
REVSTAT – Statistical Journal
Volume 19, Number 2, April 2021, 207–236

ON THE ESTIMATION FOR COMPOUND POISSON
INARCH PROCESSES

Authors: E. Gonçalves
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Abstract:

• Considering the wide class of discrete Compound Poisson INARCH models, introduced in [6], the
main goal of this paper is to develop and compare parametric estimation procedures for first-order
models, applicable without specifying the conditional distribution of the process. Therefore, two-
step estimation procedures, combining either the conditional least squares (CLS) or the Poisson
quasi-maximum likelihood (PQML) methods with that of the moment’s estimation, are introduced
and discussed. Specifying the process conditional distribution, we develop also within this class of
models the conditional maximum likelihood (CML) methodology. A simulation study illustrates,
particularly, the competitive performance of the two-step approaches regarding the more classical
CML one which requires the conditional distribution knowledge. A final real-data example shows
the relevance of this wide class of models, as it will be clear the better performance in the data
fitting of some new models emerging in such class.
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1. INTRODUCTION

The family of discrete compound Poisson distributions, which includes as particular
cases the Poisson, the Neyman type-A or the geometric Poisson laws, was recently used to
define a new class of integer-valued GARCH models, the compound Poisson INGARCH ones
[6], specified through the characteristic function of the conditional law of the process given its
past. Namely, X = (Xt, t ∈ Z) follows a CP-INGARCH process if the characteristic function
of Xt conditioned on Xt−1 is such that

ΦXt|Xt−1
(u) = exp

{
i

λt

ϕ ′
t(0)

[
ϕt(u)− 1

]}
, u ∈ R,

E(Xt |Xt−1) = λt = α0 +
p∑

j=1

αjXt−j +
q∑

k=1

βk λt−k,

where α0 > 0, α1, ..., αp, β1, ..., βq ≥ 0, Xt−1 represents the σ-field generated by {Xt−s, s≥ 1}
and (ϕt, t ∈ Z) is a family of characteristic functions on R, Xt−1-measurables, associated to
a family of discrete laws with support in N0 and finite mean. If βk = 0, k = 1, ..., q, the
CP-INGARCH(p, q) model is simply denoted CP-INARCH(p). The functional form of
the conditional characteristic function ΦXt|Xt−1

allows a wide flexibility of the class of
CP-INGARCH models. In fact, as it is assumed that the family of discrete characteristic
functions (ϕt, t ∈ Z) is Xt−1-measurable it means that its elements may be random functions
or deterministic ones. Thus, this general model unifies and enlarges substantially the family
of conditionally heteroscedastic integer-valued processes. In fact, it is possible to present
new specific models with conditional distributions with interest in practical applications as,
for instance, the geometric Poisson INGARCH ([6]) or the Neyman type-A INGARCH ([5])
ones, and also recover recent contributions such as the Poisson INGARCH ([4]), the gener-
alized Poisson INGARCH ([15]), the negative binomial INGARCH ([14]) and the negative
binomial DINARCH ([13]) processes (corresponding to random or deterministic functions ϕt,
respectively). In addition to having the ability to describe different distributional behaviors
and consequently different kinds of conditional heteroscedasticity, the CP-INGARCH model
is able to incorporate simultaneously the overdispersion characteristic that has been recorded
in real count data.

In this paper, we focus on the case where ϕt is deterministic and constant in time which
still includes many of the particular cases referred above. For that reason, from now on we will
refer these functions simply as ϕ. In this subclass of models, there exists a strictly stationary
and ergodic solution with finite first and second order moments under

∑p
j=1 αj +

∑q
k=1 βk < 1

([6]). For p = q = 1, Gonçalves, Mendes-Lopes and Silva [7] stated that this simple coefficient
condition is also necessary and sufficient to establish the existence of all the moments of Xt.

