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1. INTRODUCTION

In a wide variety of areas, such as in the study of heavy rainfall, low birth weight,
and high-risk finance, the tail behavior of the distribution of the target variable is of interest
rather than the average or median. In these cases, we often investigate the upper or lower
quantile of the data. However, the estimation of the tail quantile is difficult because of data
sparsity. Therefore, the development of the mathematical properties of the tail quantile
would be welcome. The theoretical performance of the tail behavior of the distribution
function is provided by extreme value theory (EVT). The fundamental properties of EVT were
surveyed by Coles (2001) [10], Beirlant et al. (2004a) [3], and de Haan and Ferreira (2006) [13].
On the other hand, the performance of the estimator is often guaranteed by a large sample
or asymptotic theory in statistics. Thus, the mathematical properties of the estimator of the
tail quantile are analyzed using a hybrid of EVT and asymptotic theory. In many cases, it is
important to research the target variable along with the information of other variable. Then
we should analyze the data in the literature of regression. In this paper, we consider the
estimation of the extremal conditional quantile of the response Y given X = x.

Many researchers have developed the extremal conditional quantile estimation. Beirlant
and Goegebeur (2004) [2] developed a Pareto distribution approach. Gardes et al. (2010)
[20] and Gardes and Girard (2010) [19] studied the nearest-neighbor estimation. Daouia
et al. (2011, 2013) [12, 11], El Methni et al. (2014) [18], and Girard and Louhichi (2015)
[21] investigated the extremal quantile of the nonparametric estimator of the conditional
distribution function of Y given X = x. The local-moment-type methods were studied by
Goegebeur et al. (2017) [22]. Durrieu et al. (2015) [15] have developed the weighted quasi-log-
likelihood method. On the other hand, quantile regression, which was pioneered by Koenker
and Bassett (1978) [31], is a typical approach used to investigate the conditional quantile.
For the center quantile, several authors have developed quantile regression methods. These
fundamental developments have been summarized by Koenker (2005) [29]. However, much
less work has been done on quantile regression for the extremal quantile. Chernozhukov (2005)
[6], Chernozhukov and Fernández-val (2011) [7], Wang et al. (2012) [44], and He et al. (2016)
[24] studied extremal quantile regression, but they focused only on linear models. For the tail
quantile, the linear structure assumption is strong and its assumption is violated in several
cases. Therefore, a nonparametric approach should be used in extremal quantile regression in
such situations. Beirlant et al. (2004b) [4] studied extremal nonparametric quantile regression,
but the theoretical property was not investigated. In this paper, we develop nonparametric
quantile regression for the extremal quantile and mathematical properties.

Before we describe our study, we review extremal quantile regression with linear models
in more detail. For extremal quantile regression, the quantile level τ approaches 0 or 1 as
the sample size n increases. This paper treats only the upper quantile and, hence, τ → 1 as
n →∞. Thus, there are two important types of the order of τ : the intermediate order quantile
and the extreme order quantile. The former means that τ → 1 and n(1− τ) →∞ as n →∞,
whereas in the latter τ → 1 and n(1−τ) → c ∈ [0,∞) as n →∞. If τ is fixed, it is the so-called
center quantile. According to Chernozhukov (2005) [6] and Chernozhukov and Fernández-val
(2011) [7], the quantile regression estimator with linear models has asymptotic normality for
the intermediate order quantile but it converges to a non-degenerated distribution (not nor-
mal) for the extreme order quantile. Thus, the extreme order quantile is difficult to handle.
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Wang et al. (2012) [44] provided a nice approach to obtain the extreme order quantile es-
timator by extrapolation from the intermediate order quantile estimator. As a result, this
extrapolated estimator has asymptotic normality. It seems that above results should be
extended to the nonparametric quantile regression for many applications.

In this paper, we first construct the ordinary nonparametric estimator for the inter-
mediate order quantile. We then use the B-spline method with `2 penalty. This approach
was originally considered by O’Sullivan (1986) [37] and Eilers and Marx (1996) [16] in mean
regression. Pratesi et al. (2009) [39], Reiss and Huang (2012) [40], and Yoshida (2013) [46]
used the quantile regression for only the center quantile. We show the asymptotic bias and
variance as well as the asymptotic normality of the penalized spline estimator. Next, the
extrapolated estimator is obtained for the extreme order quantile. Similar to the approach
of Wang et al. (2012) [44], we use the Weissman-type extrapolation method (see Weissman
1978 [45]). The asymptotic normality and the optimal rate of convergence of the extreme
order quantile estimator are shown. To the best of our knowledge, this is the first time that
the rate of convergence of the nonparametric estimator is revealed in the extremal quantile
regression.

This paper is organized as follows. In Section 2, we coordinate the conditions of the
true conditional quantile by EVT in nonparametric extremal quantile regression. Section 3
presents the nonparametric estimator and its asymptotic property for both intermediate and
extreme order quantiles. In Section 4 the Monte Carlo simulation is conducted to confirm
the performance of the proposed estimator. Section 5 addresses the application to Beijing’s
PM2.5 pollution data. The conclusions and future research are described in Section 6. In
Appendices A and B, the computational aspects of the penalized spline estimator and the
proofs of the mathematical results that appear in this paper are presented. Throughout the
paper and without loss of generality, we focus on the conditional high quantile because a low
quantile of the response can be viewed as a high quantile of the inverted sign of the response.

2. CONDITIONAL EXTREMAL QUANTILES

2.1. Extreme value theory

Let {(Xi, Yi); i = 1, ..., n} be the independent copies of a random pair (X, Y ) ∈ R×R.
We assume that the support of X is bounded on [a, b], where −∞ < a < b < ∞. The con-
ditional distribution function of Y given X = x is denoted by FY (y|x) = P (Y ≤ y|X = x).
Then the conditional 100τ% quantile of Y given X = x is

qY (τ |x) ≡ F−1
Y (τ |x) = inf{t, FY (t|x) ≥ τ}.

The main purpose of this study is to estimate qY (τ |x) for a high quantile level τ ' 1. The
tail behavior of the distribution or quantile function can be characterized by EVT. To an-
alyze the conditional high quantile of Y given X = x, we introduce the EVT conditions of
FY (·|x) and qY (·|x). Define F (y) and q(τ) as the marginal distribution function and 100τ%
quantile of Y . Throughout the paper, we assume that F and F (·|x) belong to the maximum
domain of attraction of an extreme value distribution Gγ , denoted by F, FY (·|x) ∈ D(Gγ).
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The distribution function Q belongs to the maximum domain of attraction, which means that
for the random sample Z1, ..., Zn from Q, there exists a constant αn > 0 and βn ∈ R such
that for 1 + γz ≥ 0,

P

(
max1≤i≤n Zi − bn

an
≤ z

)
→ Gγ(z) = exp[−(1 + γz)−1/γ ]

as n →∞. Here, γ ∈ R is the extreme value index (EVI). The EVI is very important since
this generally controls the tail behavior of the distribution function. For Q ∈ D(Gγ), if γ = 0
or γ < 0, Q has a light tail or short tail. When γ > 0, Q has a heavy tail. This paper only
discusses the heavy-tail case and, hence, we assume that γ > 0 from now on. The maximum
domain of attraction is a very weak condition. For example, uniform, beta, Gaussian, t,
Pareto, Cauchy, and many other distributions belong to the maximum domain of attraction
with appropriately specified γ ∈ R. The details of the maximum domain of attraction and
EVI are given in fundamental books such as that by de Haan and Ferreira (2006) [13].

We now state the conditions to connect the tail behavior of F and F (·|x). For this,
we need an additional definition. Let RV (a) = {A ∈ R+ → R+|A(mt)/A(t) → ma as t →∞,
m > 0} be the set of regularly varying functions, where R+ = (0,∞). When A ∈ RV (0),
A is the so-called slowly varying function.

Conditions A

A1. There exists L ∈ RV (0) such that the distribution function F satisfies 1−F (y) =
y−1/γL(y){1 + o(1)} as y →∞.

A2. We have q0(τ) = ∂q(t)/∂t|t=1−τ regularly varying at 0 with index −γ − 1. That
is, for x > 0,

lim
τ→0

q0(xτ)
q0(τ)

= x−γ−1.

A3. There exists an auxiliary function f(x) such that V ≡ Y − f(x) has the distribu-
tion function FV (y|x) satisfying, as y →∞,

1− FV (y|x) = H(x){1− F (y)}(1 + o(1)),

where H(x) > 0 is a positive, continuous, and bounded function on [a, b] and has
E[H(X)] = 1.

A4. For qV (·|x) = F−1
V (·|x), ∂qV (τ |x)/∂τ = ∂q(1− (1− τ)/H(x))/∂τ{1 + o(1)} uni-

formly in x ∈ [a, b] as τ → 1.

