free under the

whole null hypothesis. This explains why rank tests will be validity-robust.

4.1. Rank-based versions of central sequences

According to Hallin and Werker (2003) [21] and under the LAN property with efficient
central sequence ∆(n)

f1;2, an efficient semiparametric inference obtained conditioning ∆(n)
f1;2 by

the rank vector R(n), under the null hypothesis

(4.1) ∆
∼

(n)

f1;2
:= E

[
∆(n)

f1;2 | R
(n)
]
.

The conditional definition (4.1) of ∆(n)
f1;2 gives a statistic based on the ranks of exact scores,

thus Hájek’s projection theorem establishes the asymptotic equivalence between a non-para-
metric statistic and its parametric counterpart (for more details, consult the book of Hájek,
Šidák and Sen (1999) [16]).

To combine validity-robustness/invariance with Le Cam optimality at density f1, we
introduce rank-based versions of the central sequence that appear in the LAN property above
(Proposition 2.1).

(4.2) ∆
∼

(n)

f1;2
:= n

−1
2 σ

n∑
i=1

T∑
t=3

{
ϕf1

( R
(n)
i,t

N+1
)
F−1

1

(R(n)
i,t−1

N+1
)
F−1

1

(R(n)
i,t−2

N+1
)−mf1

}
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with N = n(T − 2), ϕf1 := Φf1 ◦ F−1
1 and

mf1 :=
1

N(N−1)(N−2)

∑∑∑
16t1 6=t2 6=t36N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

).

Let

s
(n)2

f1
:=

1
N(N−1)(N−2)

∑∑∑
16t1 6=t2 6=t36N

[
ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)
]2

+
2

N(N−1)(N−2)(N−3)

×
∑∑∑∑
16t1 6=t2 6=t3 6=t46N

ϕf1

( t1
N+1

)
ϕf1

( t2
N+1

)
F−1

1

( t2
N+1

)[
F−1

1

( t3
N+1

)
]2

F−1
1

( t4
N+1

)
+

2
N(N−1)(N−2)(N−3)(N−4)

×
∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t56N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)ϕf1

( t3
N+1

)
× F−1

1

( t4
N+1

)
F−1

1

( t5
N+1

)

+
N−5

N(N−1)(N−2)(N−3)(N−4)(N−5)

×
∑∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t5 6=t66N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)

× ϕf1

( t4
N+1

)
F−1

1

( t5
N+1

)
F−1

1

( t6
N+1

)
−Nm2

f1
.

Define the cross-information coefficients I(f1, g1) and σ(f1, g1) as

I(f1, g1) :=
∫ 1

0
Φf1(F

−1
1 (u))Φg1(G

−1
1 (u))du and σ(f1, g1) :=

∫ 1

0
F−1

1 (v)G−1
1 (v)dv,

we then have, for the rank-based ∆
∼

(n)

f1;2
, the following asymptotic representation result.

Proposition 4.1. Let f1 and g1 ∈ FA. Then, as n →∞ and fixed T,

(i) Under P
(n)
θ;g1

,

∆
∼

(n)

f1;2
:= E

(n)
g1

[
∆(n)

f1;2 | R
(n)
1,1 , ..., R

(n)
n,T

]
+ oL2(1)

= ∆∗(n)
f1,g1;2 + oL2(1),

(4.3)

with (denoting by G1 the distribution function associated with g1)

∆∗(n)
f1,g1;2 := n

−1
2 σ

n∑
i=1

T∑
t=3

ϕf1

(
G1(Zi,t)

)
F−1

1

(
G1(Zi,t−1)

)
F−1

1

(
G1(Zi,t−2)

)
;(4.4)

(ii) Still under P
(n)
θ;g1

, ∆
∼

(n)

f1;2
has zero mean and variance Γ∗(n)

f1;22 := σ2(T − 2)s(n)2

f1
=

Γ∗f1;22 + o(1), where Γ∗f1;22 := (T − 2)I(f1)σ2σ4
f1

;

(iii) ∆∗(n)
f1,g1;2 is asymptotically normal, with zero mean under P

(n)
θ;g1

, mean

(T − 2)I(f1, g1)σ2(f1, g1)σ2τ2 under P
(n)

θ(n);g1
and variance Γ∗f1;22 under both.
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Proof: The proof of Part (i) of the proposition follows along the same lines as in
Hallin et al. (1985) [18], and therefore is omitted. Part (ii) is obtained by direct computation.
As for Part (iii), under P(n)

θ;g1
, the result straightforwardly follows from classical central limit

theorem. On the other hand, it is easy to see that, still under P(n)

θ(n);g1
, ∆∗(n)

f1,g1;2 and the

log-likelihood Λ(n)

θ(n)/θ;g1
are jointly binormal; the desired result then follows from a routine

application of Le Cam’s Third Lemma.