In this class of models we have, additionally to the usual estimation of the parame-
ters of the conditional mean, the estimation of ϕ. We observe that a related problem with
the knowledge of ϕ has been discussed in [12] in which a testing methodology was pro-
posed to distinguish between a simple Poisson INARCH model (ϕ(u) = exp(iu)) and a true
CP-INARCH one (ϕ(u) 6= exp(iu)). In order to analyse ϕ, in this paper we propose a two-step
estimation procedure that lead us to its consistent estimation after estimating the conditional
mean parameters.
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The remainder of the paper proceeds as follows. In Section 2 we consider the subclass
of CP-INARCH models of order one, with ϕt = ϕ deterministic, and deduce its moments,
central moments and cumulants up to the order 4. These results are particularly important
in Section 3, devoted to estimation procedures, to deduce explicit expressions for the asymp-
totic distribution of the Conditional Least Squares (CLS) estimators of the conditional mean
parameters, α0 and α1. In a second step, the method of moments is used to estimate the
additional parameter associated to the function ϕ. Another two-step estimation procedure,
combining the Poisson Quasi Maximum Likelihood (PQML) and the moment methods, is also
proposed in this section, followed by the Conditional Maximum Likelihood (CML) estima-
tion for the NTA-INARCH(1) and GEOMP2-INARCH(1) models. Section 4 presents some
simulation studies that illustrate and compare the performance of these three methodologies
of estimation. In Section 5 an integer-valued time series related to the prices of electricity in
Portugal and Spain between July 2016 and June 2017 is considered. The data is fitted by
several CP-INARCH(1) models estimated by the three estimation approaches considered and
the quality of the fitting is discussed using for the CML method, in particular, the values of
the log likelihood function, Akaike and Bayesian information criteria. Detailed calculations
are included in the Appendices.

2. THE CP-INARCH(1) PROCESS

Let us consider now the subclass of CP-INARCH(1) models. Supposing ϕt = ϕ constant
in time and deterministic we recall that α1 < 1 is a necessary and sufficient condition to assure
the existence of a strictly stationary and ergodic solution of the model. Moreover the process
has moments of all the orders.

Setting X = (Xt, t ∈ Z) a CP-INARCH(1) process we derive in the following closed-
form expressions for the joint (central) moments and cumulants of the CP-INARCH(1) up to
order 4. In fact, setting the notations below (used, for instance, by Weiß in [10]),

fk =
α0∏k

j=1 (1− αj
1)

, k ∈ N,

µ(s1, ..., sr−1) = E
(
XtXt+s1 ···Xt+sr−1

)
,

µ̃(s1, ..., sr−1) = E
(
(Xt−µ) (Xt+s1−µ) ··· (Xt+sr−1−µ)

)
,(2.1)

κ(s1, ..., sr−1) = Cum
[
Xt, Xt+s1 , ..., Xt+sr−1

]
,

with r = 2, 3, 4 and 0 ≤ s1 ≤ ··· ≤ sr−1, and

v0 = −i
ϕ ′′(0)
ϕ ′(0)

, d0 = −ϕ ′′′(0)
ϕ ′(0)

, c0 = i
ϕ(IV)(0)
ϕ ′(0)

,

we establish the following results whose proofs may be found in Appendices A and B,
respectively.
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Theorem 2.1 (Moments of a CP-INARCH(1) process). We have:

(a) For any k ≥ 0, µ(k) = f2

(
v0αk

1 + α0(1 + α1)
)
.

(b) For any l ≥ k ≥ 0,

µ(k, l) =
[
d0(1− α2

1)− v2
0(1 + α1 − 2 α2

1)
]
f3 αl+k

1 +
v0(α0 + v0)

1− α1
f2 αl

1

+ v0f1f2 αl−k
1 + f1µ(k).

(c) For any m ≥ l ≥ k ≥ 0,

µ(k, l,m) = αm−l
1

[{
(c0 − 4v0d0 + 3v3

0) + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
f4α

2l+k
1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
v0

(1− α1)(1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
α0f3

1− α1

{
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
}

α
2(l−k)
1 +

v0 + α0

1− α1
µ(k, l)

− f2µ(k)
[
α0 + (v0 + α0)α1

]]
+ f1µ(k, l).