Conditions A may not hold if either F or F (·|x) is not included in D(Gγ). In other
words, if F, F (·|x) ∈ D(Gγ), Conditions A are natural. Condition A1 is the formal notation
of a Pareto-type tail (see Chernozhukov and Fernández-val 2011 [7]). The equivalent to
condition A1 is

q(τ) = (1− τ)−γL̄(1/(1− τ)){1 + o(1)} as τ → 1(2.1)

with L̄ ∈ RV (0). Therefore, if the distribution F is continuous and ∂L̄(1/(1− τ))/∂τ → 0
as τ → 1, condition A2 holds from condition A1. Actually, q0(τ) = ∂q(t)/∂t|t=1−τ =
γτ−γ−1L̄(1/τ) + τ−γ∂L̄(1/(1− t))/∂t|t=1−τ = γτ−γ−1L̄(1/τ){1 + o(1)} as τ → 0. Therefore,
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we have ∂q(t)/∂t|t=1−τ = γτ−γ−1L̄(1/τ){1 + o(1)}. Thus, condition A2 is weak. From A3,
it is easy to show that qV (τ |x) = H(x)γq(τ)(1 + o(1)) as τ → 1. Furthermore, since τ =
FY (qY (τ |x)|x) = P (Y< qY (τ |x)|x) = P (Y −f(x) < qY (τ |x)−f(x)|x) = FV (qY (τ |x)−f(x)|x),
we obtain qV (τ |x) = qY (τ |x)− f(x). Consequently, we have

qY (τ |x) = f(x) + h(x)q(τ){1 + o(1)} as τ → 1,(2.2)

where h(x) = H(x)γ . Chernozhukov (2005) [6], Chernozhukov and Fernández-val (2011) [7]
and Wang et al. (2012) [44] also provided this type of condition in multiple linear models.
That is, they further assumed that f(x) = xT β and h(x) = xT c for x = (x1, ···, xp), where β

and c are unknown p-dimensional parameter vectors. Thus, A3 is the nonparametric model
version of the above previous studies. Einmahl et al. (2016) [17] also considered the similar
model to the survival function for more simple situation where time is the covariate. Condition
A4 guarantees the existence of a conditional quantile density function (the derivative of the
quantile function). Furthermore, the conditional quantile density function also behaves like
a Pareto-type function by condition A4. Assumption A3 is strengthened by condition A4.

Remark 1. Let U(t) = q(1 − 1/t) = inf{z|F (z) ≥ 1 − 1/t} and let UV (t|x) =
qV (1− 1/t|x). In several articles (see, for example, de Haan and Ferreira 2006 [13]), the
conditions of EVT are applied to U(t) and UV (t|x) as t →∞. Since q(τ) = U(1/(1− τ)),
the condition (2.1) is similar to U(t) = tγL(t){1 + o(1)} with t = 1/(1− τ). Condition A4
can also be expressed as ∂UV (t|x)/∂t = ∂U(tH(x))/∂t with t = 1/(1− τ). Thus, we can re-
consider the EVT conditions for quantiles by using U and UV . In particular, the use of U is
appropriate when using the second-order condition of EVT (see Section 3.2).

2.2. B-spline model

The conditional quantile qY (τ |x) can be written as

qY (τ |x) = argmina E[ρτ (Y − a)|X = x],(2.3)

where ρτ (u) = u(τ − I(u < 0)) is Koenker’s check function (Koenker 2005 [29]) and I is the
indicator function. The estimator of qY is often obtained along with an empirical version
of (2.3). To estimate qY (τ |x), we use the B-spline regression method as the nonparametric
technique in this paper. Let {Bk(x) : k = 1, ...,K + p} be the pth degree of the B-spline basis
with knots a = κ0 < κ1 < ... < κK = b. In addition, other sets of 2p knots are defined as
κ−p = ... = κ−1 = a and κK+1 = ... = κK+p = b. We then define the B-spline model as

s(x) =
K+p∑
k=1

Bk(x)bk = B(x)T b,

where B(x) = (B1(x), ..., BK+p(x))T and b = (b1, ..., bK+p)T is an unknown parameter vector.
We now describe the relationship between the B-spline model and EVT discussed in the pre-
vious section. Let Wm[a, b] = {g|g(k) is continuous, k = 0, 1, ...,m− 1 and

∫ b
a {g

(m)(x)}2dx <

∞} be the mth-order Sobolev space. From Barrow and Smith (1978) [1], for any func-
tion g ∈ Wm([a, b]), there exists bg ∈ RK+p such that g(x)−B(x)T bg = K−dg(d)(x)O(1) as
K →∞, where d = min{m, p + 1}. For simplicity, we assume that m ≤ p + 1, that is d = m.
Actually, (p, m) = (3, 2) is the standard condition of B-spline smoothing.
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For τ ∈ (0, 1), let

b0(τ) = argminb∈RK+p E[ρτ (Y − s(x))|X = x]

and let s0(τ |x) = B(x)T b0(τ). We then found that qY (τ |x) = s0(τ |x) + K−m{∂mqY (τ |x)/
∂xm}O(1) for qY (·|x) ∈ Wm[a, b]. If h ∈ Wm[a, b], Conditions A and (2.2) yield that
{∂mqY (τ |x)/∂xm} = h(m)(x)q(τ)(1 + o(1)) = O((1− τ)−γ) and, hence, s0(τ |x)− qY (τ |x) =
O(K−m(1− τ)−γ) as τ → 1 and K →∞, which indicates that the condition B4 below is
required.

If f and h defined in (2.2) belong to Wm[a, b], there exists bf , bh ∈ RK+p such that
f(x)−B(x)T bf = O(K−m) and h(x)−B(x)T bh = O(K−m). We then obtain b0(τ) = bf +
q(τ)bh + O(K−mq(τ)) as τ → 1 and K →∞. Therefore, (2.1) and condition A4 indicate
that ∂s0(τ |x)/∂τ ∼ B(x)T bh∂q(τ)/∂τ is satisfied since bf and bh are not dependent on τ .
Thus, the B-spline model also holds (2.2) and condition A4 and, hence, the tail behavior of
the B-spline model can be studied by using Conditions A. The following conditions are the
fundamental assumptions for B-spline regression.

Conditions B

B1. For some constant ν > 0, E[|Y |2+ν |X = x] < ∞.

B2. The functions f and h in (2.2) are included in Wm[a, b].

B3. We have max1≤j≤K{κj+1 − κj} = O(K−1).

B4. For some α ∈ (0, 1), the number of knots K = O(nα).

B5. As τ → 1 and K →∞, Km(1− τ)γ →∞.

Condition B1 is needed to that the estimator satisfies the Lyapunov condition of central
limit theorem. When condition B2 holds, the B-spline model can approximate to qY (τ |x).
Conditions B3 and B4 are standard conditions for B-spline models. Together with condition B2,
the B-spline model and EVT are connected for high quantile level. Condition B5 guarantees
that the model bias between the conditional quantile and B-spline model converges to 0.

3. PENALIZED B-SPLINE ESTIMATOR FOR EXTREMAL QUANTILES

In this section, we define the nonparametric B-spline estimator and develop the asymp-
totic result. Then, we consider two scenario of extremal quantile rate: (i) intermediate order
quantiles that τ → 1 and (1− τ)n →∞ as n →∞ and (ii) extreme order quantiles that τ → 1
and (1− τ)n → c ∈ [0,∞) as n →∞. We denote the intermediate order quantile level by τI

and the extreme order quantile level by τE , respectively. That is, as n →∞, τI , τE → 1,
n(1− τI) →∞, n(1− τE) → c ∈ [0,∞), and (1− τI)/(1− τE) →∞.
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3.1. Estimation of intermediate order quantiles

The ordinary B-spline quantile estimator for τ ∈ (0, 1) is defined based on minimizing∑n
i=1 ρτ (Yi − s(xi)). However, it is known that the ordinary estimator tends to have a wig-

gly curve caused by data sparsity. To avoid this, we introduce the penalization method to
control the behavior of the estimator. Although various types of penalties have been devel-
oped to prevent overfitting, we will use O’Sullivan’s (1986) [37] penalty. For τ ∈ (0, 1), the
penalized spline estimator b̃(τ) = (b̃1(τ), ..., b̃K+p(τ))T of vector b(τ) = (b1(τ), ..., bK+p(τ))T

is constructed by minimizing

n∑
i=1

ρτ (Yi − s(xi)) + λ

∫ b

a
{s(m)(x)}2dx,(3.1)

where λ > 0 is the smoothing parameter. Using b̃(τ), for the intermediate order quantile level
τI , we define

q̃Y (τI |x) = B(x)T b̃(τI).

We study the asymptotic theory for the penalized spline estimator q̃Y (τI |x). Then,
the conditions of the number of knots and the smoothing parameter included in q̃Y (τI |x)
are very important. The penalty

∫ b
a {s

(m)(x)}2dx can be written as bT DT
mRDmb, where the

(K + p)-matrix R has elements Rij =
∫ b
a Bi(x)Bj(x)dx and the (K + p−m)× (K + p) matrix

Dm satisfies b(m) = Dmb, where b(m) = (b(m)
1 , ..., b

(b)
K+p−m)T , and for m = 1, 2, ...,

b
(1)
j = p

bj − bj−1

κj+p − κj
, b

(m)
j = (p + 1−m)

b
(m−1)
j − b

(m−1)
j−1

κj+p+1−m − κj
.