4.2. Optimal rank tests

The rank-based version of the quadratic statistic is given by

(4.5)

Q
∼f1

:= (Γ∗(n)
f1;22)

−1∆
∼

(n)2

f1;2

=
1

(T − 2)s(n)2

f1

[
n
−1
2

n∑
i=1

T∑
t=3

{
ϕf1

( R
(n)
i,t

N + 1
)
F−1

1

(R(n)
i,t−1

N + 1
)
F−1

1

(R(n)
i,t−2

N + 1
)−mf1

}]2

,

we then have the following general result.

Proposition 4.2. Let f1 and g1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2, as n →∞
and for all fixed T ,

(i) Q
∼f1

is asymptotically central chi-square with 1 degree of freedom under P
(n)
θ;g1

,

and asymptotically noncentral chi-square, still with 1 degree of freedom and with

noncentrality parameter

λf1,g1 := (T − 2)I2(f1, g1)σ4(f1, g1)σ2τ2
2 /I(f1)σ4(f1)

under P
(n)

θ(n);g1
;

(ii) The sequence of tests rejecting the null hypothesis
⋃

g1∈FA

⋃
σ2

{
P

(n)
σ2,0;g1

}
when-

ever Q
∼f1

> χ2
1,1−α, is locally asymptotically most stringent, at asymptotic level α,

against alternatives of the form
⋃

σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) The asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1,g1).

4.3. Examples of non-parametric statistics

The quadratic statistic Q
∼f1

is a non-parametric statistic that depends only on the

determining of the score function f1 and provides general form for the optimal rank tests of
the null hypothesis of randomness.
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The three most important particular cases for the rank test statistic presented are the
van der Waerden (normal score), the Wilcoxon (logistic score) and the Laplace (double-
exponential score) test statistics, which are respectively optimal at normal, logistic and
double-exponential distributions.

(i) The van der Waerden’s test statistic is given by

Q
∼vdW

:=
a2

(T − 2)s(n)2

fN

∆
∼

(n)2

vdW
,

with

(4.6) ∆
∼

(n)

vdW
= n

−1
2

n∑
i=1

T∑
t=3

{
Ψ−1

( R
(n)
i,t

N + 1
)
Ψ−1

(R(n)
i,t−1

N + 1
)
Ψ−1

(R(n)
i,t−2

N + 1
)−mvdW

}
and

mfN =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

Ψ−1
( t1
N + 1

)
Ψ−1

( t2
N + 1

)
Ψ−1

( t3
N + 1

),

where Ψ is the standard normal distribution function.

(ii) The Wilcoxon’s test statistic is given by

Q
∼W

:=
1

(T − 2)bs(n)2

l

∆
∼

(n)2

W
,

with
(4.7)

∆
∼

(n)

W
= n

−1
2

n∑
i=1

T∑
t=3

{(
2

R
(n)
i,t

N + 1
− 1
)

log
(

R
(n)
i,t−1

N + 1−R
(n)
i,t−1

)
log
(

R
(n)
i,t−2

N + 1−R
(n)
i,t−2

)
−ml

}
and

ml =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

(
2t1

N + 1
− 1
)

log
(

t2
N + 1− t2

)
log
(

t3
N + 1− t3

)
.