Corollary 2.1 (Central Moments and Cumulants of a CP-INARCH(1) process).
We have:

(a) For any s ≥ 0, µ̃(s) = κ(s) = v0α
s
1f2.

(b) For any l ≥ s ≥ 0, we have

µ̃(s, l) = κ(s, l) = f3α
l
1

[
v2
0(1 + α1 + α2

1)−
{

v2
0(1 + α1 − 2α2

1)− d0(1− α2
1)
}

αs
1

]
.

(c) For any m ≥ l ≥ s ≥ 0,

κ(s, l, m) = αm
1 f4

[{
c0 + 3v3

0 − 4v0d0 + 3v0(v2
0 − d0)α1 + (3α0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
αl+s

1

+ v0(1 + α1 + α2
1 + α3

1)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
(2αl

1 + αs
1)

+ v0(1 + α1 + α2
1)(1 + α2

1)
[
(1 + α1)v2

0 +
(
d0(1− α1) + v2

0(2α1 − 1)
)
αl−s

1

]]
,

µ̃(s, l, m) = κ(s, l, m) + v2
0f

2
2 (αm−l+s

1 + 2αm+l−s
1 ).

From Theorem 2.1 we deduce, for instance,

E(X2
t ) = µ(0) =

α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
,(2.2)

E(X3
t ) = µ(0, 0) =

α0

(1− α1)3

[
d0 + (3v2

0 − d0)α2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

]
.
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These results generalize those of Weiß [10] for the INARCH(1) model and the two last
equalities are important to deduce explicit expressions for the asymptotic distribution of the
CLS estimators of the parameters α0 and α1 provided in the next section. As we will take in
our study some important particular cases concerning the process conditional law, we conclude
this section recalling such cases and deducing the corresponding values of v0, d0 and c0,
previously introduced.

a) The INARCH(1) model ([4]) corresponds to a CP-INARCH model considering
ϕ the characteristic function of the Dirac’s law concentrated in {1}, that is, with
a Poisson conditional distribution; we denote it by Poisson-INARCH(1) model.
So, we deduce that v0 = d0 = c0 = 1.

b) When ϕ is the characteristic function of the Poisson distribution with mean φ > 0,
Xt |Xt−1 follows a Neyman type-A law with parameter (λt/φ, φ), and we have
the NTA-INARCH(1) model introduced in [5]. For this case, v0 = 1 + φ, d0 =
1 + 3φ + φ2 and c0 = 1 + 7φ + 6φ2 + φ3.

c) Considering in the above expressions v0 = (2− p∗)/p∗, d0 =
(
6− 6p∗+(p∗)2

)
/(p∗)2

and c0 =
(
(2− p∗)

(
12− 12p∗ + (p∗)2

))
/(p∗)3, we obtain the expressions for the

GEOMP2-INARCH(1) model ([6]). In fact, this process is defined considering ϕ

the characteristic function of the geometric distribution with parameter p∗∈ ]0, 1[
and Xt |Xt−1 following a geometric Poisson (p∗λt, p

∗) law.

d) Another particular case of the CP-INARCH model is the NB2-INARCH (that is
identical to the NB-DINARCH model proposed by Xu et al., [13]), where Xt |Xt−1

follows a negative binomial distribution with parameter
(
λt/(β−1), 1/β

)
and β > 0.

This process is stated when ϕ is the characteristic function of the logarithmic
distribution with parameter (β − 1)/β and then we deduce v0 = β, d0 = 2β2 − β

and c0 = 6β2(β − 1) + β.

e) When ϕ is the characteristic function of the Borel law with parameter κ ∈ ]0, 1[,
Xt |Xt−1 follows a generalized Poisson distribution with parameter

(
(1−κ)λt, κ

)
and we recover the GP-INARCH model ([15]). So, v0 = (1−κ)−2, d0 = (2κ+1)(1−κ)−4

and c0 = (6κ2 + 8κ + 1) (1− κ)−6.