From now on, we use the symbols Dm and R. Let G(h) be the (K + p)-matrix with elements
Gij =

∫ b
a h(x)Bi(x)Bj(x)dx and

Λ(h) = Λ(h, n, τI) = γ−1G(h−γ) +
λq(τI)

(1− τI)n
DT

mRDm.

Let G = G(1) be G(h) with h(x) ≡ 1. Define

K(m, τI) = K

(
λq(τI)

n(1− τI)

)1/2m

,

which controls the asymptotic scenario branch discussed in Remark 1 below.

Conditions C

C1. We have K(m, τI) ≥ 1.

C2. We have K{λq(τI)/n(1− τI)}1/2m →∞ as n →∞.

C3. We have λ = o(q(τI)−1{n(1− τI)/q(τI)}2) as n →∞.

Condition C concerns with the asymptotic property of the penalized spline estimator.
C1 is detailed in Remark 2. C2 allows us to use the large K. If C3 fails, the asymptotic bias of
the penalized spline estimator cannot be vanished. We now show the asymptotic distribution
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of q̃(τI |x). First, we derive the two types of bias, model bias and shrinkage bias. Roughly
speaking, the model bias is the bias between the B-spline model and the true function, and
the shrinkage bias is the difference between the expectation of the penalized estimator and
the unpenalized estimator. According to Section 2,2, the model bias is ba(τI |x) = s0(τI |x)−
qY (τI |x) = O(K−mq(τ)). This model bias becomes the negligible order from condition C2.
That is, the bias is dominated by the shrinkage bias. Define

bλ(τ |x) =
λq(τ)

(1− τ)n
B(x)T Λ(H−γ)−1DT

mRDmb0(τ),

v2(τ |x) =
q(τ)2

(1− τ)n
B(x)T Λ(H−γ)−1GΛ(H−γ)−1B(x).

As a result, bλ(τI |x) is the asymptotic shrinkage bias and v(τI |x) is the asymptotic variance
of q̃Y (τI |x). The following theorem shows the asymptotic order of the asymptotic bias and
variance of the intermediate order quantile estimator.

Theorem 3.1. Under Conditions A–C, as n →∞,

bλ(τI |x) = O

(
q(τ)

(
λq(τI)

(1− τI)n

)1/2
)

, v2(τI |x) = O

(
q(τI)2

(1− τI)n

(
λq(τI)

(1− τI)n

)−1/2m
)

.

From condition C3 and Theorem 3.1, we see that the shrinkage bias and variance
converge to 0 as n →∞. Using the central limit theorem, Lyapunov’s condition, and a
Cramér–Wold device, the asymptotic normality of the estimator q̃Y (τI |x) can be shown.

Theorem 3.2. Suppose that Conditions A–C hold. As n →∞, bλ(τ |x) and v2(τ |x)
are the asymptotic bias and variance of q̃Y (τ |x) and(

v(τI |x)
qY (τY |x)

)−1{ q̃Y (τI |x)
qY (τY |x)

− 1− bλ(τI |x)
qY (τY |x)

}
D−→ N(0, 1).

Furthermore, under λ = O(q(τI)2{(1− τI)n}1/(2m+1)), the optimal rate of convergence of the

mean integrated squared error (MISE) of q̃Y (τI |x)/qY (τI |x) is

E

[{
q̃Y (τI |x)
qY (τI |x)

− 1
}2
]

= O({(1− τI)n}−2m/(2m+1)).

Theorems 3.1 and 3.2 yield that the trade-off between bias and variance is controlled
by λ. Thus, this indicates that the careful choice of K is not important in the penalized
spline methods. According to Yoshida (2013) [46], for the center quantile level τ , the MISE
of the penalized spline quantile estimator has the order O(n−2m/(2m+1)). Thus, the rate of
convergence of the MISE of the penalized spline estimator for the intermediate quantile level
is slower than that for the center quantile level. This result is not surprising in the context
of the difficulties of the estimation for the tail quantile.

When B(x) = x and λ = 0, the estimator is reduced to the ordinary quantile regression
with the linear model. In the linear regression, the model bias is 0 and, hence, the bias term
vanishes. On the other hand, since G = E[XXT ] and Λ(H−γ)−1 = γ−1E[H(X)−γXXT ]−1,
the asymptotic variance becomes

v2(τI |x) =
q(τI)2

(1− τI)n
γ2xT E[H(X)−γXXT ]−1E[XXT ]E[H(X)−γXXT ]−1x,
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which is similar in form to the asymptotic variance of the linear estimator of Lemma 3 of
Wang et al. (2012) [44]. Then, the rate of convergence of the MISE of the linear estimator
is E[{q̃Y (τI |x)/qY (τ |x)− 1}2] = O({(1− τI)n}−1). Thus, it can be considered that Theorem
3.2 is the generalization of the asymptotic result of the linear-type parametric estimator.

Remark 2. Claeskens et al. (2009) [9] have studied the asymptotic properties of the
penalized spline mean estimator in two scenarios: roughly speaking, case (a) small K scenario
and case (b) large K scenario. In case (a), the asymptotic behavior of penalized splines is
similar to that of regression splines, which have the unpenalized estimator (λ ≡ 0). Case (b)
results in the penalized splines nearing the smoothing splines. We briefly describe the
asymptotic scenario branch along with the result of Claeskens et al. (2009) [9]. The pe-
nalized spline mean estimator is obtained as f̂(x) = B(x)T (ZT Z + (λ/n)DT

mRDm)−1ZT y,
where Z = (B(x1), ...,B(xn))T is the design matrix and y = (y1, ..., yn). Then, the two
asymptotic scenarios are divided by the asymptotic order of the maximum eigenvalue of
(ZT Z + (λ/n)DT

mRDm)−1, which is obtained as K(m)2m

K(m) = K

(
λ

n

)1/2m

(1 + o(1)).

If K(m) < 1 for a sufficiently large n, K, and λ, we achieve case (a). When K(m) > 1 for
a sufficiently large n, K, and λ, we achieve case (b). Although Claeskens et al. (2009) [9]
focused only on mean regression, these two scenarios can also be discussed with respect to
quantile regression. The asymptotic scenario branch discussed in this section is dependent
on the asymptotic order of Λ(h)−1. Similar to Claeskens et al. (2009) [9], the order of the
maximum eigenvalue of Λ(h)−1 can be obtained as K(m, τI)2m, which corresponds to K(m)
in mean regression. Consequently, condition C1 indicates that the large K scenario should
be studied. We finally note why we focus on the large K scenario. Ruppert (2002) [41]
recommended that one should first set the knots with a large K to obtain the overfitted
estimator and control λ to achieve smoothness and fitness. Therefore, the large K scenario
matches the concept of Ruppert (2002) [41] and this motivates us to consider the large K

scenario.

3.2. Estimation of extreme order quantiles

For the extreme order quantile, the estimator q̃Y (τE |x) discussed in the previous section
would not have asymptotic normality (Chernozhukov and Fernández-val 2011 [7]). In this
paper, we try to approximate the extreme conditional quantile from intermediate quantile.
According to Weissman (1978) [45], the following holds:

qY (τE |x) ≈
(

1− τI

1− τE

)γ

qY (τI |x).

From this, using the estimator of the intermediate order quantile q̃Y (τ |x), we define the
extrapolated estimator of the extreme order quantile. To achieve this, we need to estimate
the EVI γ.

Let τ1 > ... > τk be the sequence of quantile levels, where τj = 1− ([nη] + j)/(n + 1),
η ∈ (0, 1) and [a] is the integer part of a. Then, since (1− τj)n = n([nη] + j)/(n + 1) →∞ as
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n →∞, all τj are intermediate order quantiles. Using this sequence, we define the Hill-types
estimator of γ as

γ̂(x) =
1

k − 1

k−1∑
j=1

log
(

q̃Y (τj |x)
q̃Y (τk|x)

)
.

In this paper, we assume that the tail behavior of FY (·|x) and F (·) are equivalent (see
Condition A1). Therefore, it is somewhat unnatural that the estimator of γ varies with x.
Nevertheless, we define the extrapolated estimator with γ̂(x) and investigate the mathemati-
cal property. For x ∈ [a, b], using γ̂(x), we define the estimator of the extreme order quantile
as

q̂Y (τE |x) =
(

1− τI

1− τE

)γ̂(x)

q̃Y (τI |x).

We next consider the EVI estimator along with condition A1. Define the common index
(pooled) estimator

γ̂C =
1
n

n∑
i=1

γ̂(xi)

and the extrapolated estimator with common index estimator γ̂C as

q̂C
Y (τE |x) =

(
1− τI

1− τE

)γ̂C

q̃Y (τI |x).