(iii) The Laplace’s test statistic is given by

Q
∼L

:=
d2

(T − 2)s(n)2

De

∆
∼

(n)2

L
,

with

(4.8) ∆
∼

(n)

L
= n

−1
2

n∑
i=1

T∑
t=3

{
sign

(
F−1

1

( R
(n)
i,t

N + 1
))

F−1
1

(R(n)
i,t−1

N + 1
)
F−1

1

(R(n)
i,t−2

N + 1
)−mDe

}
and

mDe =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

sign

(
F−1

1

( t1
N + 1

))
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

),

where F1 is the distribution function of the double-exponential and

F−1
1 (u) =

{
d log(2u) if 0 < u 6 1

2

−d log(2− 2u) if 1
2 6 u < 1.
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5. ASYMPTOTIC RELATIVE EFFICIENCIES

In order to compare the performance of the parametric and non-parametric tests pre-
sented, we calculate the Asymptotic Relative Efficiencies (AREs) of rank based tests with
respect to the Pseudo-Gaussian one. The results obtained are satisfactory. Hence, under
P(n)

θ(n);g1
, for any g1 and for different scores f1, the asymptotic relative efficiencies of Q

∼f1

with

respect to QN are

(5.1)
AREg1(Q

∼f1

/QN ) =
(

λf1,g1

λN

)2

=
(
I2(f1, g1)σ4(f1, g1)

σ2
g1

σ4
f1

I(f1)

)2

.

Table 1 gives the numerical values of (5.1) for Q
∼f1

= Q
∼vdW

, Q
∼W

, Q
∼La

, Q
∼ t5

, Q
∼sN (2)

and

Q
∼st5(2)

under densities g1 that are normal, Logistic, Double exponential, Student-t5, Skew-

normal sN (2) and Skew-Student st5(2).

Note that for f1 = vdW these values are always greater than one, i.e., the van der
Waerden test (vdW) always has an efficiency greater than or equal to one, the equality being
realized only if the density underlying g is itself a Gaussian density (N ), which means that
rank based tests are asymptotically more powerful than Gaussian tests (this result is proved in
many cases, see for example, Chernoff and Savage (1958) [7] and Hallin (1993) [17] for ARMA
models). Note also that each value is maximum in its corresponding column. Thus, at each
of the densities, non-parametric tests perform better, compared to the Pseudo-Gaussian test.

Table 1: Asymptotic relative efficiencies of some rank tests
compared to their Pseudo-Gaussian counterpart.