3. ESTIMATION PROCEDURES

In this section, we focus on the estimation of the vector θ = (α0, α1, v0)>, where
v0 includes the additional parameter associated to the conditional distribution of the
CP-INARCH(1) model (for example, v0 = 1 + φ in the NTA-INARCH(1) model and
v0 = (2− p∗)/p∗ in the GEOMP2-INARCH(1)). To estimate the true value of θ, we start
by discussing a two-step approach using the conditional least squares and moment estima-
tion methods; after we consider the combination of the Poisson Quasi-Maximum Likelihood
and moments estimation methods and finally develop the conditional maximum likelihood
estimation. For this purpose, let (x1, ..., xn) be n particular values, arbitrarily fixed, of the
process X.
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3.1. Two-step estimation procedures

3.1.1. Conditional Least Squares and Moments estimation methods

In the first step, we discuss the conditional least squares (CLS) approach for the esti-
mation of the conditional mean parameters α0 and α1 and, for parameter v0 associated to
the CP-INARCH(1) conditional distribution, an approach based on the moment estimation
method is developed.

The CLS estimator of α = (α0, α1) is obtained by minimizing the sum of squares

Qn(α) =
n∑

t=2

[
xt − E

(
Xt |Xt−1 = xt−1

)]2
=

n∑
t=2

[
xt − α0 − α1xt−1

]2
,

with respect to α. Solving the least squares equations
∂Qn(α)

∂α0
= −2

n∑
t=2

(xt − α0 − α1xt−1) = 0,

∂Qn(α)
∂α1

= −2
n∑

t=2

xt−1 (xt − α0 − α1xt−1) = 0,

we obtain the following explicit expressions for the CLS estimator α̂n = (α̂0,n, α̂1,n):

α̂1,n =

∑n
t=2 XtXt−1 − 1

n−1 ·
∑n

t=2 Xt ·
∑n

s=2 Xs−1∑n
t=2 X2

t−1 − 1
n−1

(∑n
t=2 Xt−1

)2 ,

(3.1) α̂0,n =
∑n

t=2 Xt − α̂1,n
∑n

t=2 Xt−1

n− 1
.

The consistency and the asymptotic distribution of these estimators are stated in
the next theorem. This theorem generalizes the results obtained in [11], Section 4.2, where
the CLS estimators of α0 and α1 are obtained and studied in the particular case of
a Poisson-INARCH model.

Theorem 3.1. Let α̂n =(α̂0,n, α̂1,n) be the CLS estimator of α =(α0, α1) given in (3.1).
Then α̂n converges almost surely to α and

√
n (α̂n − α) d−→ N

(
02×1,V−1WV−1

)
,

as n →∞, where the entries of the matrix V−1WV−1 = (bij), i, j = 1, 2, are given by

b11 =
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0) α2
1

)
v0(1 + α1 + α2

1)
,

b22 = (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0) α2
1

)
v0α0(1 + α1 + α2

1)

)
,

and
d−→ means convergence in distribution.
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Proof: The results announced are proved using those of KlimkoandNelson [9, Section 3].
In fact, it is easily checked that the regularity conditions (i) to (iii) defined on [9, p. 634] are
satisfied taking into account that g(α;Xt−1) = E

(
Xt |Xt−1

)
= α0 + α1Xt−1, and thus, by

their Theorem 3.1, it follows that the CLS estimators are strongly consistent. Furthermore,
the matrix V is invertible as it is given by

V =

 E

(
∂g

∂α0

∂g

∂α0

)
E

(
∂g

∂α0

∂g

∂α1

)
E

(
∂g

∂α1

∂g

∂α0

)
E

(
∂g

∂α1

∂g

∂α1

)
=

 E(1) E(Xt−1)

E(Xt−1) E(X2
t−1)

=

 1
α0

1−α1

α0

1−α1

α0

(
v0 + α0(1+ α1)

)
(1−α1) (1−α2

1)

,

considering the expressions stated in Theorem 2.1. Thus, Theorem 3.2 of [9] is satisfied
implying the asymptotic normality of the CLS estimators. The entries of the covariance
matrix of the asymptotic distribution V−1WV−1 are derived in Appendix C.