To investigate the asymptotic distribution of q̂Y (τE |x) and q̂C
Y (τE |x), we impose the

second-order condition in Conditions A:

A5. The function U(t) = F−1(1−1/t) satisfies the second-order condition with (γ, ρ,A).
That is, there exist ρ < 0 and A(t) ∈ RV (ρ) such that as t →∞,

A(t)−1

{
U(tz)
U(t)

− zγ

}
→ (zγ)(zρ − 1)

ρ
.

Furthermore, A(t) = γdtρ with d 6= 0.

A3′. There exist δ > 0 and positive, continuous and bounded function H1(x) such
that as y →∞,

1− FV (y|x) = H(x){1− F (y)}+ H1(x)(1− F (y))1+δ(1 + o(1))

Condition A5 is the standard second-order condition of EVT and is detailed in de Haan
and Ferreira (2006) [13]. Condition A3′ provides the second order of tail behavior of F (y).
From conditions A5 and A3′, we see that UY (·|x) also satisfy the second-order condition with
(γ, ρ∗ = min{ρ,−δ}, A∗(·|x)) and A∗(t|x) = γd∗(x)tρ

∗
with d∗(x) 6= 0, which were proven in

Lemma 2 of Wang et al. (2012) [44]. Using this, we show the asymptotic property of the
Hill-type estimator of the EVI in the following.
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Theorem 3.3. Suppose that the smoothing parameter included in q̃(τI |x)
satisfies λ = O(q(τI)2{(1− τI)n}1/(2m+1)). Furthermore, suppose that k →∞, k/n → 0,

nη log(k)/km/(2m+1) → 0 and km/(2m+1)(n/k)max{−γ,−δ,ρ} → 0 as n →∞. Under Conditions

A–C, as n →∞,

γ̂(x)− γ − b(k|x)
v(k|x)

D−→ N(0, 1),

and

γ̂C − γ − E[b(k|X)]
E[v(k|X)]

D−→ N(0, 1),

where b(k|x) and v(k|x) are defined in (B.4) of Appendix B and have an asymptotic order

O(k−m/(2m+1)). Furthermore,

E[{γ̂(x)− γ}2] = O
(
k−2m/(2m+1)

)
and

E[
{
γ̂C − γ

}2
] = O

(
k−2m/(2m+1)

)
.

Using Theorem 3.3, we obtain the asymptotic normality of the ratio of q̂Y (τE |x) and
q̂C
Y (τE |x).

Theorem 3.4. Suppose that the same conditions as Theorem 3.3. Furthermore,

assume that k−m/(2m+1) log{(1− τI)/(1− τE)} → 0 as k, n →∞, τI , τE → 1. As n →∞,

τE → 1 and n(1− τE) → c ∈ [0,∞),

q̂Y (τE |x)
qY (τE |x) − 1− bias(τE |x)

s(τE |x)
D−→ N(0, 1)

and

q̂C
Y (τE |x)

qY (τE |x) − 1− biasC(τE |x)

sC(τE |x)
D−→ N(0, 1)

where bias(τE |x), s(τE |x), biasC(τE |x) and sC(τE |x) are defined in (B.5), (B.6), (B.7) and

(B.8) of Proof of Theorem 3.4 on Appendix B. Furthermore,

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

and

E

[{
q̂C
Y (τE |x)

qY (τE |x)
− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

For the asymptotic order inTheorem3.4, the termO(k−2m/(2m+1) log2{(1−τI)/(1−τE)})
is derived from γ̂(x) and the another term is derived from q̃Y (τI |x). If we use τI = τ1 =
(n − [nη])/(n + 1) or τI = O(τ1), we have (1 − τI)n = O([nη]) = o(k) since [nη]/k → 0.
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That is, the asymptotic inference of q̂Y (τE |x) is dominated by that of q̃Y (τI |x) and hence,
the rate of convergence of the estimator is

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O
(
{(1− τI)n}−

2m
2m+1

)
.

One may have sense of discomfort with this result since the extreme order quantile estimator
and the intermediate order quantile estimator has same rate of convergence. Indeed, the
leading terms of q̃Y (τI |x) and q̂Y (τE |x) are similar. However, the convergence speed of the
subsequent term of q̂Y (τE |x) is obviously slower than that of q̃Y (τI |x) because of the influ-
ence of γ̂(x). Therefore, for the application with a finite sample, the behavior of q̃Y (τI |x)
would be more stable than q̂Y (τE |x) . On the other hand, when τI = τk or τI = O(τk), which
leads to n(1− τI) = O(k), is adopted, q̂Y (τE |x) is heavily affected by γ̂(x) but not by q̃Y (τI |x).
Actually, since n(1 − τE) → c ∈ [0,∞) and log({1 − τI}/{1 − τE}) = log({n(1 − τI)}/
{n(1− τE)}) = O(log[k/{n(1− τE)}]), we have

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
k

n(1− τE)

)
, k−

2m
2m+1

})
= O

(
k−

2m
2m+1 log2

(
k

n(1− τE)

))
.

For the common index quantile estimator q̂C
Y (τE |x) with τI = O(τk), the asymptotic

order of q̂C
Y (τE |x)/qY (τE |x) are dominated by the term of γ̂C , and this do not vary with x.

This result is quite unnatural in the quantile regression although O(log2(k/{n(1− τE)})),
which is the difference between the asymptotic inference of γ̂C and q̃Y (τI |x), is quite small.
Therefore, if the common index quantile estimator is mainly used, we may have to choose the
baseline quantile τI so that τI > τk. Thus, the balance of τI and k controls the asymptotic
behavior of q̂Y (τE |x). The same is true of q̂C

Y (τE |x).

Wang et al. (2012) [44] obtained the extrapolated estimator in the linear model with
τI = τk. From their result, the rate of convergence of the MISE of the linear estimator is
E[{q̂Y (τE |x)/qY (τE |x)− 1}2] = O(k−1 log2({1− τI}/{1− τE})). That is, the difference in the
rate of convergence between the parametric estimator and the nonparametric estimator is k−1

and k−2m/(2m+1), which could be intuitively derived from the classical works on parametric
and nonparametric regression.

Remark 3. The intermediate order quantile and the extreme order quantile are sep-
arated mathematically by the rate of the quantile level. However, in data analysis, the dis-
tinction between these two rates should be drawn for fixed n. Define ξ = ξ(τ, n) = (1− τ)n.
Using ξ, Chernozhukov and Fernández-val (2011) [7] suggested the following rule of thumb.
For the quantile level τ , if ξ < 30, it is the extreme order inference, that is, τ = τE and we
should use q̂Y (τ |x). When ξ ≥ 30, it is sufficient to use the intermediate order quantile es-
timator q̃Y (τ |x). If the predictor is the continuous, this threshold is ξ = 15–20. However,
they noted that the above rule is conservative. In this paper, we treat τ1 = n−[nη ]

n+1 as the in-
termediate order quantile. For example, when n = 200, τ = 0.925 leads to ξ = 15. Then, we
have η ≈ 0.5. For n = 1000, τ = 0.985 and η = 0.4 correspond to (1− τ1)n ≈ (1− τ)n = 15.
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On the other hand, Wang et al. (2012) [44] suggested to use η = 0.1. In their rule, we have
ξ(τ1, n) = 3 for n < 1025. Thus, it seems that the rule of Chernozhukov and Fernández-val
(2011) [7] is more conservative rather than that of Wang et al. (2012) [44]. In our experience,
the rule of Wang et al. (2012) [44] worked well for n ≤ 1000. Therefore, in the simulation
study of the next section, we also use η = 0.1. However, the determination of the split of the
intermediate order and the extreme order is still a difficult problem and further study would
be welcomed.

4. SIMULATION

The practical performance of the proposed estimator is confirmed by Monte Carlo
simulation. Define the true regression model as

Yi = f(Xi) + σ(Xi)εi(Xi), i = 1, ..., n,(4.1)

where

f(x) =
√

x(1− x) sin

(
2π(1 + 2−7/5)

x + 2−7/5

)
and σ(x) = 10−1(1 + x). The predictor Xi is independently generated from the standard
uniform distribution. This setting was introduced by Daouia et al. (2013) [11]. We consider
two types of error distribution: (a) εi(Xi) = εi ∼ t5 and (b) εi(Xi) ∼ ts(x), where

s(x) = [ν(x)] + 1, ν(x) = [{1.1− 0.5 exp[−64(x− 0.5)2]}{0.1 + sin(πx)}]−1.

The error type (b) is also used by Daouia et al. (2013) [11]. For the tν distribution, the EVI
is γ = 1/ν and hence, γ = 0.2 and γ(x) = 1/s(x) for (a) and (b), respectively For both cases,
the EVI is larger than 0, which indicates that the distribution of Yi has a heavy tail. In (4.1),
the conditional τth quantile of Y given X = x is qY (τ |x) = f(x) + σ(x)qε(τ |x), where qε(τ |x)
is the τth quantile of εi(x). For the case (a), qε(τ |x) = q(τ) is the τth quantile of t5 and is
not dependent on x. Thus, the model (4.1) with (a) is the location-scale shifted model and
is of the form of (2.2). In the case of (b), γ(x) = 1/2 for x ∈ [0.12, 0.88] and γ(x) ∈ (0, 1/3)
otherwise. That is, the model (4.1) with (b) has high EVI at the center and low (but larger
than 0) EVI at the boundary. The conditional quantile with (b) fail due to Conditions A.
However, it is important to confirm the performance of the estimator under (b).