Scores f1

``````````````̀

Actual density g1 N l De t5 sN (2) st5(2)

Van der Waerden 1.0000 1.1723 1.5244 1.3435 1.6328 1.7262
Wilcoxon 0.9347 1.2026 2.3421 1.5002 1.9782 1.7822
Laplace 0.4275 1.1337 4.0000 1.0349 1.5433 1.6889
Student-t5 0.8160 1.1569 2.7812 1.5625 1.8922 1.9501
Skew-normal sN (2) 0.9520 1.0989 1.5633 1.1490 2.2301 2.3301
Skew-Student st5(2) 0.5179 0.9734 1.9331 1.2150 1.7325 3.0133

6. SIMULATION

To enhance the interpretation and validity of the theoretical results of the previous
sections, we present a simulation experiment using R-programming. The purpose of this
section is to evaluate the performance of the proposed tests, at asymptotic level α = 5%.
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We simulated several BLP (0, 0, 2, 1) panel data described by

(6.1) Xi,t = bXi,t−2εi,t−1 + εi,t i = 1, 2, ..., 100, t = 1, 2, ..., 12,

where:

• b = 0 for null hypothesis, and b = 0.05, 0.1, 0.15, 0.2 for increasingly severe alterna-
tives;

• The (εi,t)’s are i.i.d. with a symmetric density - Gaussian (N ), logistic (l), double
exponential (De), Student with ν = 5 degrees of freedom (t5) — or with an asym-
metric density — the skew-normal sN (δ) and skew-Student st5(δ) densities 4 (both
with skewness parameter value δ = 2).

We performed the simulations for n = 100 and T = 12. In each case we generated 2500
independent samples of size N = n(T − 2) = 1000 from (6.1).

For each replication, we performed the following tests at asymptotic level α = 5%: the
pseudo-Gaussian test based on Q†

N , the van der Waerden test based on Q
∼vdW

, the Wilcoxon

test based on Q
∼W

, the Laplace test based on Q
∼L

, the rank tests based on Student with

5 degrees of freedom and data-driven skew-Student stν̂(δ̂) scores.

Rejection frequencies are reported in Table 2 and they amply confirm the excellent
overall performances of our rank-based procedure with data-driven scores. It also appears
from the skew-normal and skew-Student simulations that asymmetry significantly improves
the superiority of rank tests over the pseudo-Gaussian one.

7. CONCLUSION

The problem of testing the null hypothesis of a randomness against first-order super-
diagonal panel model BLP (0, 0, 2, 1) (in large n and small T ) is considered for specified and
unspecified error density. Optimal parametric and pseudo-Gaussian procedures are derived
based on the Local Asymptotic Normality property. Moreover, the pseudo-Gaussian test ap-
pears to have quite poor performances under skewed and heavy-tailed distributions. There-
fore a rank-based version of the test is considered. Particular cases such as van der Waerden,
Wilcoxon, Laplace and data-driven scores are given. These tests exhibit remarkably high
ARE values with respect to their pseudo-Gaussian counterpart. Simulations confirm the
excellent overall performances of the proposed tests.

4 See, for instance, Azzalini and Capitanio (2003) [2] for a definition of skew-normal and skew-Student
densities.
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Table 2: Rejection frequencies (out of 2500 replications), for b = 0 (null hypothesis) and
various non-zero values of b (alternative hypotheses), with error density g1 that
is Gaussian (N ), logistic (l), double exponential (De), Student (t5), skew-normal
(sN (2)) and skew-Student t5 (st5(2)) of the pseudo-Gaussian and rank based
(based on van der Waerden, Wilcoxon, Laplace, Student-t5 and data-driven scores)
procedures.

Underlying densities g1 Test
b

0 0.05 0.1 0.15 0.2

Pseudo Gaussien 0.0520 0.2236 0.7224 0.9680 0.9996
Van der Waerden 0.0512 0.2448 0.6844 0.9564 1.0000

Normal
Wilcoxon 0.0508 0.2280 0.7400 0.9640 1.0000
Laplace 0.0512 0.2160 0.6928 0.8840 0.9992

Student-t5 0.0496 0.2360 0.6560 0.9760 1.0000
Data-Driven 0.0524 0.2800 0.7400 0.9760 1.0000

Pseudo Gaussien 0.0464 0.2400 0.7144 0.9632 0.9992
Van der Waerden 0.0488 0.2688 0.7204 0.9844 0.9996

Logistic
Wilcoxon 0.0520 0.3044 0.7880 0.9620 0.9980
Laplace 0.0496 0.2960 0.7320 0.9840 0.9980

Student-t5 0.0560 0.2488 0.7640 0.9840 0.9996
Data-Driven 0.0500 0.3240 0.8360 0.9920 1.0000

Pseudo Gaussien 0.0524 0.2236 0.6908 0.9544 0.9972
Van der Waerden 0.0476 0.2324 0.7820 0.9956 0.9888

Double exponential
Wilcoxon 0.0492 0.3720 0.8412 0.9884 0.9992
Laplace 0.0520 0.4924 0.9080 0.9960 1.0000

Student-t5 0.0484 0.3920 0.8800 0.9920 1.0000
Data-Driven 0.0480 0.3760 0.8760 0.9520 1.0000

Pseudo Gaussien 0.0496 0.3248 0.8768 0.9932 0.9996
Van der Waerden 0.0488 0.3044 0.8660 0.9924 1.0000

Student-t5
Wilcoxon 0.0492 0.4964 0.9248 0.9732 0.9989
Laplace 0.0488 0.4560 0.8840 0.9880 0.9996

Student-t5 0.0476 0.4640 0.9560 0.9960 1.0000
Data-Driven 0.0540 0.4960 0.9720 1.0000 1.0000

Pseudo Gaussien 0.0496 0.1264 0.4572 0.7900 0.9612
Van der Waerden 0.0464 0.1328 0.4112 0.8084 0.9488

Skew-normal sN (2)
Wilcoxon 0.0468 0.1440 0.4560 0.8240 0.9440
Laplace 0.0492 0.2120 0.4824 0.7244 0.8680

Student-t5 0.0432 0.1760 0.4120 0.7360 0.9240
Data-Driven 0.0460 0.2080 0.5360 0.8080 0.9400

Pseudo Gaussien 0.0480 0.2240 0.6800 0.9392 0.9904
Van der Waerden 0.0524 0.2368 0.7200 0.9240 0.9888

Skew-Student st5(2)
Wilcoxon 0.0488 0.3120 0.7284 0.9688 0.9992
Laplace 0.0540 0.3160 0.6800 0.9124 0.9640

Student-t5 0.0504 0.2840 0.7280 0.9440 0.9920
Data-Driven 0.0484 0.3480 0.8360 0.9720 0.9960
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