To estimate the parameter v0 we propose to use the moments estimation method. Tak-
ing into consideration the expression (2.2) of the second order moment of the CP-INARCH(1)
model, an estimator for v0, whose strong consistence is a consequence from the strict station-
arity and ergodicity of the process X, is given by solving the equation

α̂0,n

(
v0 + α̂0,n(1 + α̂1,n)

)
(1− α̂1,n) (1− α̂2

1,n)
=

1
n

n∑
t=1

X2
t

in order to v0. In this way we get the two-step CLS+M estimator for (α0, α1, v0).

We note that the estimation of v0 doesn’t involve the knowledge of the conditional law, as
it is totally determined by the estimators of α0 and α1 and the empirical second order moment.

3.1.2. Poisson Quasi-Maximum Likelihood and Moments estimation methods

One of the advantages of using the above CLS+M approach is the fact that we do
not need to specify entirely the conditional distribution of the CP-INARCH(1) model to
estimate its parameters. We refer now another two-step approach where it is used the Poisson
quasi-conditional maximum likelihood estimator (PQMLE) to estimate the conditional mean
parameters α0 and α1 and, as previously, the moment estimation method for parameter v0.
The resulting estimator is denoted PQML+M.

The PQMLE provides a general approach for estimating the conditional mean param-
eters of the CP-INARCH(1) models by maximizing a pseudo-likelihood function considering
the conditional distribution the Poisson one, that is, the function

L̃n(θ|x) =
n∑

t=2

(
xt log(λt)− λt − log(xt!)

)
.

Ahmad and Francq [1] found some regularity conditions to establish the consistency and
asymptotic normality of the Poisson quasi-maximum likelihood estimator of the conditional
mean parameters of a count time series. These regularity conditions are easily satisfied by a
CP-INARCH(1) process with α1 <1, and so the PQML estimator of (α0, α1) is consistent and
asymptotically Gaussian. The almost sure convergence of the v0 estimator follows as previously.
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3.2. Conditional Maximum Likelihood Estimation

When the distribution of Xt |Xt−1 is known, we can estimate its parameters using the
conditional maximum likelihood estimation (CMLE) method. In this section, we discuss this
procedure by considering NTA-INARCH(1) and GEOMP2-INARCH(1) models, as developed
in [11], Section 4.1, for a Poisson-INARCH(1) model .

Starting by a NTA-INARCH(1) process, we have the conditional probability mass func-
tion of Xt ([8]) given by

P
[
Xt = xt |Xt−1

]
=

e
−λt

φ φxt

xt!
Z(λt, xt, φ), Z(λt, Xt, φ) =

∞∑
j=0

(
λte

−φ
)j

jXt

φj j!
,

for xt = 0, 1, ... . The conditional likelihood function is then

Ln(θ|x) =
n∏

t=2

e
−λt

φ φxt

xt!
Z(λt, xt, φ),

where for convenience θ = (α0, α1, φ) as v0 = 1 + φ. So the log-likelihood function has the
form

log Ln(θ|x) =
n∑

t=2

lt(θ) =
n∑

t=2

{
−λt

φ
+ xt log(φ)− log(xt!) + log

(
Z(λt, xt, φ)

)}
.

The first derivatives of lt are given as

∂ lt(θ)
∂φ

=
λt

φ2
+

xt

φ
−
(

φ + 1
φ

)
Z(λt, xt + 1, φ)

Z(λt, xt, φ)
,

∂ lt(θ)
∂αj

=
[
− 1

φ
+

1
λt

Z(λt, xt + 1, φ)
Z(λt, xt, φ)

]
∂λt

∂αj
, j = 0, 1,

and the second derivatives of lt are

∂2lt(θ)
∂φ2

= −2λt

φ3
− xt

φ2
+

Z(λt, xt +1, φ)
φ2Z(λt, xt, φ)