We construct the intermediate order quantile estimator q̃Y (τ |x), the Hill-type estimator
γ̂(x), γ̂C , and the extreme order quantile estimator q̂Y (τ |x) and q̂C

Y (τ |x). For the intermediate
order quantile estimator, we use the number of knots K = 40 and the smoothing parameter
selected via generalized approximated cross-validation (Yuan 2006 [47]). To obtain γ̂, γ̂C , q̂Y

and q̂C
Y , we need to determine τj = 1− [nη ]+j

n+1 (j = 1, ..., k). In this simulation, η is chosen
so that (1− τ1)n = ξ = 3 and k = [7.5n1/3]. Such η and k are selected from a pilot study.
Wang et al. (2012) [44] used η = 0.1 and k = [4.5n1/3] in the linear regression. Thus, our k

is somewhat larger than that of Wang et al. (2012) [44].

For the estimator f̂(x) of the true function f(x), the Mean Integrated Squared Error
(MISE):

MISE(f̂) =
∫ 1

0
E[{f̂(x)− f(x)}2]dx
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is used as the accuracy measure of the estimator. We calculate the estimated MISE of q̃Y (τ |x),
q̂Y (τ |x) and q̂C

Y (τ |x) over 400 replications. The estimators q̃Y (τ |x), q̂Y (τ |x) and q̂C
Y (τ |x)

are denoted by PSE-I, PSE-E and PSE-Ep. As the competitors, we consider the functional
nonparametric estimator (Gardes et al. 2010 [20]) and the kernel smoothing estimator (Daouia
et al. 2013 [11]). The estimators q̂1(τ, x) and q̂2(τ, x) defined in Gardes et al. (2010) [20] are
denoted by FNS-I and FNS-E, respectively. Furthermore, the estimators q̂n(τ |x) and q̃RP

n (τ |x)
defined by Daouia et al. (2013) [11] are labeled by KSE-I and KSE-E in this section. Thus,
FNS-I, FNS-E, KSE-I and KSE-E are also demonstrated in simulation.

We report the simulation results for the case (a). Figure 1 shows the true conditional
quantiles and the intermediate order quantile estimators for one dataset with n = 200, 600
and 1000. For τ = 0.8, 0.85 and 0.9, the estimator behaved well, but for τ ≥ 0.95, there was a
significant difference between the true function and the intermediate order quantile estimator.
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(d) n = 1000

Figure 1: True conditional quantiles for τ = 0.8, 0.85, 0.9, 0.95, 0.99 and 0.995,
and these intermediate order quantile estimators for one dataset.

In Figure 2, the MISEs of the estimators for τ ∈ [0.5, 0.995] are illustrated. We can observe
that the proposed estimator behaves better than the competitors. From Figure 2 (d), we can
find that the estimator behaves well as n increases. This indicates that the estimator has
a consistency property. However, as τ increases, the performance of the estimator becomes
drastically decreases. Therefore, for τ ≈ 1, it is difficult to predict the conditional quantile
using the intermediate order quantile estimator.
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Figure 2: MISE of the intermediate order quantile estimators for τ ∈ [0.5, 0.995].
In (a), (b) and (c), the solid line is PSE-I. The dashed line and dot-
dashed lines are KSE-I and FNS-I, respectively. In (d), the solid, dashed
and dot-dashed lines are PSE for n = 200, n = 600 and n = 1000.

We next show the performance of the EVI estimator. Figure 3 shows the behavior
of γ̂C over k for one dataset and the distribution of γ̂C using k = [7.5n1/3] by Monte Carlo
simulation. From the results, we see that the suggested k = [7.5n1/3] is good choice. When
n = 1000, the behavior of γ̂C is stable from (c) and (d).

Figure 4 shows the extreme order quantile estimators PSE-E and PSE-Ep for one
dataset and the MISE of the extreme order quantile estimators for τ ∈ [0.95, 0.999]. From
(a–c), we can observe that the estimator behaves well. We can see that the behavior of the
PSE-Ep is stable than the PSE-E. This is not a surprising result since the estimator of EVI
included in PSE-Ep is not dependent on x unlike PSE-E. It can be recognized from Figure
4 (d–f) that the proposed estimator has better behavior than the competitors although the
differences are not large. Furthermore, the performance of the PSE-Ep was superior to that
of PSE-E. We think that this is a result of the stability of γ̂C . It can be recognized from
Figure 5 that the extrapolated estimator has consistency.
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Figure 3: (a–c) The sample path of the common index estimator of EVI with k for one dataset.
The dataset is similar to Figure 1 for each n. The dashed line is k = [7.5n1/3] and γ = 0.2.
(d) Box plot of γ̂C with k = [7.5n1/3] from 400 replications.
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Figure 4: (a–c) The true conditional quantiles (solid) and the extreme order quantile
estimator PSE-E (dot-dashed) and PSE-Ep (dashed) for τ = 0.995 for one
dataset. The dataset is similar to that given in Figure 1 for each n.
(d–f) MISE of the estimators for τ ∈ [0.95, 0.999]. The solid, dashed, dotted
and dot-dashed lines are PSE-E, PSE-Ep, FNS-E and KSE-E, respectively.
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Figure 5: (a) and (b) are the MISE of the PSE-E and the PSE-Ep, respectively.
The results are similar to Figure 4 (d–f). For both panels, solid, dashed
and dot-dashed lines are for n = 200, 600 and 1000, respectively.
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From now on, we describe the simulation results for the model (b). Figure 6 shows the
true conditional quantiles and the intermediate order quantile estimators for τ ∈ [0.8, 0.995]
for one dataset. It appears that for τ ∈ [0.8, 0.9], the estimator can capture the true condi-
tional quantile even for n = 200. However, for τ ≥ 0.95, the estimator has a wiggly curve.
In Figure 7, the results of MISE of the intermediate order quantile estimators for each n are
illustrated. We found that the proposed estimator performs well for τ ∈ [0.5, 0.95). However,
the MISE drastically grows as τ increases. The behaviors of PSE-E and PSE-Ep for one
dataset are described in Figure 8 (a–c). It can be seen from Figures 6 and 8 (a–c) that the
PSE-E and PSE-Ep performed better than PSE-I. Figure 8 (d)–(f) shows the MISE of the
extreme order quantile estimators. It can be confirmed that the performance of PSE-E is
slightly better than that of PSE-Ep. We see that the proposed estimators have better be-
havior than the competitors. Figure 9, the consistency of the PSE-E and the PSE-Ep can be
observed in numerically. Although the performance of the proposed estimator is drastically
superior to that of Daouia et al. (2013) [11], this simulation result indicates that our method
is one of useful tools to the problem of extremal quantile regression.
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Figure 6: True conditional quantiles for τ = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995 and these
intermediate order quantile estimators for one dataset with model (b).
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Figure 7: MISE of the intermediate order quantile estimators for τ ∈ [0.5, 0.995].
The description is similar to Figure 2.
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Figure 8: (a–c) The true conditional quantiles the extreme order quantile estimators for τ = 0.995
for one dataset with model (b). The dataset is similar to that given in Figure 6 for each n.
(d–f) MISE of the estimators for τ ∈ [0.95, 0.999]. The description is similar to Figure 4.

0.95 0.96 0.97 0.98 0.99 1.00

0.
0

0.
5

1.
0

1.
5

quantile level

M
IS

E

(a) MISE, PSE-E

0.95 0.96 0.97 0.98 0.99 1.00

0.
0

0.
5

1.
0

1.
5

quantile level

M
IS

E

(b) MISE, PSE-Ep

Figure 9: (a) and (b) are the MISE of the PSE-E and the PSE-Ep, respectively.
The description is similar to Figure 5.
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5. DATA EXAMPLE

In this section, we apply the proposed methods to Beijing’s PM2.5 Pollution data. The
data is available from the website of the UCI Machine Learning Repository and Liang et

al. (2015) [34] provided several analyses for this data. One of fundamental purposes of this
data is to analyze the relationship between PM2.5 concentration and other meteorological
variables. Our particular interest here is the prediction of high conditional quantiles of Y ,
PM2.5 concentration (µg/m3), with the predictor x, temperature (degrees Celsius). We can
observe from the scatter plot of y and x (see Figure 10) that this relationship is not linear
for the upper quantile. Therefore, the nonparametric approach is suitable for this data. We
demonstrate the analysis for each year from 2011 to 2014. We then omit the missing data and
hence the sample size is n = 8032, 8295, 8678, and 8661 in 2011, 2012, 2013, and 2014. We
construct the extreme order quantile estimator for τ = 0.999. The quantile level τ = 0.999
indicates that about only eight events occur each year.
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Figure 10: The proposed extreme order quantile estimator for τ = 0.999 for years from 2011 to 2014.
The solid line is q̂C

Y (0.999|x) and the dashed line is q̂Y (0.999|x) for each panel.
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Figure 10 shows the extreme order quantile estimators for τ = 0.999. It seems that the
tail behavior is stable in 2011 and 2012. In 2013 and 2014, the estimator of the conditional
quantile at x ∈ [0, 10] has a large value compared with those in 2011 and 2012. Thus, in
the cold season of 2013 and 2014, the risk of PM2.5 of pollution was increased. We can
observe that q̂Y (0.999|x) and q̂C

Y (0.999|x) are quite similar. This indicates that the estimator
of EVI γ̂(x) hardly changes with x. We report the EVI estimator used for constructing the
extrapolated estimator q̂Y and q̂pool

Y . To obtain the estimator of EVI, we utilized η = 0.4
as τ1 = n− [nη]/(n + 1) so that about τ1 = 0.995. Then, EVI is estimated by using the
intermediate order quantiles estimators for τ ∈ (0.978, 0.995). This choice leads to ξ = n(1−
τ1) ≈ 37 and, hence, this is a very conservative situation in the study of Chernozhukov and
Fernández-val (2011) [7]. Furthermore, we then adopted to use k so that the sample path
of the pooled EVI estimator is stable in each year. Figure 11 shows the sample path of γ̂C

and selected k. As a result, γ̂ = 0.220, 0.226, 0.260, and 0.231 in 2011, 2012, 2013, and 2014.
Thus, the pooled EVI estimators are the same in 2011, 2012, and 2014, and it is only slightly
larger in 2013.
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Figure 11: The sample path of EVI estimates γ̂C with k for each year.
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Figure 12 illustrates γ̂(x) with selected k for each year. We can observe that γ̂(x) has
a narrow curve with x in 2011, 2012, and 2014. On the other hand, in 2013, γ̂(x) at the
boundary is rather larger than at the center. Indeed, it can be seen from Figure 10 that the
extreme point can be observed at x < 0 in 2013.
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Figure 12: The EVI estimates γ̂(x) with selected k versus x for each year.
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6. CONCLUSION

We have developed the nonparametric extremal quantile regression methods for heavy-
tailed data. To show the mathematical property of the proposed estimator, we have used the
hybrid techniques of asymptotic theory for the nonparametric regression and EVT for the
tail behavior of the conditional distribution. We then considered two quantile rates: (i) the
intermediate order quantile that (1− τ)n →∞ as n →∞; and (ii) the extreme order quantile
that (1− τ)n → ξ < ∞. For the intermediate order quantile, the penalized spline estimator
and its asymptotic normality have been developed. On the other hand, for the extremal order
quantile, we have studied the Weissman-type extrapolated estimator using the intermediate
order quantile estimator and its asymptotic normality. For the both intermediate and extreme
order quantile, we show the asymptotic normality and the optimal rate of convergence of the
proposed estimator. In particular, we found that the convergence speed of the estimator for
extremal quantile is slower than that for center quantile. This result would be intuitively
correct.

We now discuss some future directions of study. First, for technical reasons, we assumed
that the tail behavior of the conditional distribution of Y given X = x is equivalent across
the predictor x (see Conditions A1). Since the estimation of the tail behavior is difficult due
to data sparsity, this assumption is helpful in data analysis. However, if this assumption is
violated, additional research is needed to explicate the performance of the estimator.

Second, in this paper, we focused on the spline smoothing with `2 penalty. On the other
hand, Koenker et al. (1994) [32] and Koenker (2011) [30] studied the smoothing spline with the
`1-type penalty. That is, the penalty is defined as

∫ b
a |s

(m)(x)|dx instead of
∫ b
a {s

(m)(x)}2dx.
It is known that the estimator with `1 penalty has local adaptiveness. Therefore, for some
cases, the performance of the estimator with `1 penalty would be better than that with `2

penalty. Recently, the `1-type penalty has been rapidly developed in mean regression (Kim
et al. 2009 [27]; Tibshirani 2014 [43]; Sadhanala and Tibshirani 2017 [42]). Although it is
difficult to show the asymptotic distribution of an `1 penalized estimator, the developments
of the `1 penalized smoothing to the extremal quantile regression is an interesting problem.

Finally, we can consider extending the proposed method to the multidimensional case.
In particular, it is important to use the additive models (Hastie and Tibshirani 1990 [23])
that for x = (x1, ..., xd) ∈ Rd, the true function is can be decomposed as

f(x) = f1(x1) + ... + fd(xd),

where each fj is the univariate function. The additive model is known to enables us to avoid
the problem of dimensionality. The nonparametric additive quantile regression (for center
quantile) was studied by Lu and Yu (2004) [35], Horowitz and Lee (2005) [26], Cheng et al.

(2011) [8], Koenker (2011) [30], Lee et al. (2010) [33] and references therein. However, the
extremal inference of the additive quantile regression has not yet been studied until now. It
seems that the developments of the extremal quantile regression with the additive model is
an important issue.



Nonparametric Smoothing for Extremal Quantile Regression with Heavy Tailed Data 387

A. APPENDIX – Computation of the intermediate order quantile estimator

We describe here the approximation algorithm to solve (3.1). Nychka et al. (1995) [36]
and Reiss and Huang (2012) [40] proposed the penalized iteratively reweighted least squares
algorithm. We use here the modified version of Nychka et al. (1995) [36]. Nychka et al. (1995)
[36] proposed the following optimization:

b̃ = argmin
b

{
n∑

i=1

ρτ,α(yi −B(xi)T b) + λbT DT
mRDmb

}
,(A.1)

where

ρτ,α(u) =


ρτ (u), |u| > α,
τu2/α, 0 ≤ u ≤ α,

(1− τ)u2/α, −α ≤ u ≤ 0

Obviously, the loss function ρτ,α(u) tends to ρτ as α → 0. However, for the tail quantile
(τ ≈ 0, 1), the above algorithm will not converge in our implementation. Therefore, we suggest
using the slightly modified version of (A.1). The idea is similar to the proximal gradient
method and it is very simple. The modified algorithm is defined as given the tth iteration
estimate b̃

(t)
,

b̃
(t+1)

= argmin
b

{
n∑

i=1

ρτ,αt(yi −B(xi)T b) + λbT DT
mRDmb + ηt||b− b̃

(t)||2
}

,(A.2)

where at and ηt are the step sizes. For at, it is sufficient to use some sequence {αt} satisfying
αt → 0 as t →∞. On the other hand, the choice of ηt is more important than at. If ηt is large,
b(t+1) ≈ b(t) and hence the speed of convergence is very fast. When ηt is small, on the other
hand, there is almost no difference between (A.2) and (A.1), that is, the algorithm does not
converge in many cases. In Sections 4 and 5, we used αt = 0.1× 2−t and ηt+1 = 1.2ηt(η0 = 1).
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B. APPENDIX – Proof of theorems

LetZ be the n×(K+p) design matrix having elements Bj(xi), Gn= n−1ZT diag[H(xi)−γ ]Z
and let Λn = Gn +(λq(τ)/((1−τ)n))DT

mRDm. For any matrix A = (aij)ij , we denote ||A||∞ =
maxi,j |aij |. We first state the technical lemmas to prove theorems in this paper.

Lemma B.1. Suppose thatK(m,τ)≥1. UnderConditionsA–C, the following statements

holds: ||G(1)||∞ = O(K−1), ||G(H−γ)||∞ = O(K−1), ||Λ−1
n ||∞ = O(K(1 + K(m, τ)2m)−1),

||Λ(H−γ)−1||∞ = O(K(1 + K(m, τ)2m)−1), maxi,j{|{G−1
n − G(H−γ)−1}ij |} = o(K) and

maxi,j{|{Λ−1
n − Λ(H−γ)−1}ij |} = o(K(1 + K(m, τ)2m)−1).

Lemma B.2. Suppose that K(m, τ) ≥ 1. Under Assumptions 2–3, for any K + p

square matrix A satisfying ||A||∞ = O(na) for a ∈ R, ||G(H−γ)A||∞ = O(naK−1) and

||Λ(H−γ)−1A||∞ = O(naK(1 + K(m, τ)2m)−1).

Lemma B.1 is proved by Lemma 6.3 and 6.4 of Zhou et al. (1998) [48] and Lemma A1
and A2 of Claeskens et al. (2009) [9]. Lemma B.2 says that the order of product of matrices
is dependent only on the order of element of these matrices although the each element of
GA and Λ(h)−1A is infinite sum as n →∞. The proof of Lemma B.2 can also be shown by
Lemma A1 of Claeskens et al. (2009) [9]. Therefore, we only describe the outline here.

Proof of Lemma B.2: For any continuous and bounded function h, the matrix G(h)
is the band matrix from property of B-splines and hence ||GA||∞ = O(naK−1) is obvious.
Next, Λ(h)−1 is the inverse of the band matrix. From Demko (1977) [14], there exists c > 0
and r ∈ (0, 1) such that |{Λ(h)−1}ij | < cr|i−j|K(1 + K(m, τ)2m)−1. Thus, straightforward
calculation yields that the infinite sum of each element of Λ(h)−1A is bounded by order of
Λ(h)−1 and the absolute of the maximum of element of A.