+
(

φ +1
φ

)2 [Z(λt, xt +2, φ)
Z(λt, xt, φ)

− Z2(λt, xt +1, φ)
Z2(λt, xt, φ)

]
,

∂2lt(θ)
∂φ∂αj

=

[
1
φ2

− φ + 1
φλt

{
Z(λt, xt + 2, φ)

Z(λt, xt, φ)
− Z2(λt, xt + 1, φ)

Z2(λt, xt, φ)

}]
∂λt

∂αj
,

∂2lt(θ)
∂αj∂αk

=
1
λ2

t

[
−Z(λt, xt + 1, φ)

Z(λt, xt, φ)
+

Z(λt, xt + 2, φ)
Z(λt, xt, φ)

− Z2(λt, xt + 1, φ)
Z2(λt, xt, φ)

]
∂λt

∂αj

∂λt

∂αk
,

for 0 ≤ j, k ≤ 1, where the expressions for ∂λt/∂αj and ∂2λt/∂αj∂αk are easily deduced.
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Analogously, for the GEOMP2-INARCH(1) process we obtain the following expression:

log Ln(θ|x) =
n∑

t=2

lt(θ)

=
n∑

t=2

− λt + log

1xt=0 +

[
xt∑

n=1

λn
t

n!

(
xt − 1
n− 1

)
(p∗)n (1− p∗)xt−n

]
1xt 6=0


 ,

where θ = (α0, α1, p
∗), as v0 = (2− p∗)/p∗ and taking into consideration that the conditional

probability mass function of Xt is given by

P
[
Xt = 0 |Xt−1

]
= e−λt ,

P
[
Xt = xt |Xt−1

]
=

xt∑
n=1

e−λt
λn

t

n!

(
xt − 1
n− 1

)
(p∗)n (1− p∗)xt−n, xt = 1, 2, ...

Similarly to the previous case, the first and second derivatives of lt in order to α0, α1 and p∗

are deduced.

4. A SIMULATION STUDY

Some simulation studies are now developed to examine and compare the performance of
the different estimators considered in Section 3 for the model parameters. We begin by illus-
trating the two-step approach based on CLS and moments estimation methods by computing
the estimates and analyzing its performance. In the sequel, the several estimation proce-
dures are discussed and compared. The study is developed considering the NTA-INARCH(1)
and the GEOMP2-INARCH(1) models. So, after estimating α0, α1 and v0, we deduce the
estimator of φ, in the first case, given by

φ̂n = −1− α̂0,n(1 + α̂1,n) +
(1− α̂1,n) (1− α̂2

1,n)
n α̂0,n

n∑
t=1

X2
t ,

and, in the second one, that of p∗ namely

p̂∗n = 2

[
1− α̂0,n(1 + α̂1,n) +

(1− α̂1,n) (1− α̂2
1,n)

n α̂0,n

n∑
t=1

X2
t

]−1

.

4.1. CLS estimators performance

4.1.1. NTA-INARCH(1) model

To illustrate the CLS method, we focus on the NTA-INARCH(1) model with true
parameters α0 = 2, α1 = 0.2 and φ = 2 and, for different sample sizes n = 100, 250, 500, 750,
1 000, we present in Table 1 the expected values, variances and covariance of α̂0,n, α̂1,n and φ̂n,
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considering 10 000 replications. In the last column of this table we present the true values of
α0, α1 and φ, as well as the entries of the asymptotic matrix V−1WV−1, respectively b11,
b22 and b12, given in Theorem 3.1. We verify that the asymptotic and the sample values are
quite similar for large values of n.