Proof of Theorem 3.1: Define h(x) = H(x)−γ . We write τ ≡ τI and hence τ → 1
and (1− τ)n →∞ as n →∞. By the fundamental property of B-spline basis, s

(m)
0 (τ |x) =

dms0(τ |x)/dxm can be written as s
(m)
0 (τ |x) = B[p−m](x)T Dmb0(τ), where B[p−m](x) is the

vector having element {B[p−m]
1 (x), ..., B[p−m]

K+p−m(x)} and B
[p−m]
k (x)’s are (p−m)th degree

B-spline bases. Therefore, the shrinkage bias can be expressed as

bλ(τ |x) =
λq(τ)

(1− τ)n
B(x)T Λ(H−γ)−1DT

m

∫ b

a
B[p−m](x)s(m)

0 (τ |x)dx.

From Conditions A–B, we have s0(τ |x) = qY (τ |x)(1+o(1)) = h(x)q(τ)(1+o(1)) and s
(m)
0 (τ |x)

= h(m)(x)q(τ)(1 + o(1)) as τ → 1. Since h is bounded function, we get supx∈[a,b] |s
(m)
0 (τ |x)| =

O(q(τ)). From the property of B-spline basis, we also obtain
∫ b
a Bk(x)ds = O(K−1). Thus,

each element of
∫ b
a B[p−m](x)s(m)

0 (τ |x)dx has the order O(K−1q(τ)) Furthermore, the result
of Cardot (2000) [5] provides ||Dm||∞ = O(Km). Therefore, Lemmas B.1, B.2 and the fact



Nonparametric Smoothing for Extremal Quantile Regression with Heavy Tailed Data 389

that K(m, τ)m/(1 + K(m, τ)2m) < 1/2 yield that

bλ(τ |x) = O

(
q(τ)

λq(τ)Km

(1− τ)n
(1 + K(m, τ)2m)−1

)
= O

(
q(τ)

(
λq(τ)

(1− τ)n

)1/2 K(m, τ)m

1 + K(m, τ)2m

)

≤ O

(
q(τ)

(
λq(τ)

(1− τ)n

)1/2
)

.

Next, we show the asymptotic order of v(x|τ). Since ||G||∞ = O(K−1), from Lemmas B.1–
B.2, we have

v(τ |x) = O

(
Kq(τ)2

(1− τ)n
{1 + K(m, τ)2m}−2

)
= O

(
q(τ)

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m

K(m, τ){1 + K(m, τ)2m}

)

≤ O

(
q(τ)

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m
)

,

which completes the proof.

Proof of Theorem 3.2: We write τ ≡ τI and hence τ → 1 and (1 − τ)n →∞
as n →∞. Let Ui = Yi −B(x)T b0(τ), an =

√
(1− τ)n/q(τ) and

Qn(δ|τ) =
an√

n(1− τ)

n∑
i=1

{
ρτ (Ui −B(xi)T δ/an)− ρτ (Ui)

}
+

anλ

2
√

n(1− τ)
(b0(τ) + δ/an)T DT

mRDm(b0(τ) + δ/an).

Then the minimizer of Qn is obtained as

δ̃ = an(b̃(τ)− b0(τ)).

Using Knight’s identity (Knight, 1998 [28]), we have

ρτ (u− v)− ρτ (u) = −v(τ − I(u < 0)) +
∫ v

0
{I(u ≤ s)− I(u ≤ 0)}ds

and writing

Qn(δ|τ) = Wn(τ)T δ + Gn(δ|τ) +
anλ

2
√

(1− τ)n
(b0(τ) + δ/an)T DT

mRDm(b0(τ) + δ/an),

where

Wn(τ) ≡ −1√
(1− τ)n

n∑
i=1

(τ − I(Yi < B(xi)T b0))B(xi),

Gn(δ|τ) ≡
n∑

i=1

∫ B(x)T δ/an

0
I(Ui ≤ s)− I(Ui ≤ 0)ds.
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Since τ = P (Y < qY (τ |x)|X = x) = P (Y < B(x)T b0(τ)|X = x) + o(K−m) and
E[I(Y < B(x)T b0(τ))] = P (Y < qY (τ |x)|X = x) + o(K−m(1− τ)−γ), we obtain E[Wn(τ)] =
o(1). The variance of Wn(τ) can be evaluated as

V [Wn(τ)T δ] =
τ(1− τ)
1− τ

δT

(
1
n

ZT Z

)
δ

P−→ δT Gδ

as n →∞ and τ → 1. Lyapnov’s condition for the central limit theorem and Cramèr-Wold
device yield that Wn(τ) is asymptotically distributed as W , which is the normal with mean
0 and variance G.

Next, we show that as n →∞ and τ → 1,

Gn(δ|τ) P−→ 1
2
γ−1δT G(H−γ)δ.(B.1)

Before that, we provide some differential results. Let fY (y) and fY (y|x) be the marginal
density of Y and conditional density of Y given X = x, respectively. From A3, fY (y|x) =
fV (y|x)(1+o(1)) = H(x)fY (y)(1+o(1)) as y →∞. In addition, since 1 = ∂FV (qV (τ |x)|x)/∂τ

= fV (qV (τ |x)|x)∂qV (τ |x)/∂τ , we have fV (qV (τ |x)|x) = {∂qV (τ |x)/∂τ}−1. Meanwhile, A4
and q((1−τ)/H(x)) = {(1−τ)/H(x)}−γL(H(x)/(1−τ))(1+o(1)) yield that ∂q((1−τ)/H(x))/
/∂τ = γ(1− τ)−γ−1H(x)γL(H(x)/(1− τ))(1 + o(1)). Consequently, as τ → 1,

fY (qY (τ |x)|x) = γ−1H(x)−γ(1− τ)γ+1L(H(x)/(1− τ))−1(1 + o(1)).

Furthermore, by L ∈ RV (0), q(τ)fY (qY (τ |x)|x)/{1− τ} = γ−1H(x)−γ(1 + o(1)).

We return to show (B.1). Since

Gn(δ|τ) =
1√

(1− τ)n

n∑
i=1

(∫ δT B(xi)

0
I(Ui ≤ s/an)− I(Ui ≤ 0)ds

)
,

we obtain

E[Gn(δ|τ)] =
1√

(1− τ)n

n∑
i=1

E

[∫ δT B(xi)

0
I(Ui ≤ s/an)− I(Ui ≤ 0)ds

]

=
1√

(1− τ)n

n∑
i=1

[∫ δT B(xi)

0
FY (qY (τ |xi) + s/an|xi)− FY (qY (τ |xi)|xi)ds

]

=
n∑

i=1

∫ δT B(xi)

0

fY (qY (τ |xi))
an

√
(1− τ)n

sds(1 + o(1))

=
1
n

n∑
i=1

∫ δT B(xi)

0

q(τ)fY (qY (τ |xi))
(1− τ)

sds(1 + o(1))

= 2−1γ−1δT

(
1
n

n∑
i=1

H(xi)−γB(xi)B(xi)T

)
δ.

From the simple but tedious calculation, V [Gn(δ|τ)] = o(1) can be evaluated. These results
yield that

E[Gn(δ|τ)] P−→ 1
2
γ−1δT G(H−γ)δ.
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Thus, Qn(δ|τ) is asymptotically equivalent to

Q0(δ|τ) =

(
W T +

λ

an

√
(1− τ)n

b0(τ)T DT
mRDm

)
δ

+
1
2
δT

(
γ−1G(H−γ) +

λ

2an

√
(1− τ)n

DT
mRDm

)
δ.

By the convexity lemma (see Pollard 1991 [38] and Knight 1998 [28]), the minimizer of Qn

and Q0 are asymptotically equivalent and hence we have

δ̃ =

(
γ−1G(H−γ) +

λ

2an

√
(1− τ)n

DT
mRDm

)−1(
W− λ√

an(1− τ)n
DT

mRDmb0(τ)

)
+ oP (1).

Since q̃Y (τ |x)− s0(τ |x) = B(x)T (b̃(τ)− b0(τ)), we obtain from an =
√

(1− τ)n/q(τ) that√
(1− τ)n
q(τ)

(q̃Y (τ |x)− s0(τ |x)) =

= B(x)T

(
γ−1G(H−γ) +

λq(τ)
2(1− τ)n

DT
mRDm

)−1

W

− λ√
(1− τ)n

B(x)T

(
γ−1G(H−γ) +

λq(τ)
2(1− τ)n

DT
mRDm

)−1

DT
mRDmb0(τ)

+ oP (1).(B.2)

The second term of right hand side of (B.2) is the shrinkage bias. Consequently, as n →∞,√
(1− τ)n
q(τ)

q̃Y (τ |x)− qY (τ |x)− bλ(τ |x)√
B(x)T Λ(H−γ)−1GΛ(H−γ)−1B(x)

D−→ N(0, 1).

Finally, we obtain

E[{q̂Y (τ |x)− qY (τ |x)}2] = bλ(τ |x)2 + v(τ |x)

= O

(
q(τ)2

λq(τ)
(1− τ)n

)
+ O

(
q(τ)2

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m
)

.(B.3)

We now derive the optimal rate of convergence of MISE of q̃Y (τ |x). For the constant C1 > 0,
C2 > 0, the solution of

C1q(τ)λ− C2

(
q(τ)

(1− τ)n

)−1/2m

λ−1/2m = 0

is λ = Cq(τI)−1{n(1− τI)}1/(2m+1) for C > 0. By applying this λ in (B.3), we obtain

E

[{
q̂Y (τ |x)
qY (τ |x)

− 1
}2
]

= O({(1− τ)n}−2m/(2m+1)),

which completes the proof.
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To improve the outlook, we now describe about the asymptotic bias and variance of
γ̂(x) before prove Theorem 3.3. Define

(B.4) b(k|x) =
1

k − 1

k−1∑
j=1

bλ(τj |x)
qY (τj |x)

− bλ(τk|x)
qY (τk|x)

, v(k|x) =
1

k − 1

k−1∑
j=1

ν(τj |x)
qY (τj |x)

− ν(τk|x)
qY (τk|x)

,

where

ν(τ |x) =
q(τ)√

(1− τ)n
G1/2Λ(H−γ)−1B(x).

As the result, b(k|x) and
√

v(k|x)T v(k|x) are the asymptotic bias and standard deviation of
γ̂(x). We here get the asymptotic order of b(k|x) and v(k|x) from easy calculation.

Since bλ(τj |x)/qY (τj |x) = O({(1− τj)n}−m/(2m+1)) and each element of ν(τj |x) has
O({(1− τj)n}−m/(2m+1)), we have

b(k|x) = O

 1
k − 1

k−1∑
j=1

{(1− τj)n}−
m

2m+1 − {(1− τk)n}−
m

2m+1


and

v(k|x) = O

 1
k − 1

k−1∑
j=1

{(1− τj)n}−
m

2m+1 − {(1− τk)n}−
m

2m+1

 .

We then have from [nη]/k → 0(n, k →∞) that

1
k

k∑
j=1

{(1− τj)n}−
m

2m+1 =
1
k

k∑
j=1

{
[nη] + j

n + 1
n

}− m
2m+1

= k−
m

2m+1
1
k

k∑
j=1

{
[nη] + j

k + 1

}− m
2m+1

= k−
m

2m+1

∫ 1

0
u−

m
2m+1 du(1 + o(1))

=
2m + 1

m
k−

m
2m+1 (1 + o(1))

and

{(1− τk)n}−
m

2m+1 =
{

[nη] + k

n + 1
n

}− m
2m+1

= k−
m

2m+1 (1 + o(1)).

This indicates that b(k|x) = O(k−
m

2m+1 ) and v(k|x) = O(k−
m

2m+1 ).
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Proof of Theorem 3.3: Theorem 3.1 indicates that q̃Y (τk|x)− qY (τk|x) = oP (1) as
n →∞. Therefore, the proposed estimator can be calculated as for x ∈ R,

γ̂(x) =
1

k − 1

k−1∑
j=1

log
q̂Y (τj |x)
q̂Y (τk|x)

=
1

k − 1

k−1∑
j=1

log
qY (τj |x)

{
1 + q̂Y (τj |x)−qY (τj |x)

qY (τj |x)

}
qY (τk|x)

{
1 + q̂Y (τk|x)−qY (τk|x)

qY (τk|x)

}
=

1
k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

log

{
1 + q̂Y (τj |x)−qY (τj |x)

qY (τj |x)

}
{

1 + q̂Y (τk|x)−qY (τk|x)
qY (τk|x)

}
=

1
k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

log
{

1 +
q̂Y (τj |x)− qY (τj |x)

qY (τj |x)

}

− 1
k − 1

k−1∑
j=1

log
{

1 +
q̂Y (τk|x)− qY (τk|x)

qY (τk|x)

}

=
1

k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

{
q̂Y (τj |x)− qY (τj |x)

qY (τj |x)
− q̂Y (τk|x)− qY (τk|x)

qY (τk|x)

}
(1 + oP (1))

≡ D1n + D2n.

We then note that D1n is not random variable. Similar to the proof of Theorem 2.3 of Wang
et al. (2012) [44], we have as k →∞,

D1n = γ + O(k−1/2) = γ + o(k−m/(2m+1))

for m ≥ 1. Next, we consider D2n. Under the conditions for Theorem 3.3, using the result of
Theorems 3.1–3.2 and the property of B-spline basis, we have

q̃Y (τj |x)− qY (τj |x)
qY (τj |x)

=
bλ(τj |x) + ν(τj |x)T W

qY (τj |x)
(1 + oP (1)),

where W ∼ NK+p(0, I). Therefore, D2n can be evaluated as

D2n = {b(k|x) + v(k|x)T W }(1 + oP (1))

That is,
γ̂(x) = γ + b(k|x) + v(k|x)T W + o(k−m/(2m+1)),

where b(k|x) = O(k−m/(2m+1)) and v(k|x) = O(k−m/(2m+1)). Consequently, we get

γ̂(x)− γ − b(k|x)√
v(k|x)T v(k|x)

D−→ N(0, 1)

and E[{γ̂(x)− γ}2] = O(k−2m/(2m+1)). For the common index version γ̂C , similar to above,
the straightforward calculation yields that

γ̂C =
1
n

n∑
i=1

γ̂(xi) = γ + E[b(k|X)] + E[v(k|X)]T W + o(k−m/(2m+1)).

This completes the proof.
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Proof of Theorem 3.4: First, the second order condition for UY (1/(1− τ)|x) =
qY (τ |x) yields that

qY (τI |x)
qY (τE |x)

=
(

UY (1/(1− τE)|x)
UY (1/(1− τI)|x)

)−1

=
(

1− τI

1− τE

)−γ

{1 + o(k−m/(2m+1))}.

Furthermore, the result of Theorem 3.3 indicates that(
1− τI

1− τE

)γ̂(x)−γ

= exp
[
(γ̂(x)− γ) log

(
1− τI

1− τE

)]
= 1 + (γ̂(x)− γ) log

(
1− τI

1− τE

)
(1 + oP (1))

= 1 + {b(k|x) + v(k|x)T W } log
(

1− τI

1− τE

)
(1 + oP (1)).

Meanwhile, we obtain

q̂Y (τI |x)
qY (τI |x)

= 1 +
bλ(τI |x)
qY (τI |x)

+
ν(τI |x)T

qY (τI |x)
W + oP (k−m/(2m+1)),

where W is that given in the proof of Theorem 3.3. Using above, we have

q̂Y (τE |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τI |x)

qY (τI |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τI |x)

(1 + o(k−m/(2m+1)))

=
{

1 + (b(k|x) + v(k|x)T )W ) log
(

1− τI

1− τE

)
(1 + oP (1))

}
×
[
1 +

{
bλ(τI |x)
qY (τI |x)

+
ν(τI |x)T

qY (τI |x)
W

}
(1 + oP (1))

]
(1 + o(k−m/(2m+1)))

= 1 +
{

log
(

1− τI

1− τE

)
v(k|x) +

ν(τI |x)
qY (τI |x)

}T

W

+b(k|x) log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

+o

(
k−m/(2m+1) log

(
1− τI

1− τE

))
+ oP ({n(1− τI)}−m/(2m+1)).

Consequently, we obtain

q̂Y (τE |x)
qY (τE |x) − 1− bias(τE |x)

s(τE |x)
D−→ N(0, 1),

where

bias(τE |x) = b(k|x) log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

(B.5)

and

s(τE |x) =
∣∣∣∣∣∣∣∣log

(
1− τI

1− τE

)
v(k|x) + qY (τI |x)−1ν(τI |x)

∣∣∣∣∣∣∣∣ .(B.6)
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Here, for a vector a, ||a|| means the `2-norm of a. Furthermore, we get

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

Similarly, for the common index estimator q̂C
Y (τE |x), we have

q̂C
Y (τE |x)

qY (τE |x)
= 1 + E[b(k|X)] log

(
1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

+
{

E[v(k|X)] log
(

1− τI

1− τE

)
+

ν(τI |x)
qY (τI |x)

}T

W

+ oP

(
k−m/(2m+1) log

(
1− τI

1− τE

))
+ oP ({(1− τI)n}−m/(2m+1)).

Accordingly,
q̂C
Y (τE |x)

qY (τE |x) − 1− biasC(x)

sC(τE |x)
D−→ N(0, 1),

where

biasC(τE |x) = E[b(k|X)] log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

(B.7)

and

sC(τE |x) =
∣∣∣∣∣∣∣∣E[v(k|X)] log

(
1− τI

1− τE

)
+

ν(τI |x)
qY (τI |x)

∣∣∣∣∣∣∣∣ .(B.8)

Finally, we obtain the optimal rate of convergence of MISE of the common index estimator
as

E

[{
q̂C
Y (τE |x)

qY (τE |x)
− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.
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