Table 1: Means, variances and covariances for the CLS+M estimates of the NTA-INARCH(1) model
with coefficients α0 = 2, α1 = 0.2, φ = 2 and for different sample sizes n.

n 100 250 500 750 1 000

Eest(bα0) 2.0444 2.0161 2.0090 2.0090 2.0041 2
Eest(bα1) 0.1797 0.1918 0.1956 0.1973 0.1981 0.2

Eest(bφ) 1.9238 1.9670 1.9842 1.9899 1.9929 2
n ·Vest(bα0) 12.2393 12.3125 12.3782 12.3133 12.3133 12.3774
n ·Vest(bα1) 1.1793 1.1957 1.2227 1.2594 1.2776 1.2604

n ·Vest(bφ) 21.9663 21.7000 21.3637 22.2183 22.1552
n ·Covest(bα0, bα1) −2.3311 −2.4081 −2.4814 −2.5270 −2.5911 −2.5510

Figure 1 displays a multiple boxplot for samples of length n = 250, 750 and 2 000 of
the CLS estimator of α0 and α1 based on 10 000 model replications as well as the histogram
of the corresponding standardized values, for n = 2000, of a NTA-INARCH(1) model with
α0 = 2, α1 = 0.2 and φ = 2. These multiple boxplots show a significant stability and allow
to infer a high rate of convergence to the limit distribution. In agreement with Theorem 3.1,
the plots indicate the adequacy of the normal for the empirical marginal distributions of
the estimators α̂0, α̂1. Let us observe that the Kolmogorov–Smirnov test for the sampling
laws of the standardized CLS estimation gives large p-values for testing the standard normal
distribution as, for instance, when we consider n = 2000 and 1 000 replications we obtain
0.9454 and 0.4051.
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Figure 1: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of α̂0 (on top) and α̂1 (below) for a NTA-INARCH(1) process
with α0 = 2, α1 = 0.2 and φ = 2. Superimposed is the standard normal density
function. The results are based on 10 000 replications.
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In Figure 2 we present now a multiple boxplot and the histogram of the distribution
of
√

n (φ̂n − φ). Figure 3 shows the similarity between the empirical cumulative distribution
function of

√
n (φ̂n−φ) (represented in solid line) and the cumulative distribution function of

the normal(0, 4.7) law (in dashed line), whose parameters are the sample mean and variance of√
n (φ̂n−φ). The stability previously observed appears also here and, once again, the p-value

of the Kolmogorov–Smirnov test, namely 0.8231 when n = 2000 and for 1 000 replications,
indicates the adequacy of the normal for the empirical distribution of

√
n (φ̂n − φ).

Figure 2: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of

√
n
(
φ̂n− φ

)
when α0 = 2, α1 = 0.2 and φ = 2 for

a NTA-INARCH(1).

Figure 3: Empirical CDF of the law of
√

n
(
φ̂n−φ

)
when α0 = 2, α1 = 0.2 and φ = 2

for a NTA-INARCH(1) (in solid line) and the CDF of the normal(0, 4.7) law
(in dashed line), for n = 2 000.

From the empirical results presented in the two last lines of Table 2, we can pre-
sume that the estimators of α0 (resp., α1) and φ are asymptotically uncorrelated. In fact,
for the NTA-INARCH(1) model in study, the empirical correlations ρest(α̂0,n, φ̂n) and
ρest(α̂1,n, φ̂n) are significantly low. To support this statement we use the Monte Carlo
method to determine confidence intervals for the mean of ρest(α̂0,n, φ̂n) and for the mean
of ρest(α̂1,n, φ̂n) which we denote by m0,n,en and m1,n,en, respectively. The confidence in-
tervals are obtained considering ñ = 35 and ñ = 50 replications of n-dimensional samples
(n = 500 and n = 1 000) of a NTA-INARCH(1) model with α0 = 2, α1 = 0.2 and φ = 2.



218 E. Gonçalves, N. Mendes-Lopes and F. Silva

Table 2: Empirical correlations for the CLS+M estimates of the NTA-INARCH(1) model
with coefficients α0 = 2, α1 = 0.2, φ = 2 and for different sample sizes n.

n 250 750 1 000 5 000 10 000

ρest(bα0,n, bα1,n) −0.6276 −0.6417 −0.6385 −0.6482 −0.6402

ρest(bα0,n, bφn) 0.0883 0.0962 0.1139 0.1059 0.0911

ρest(bα1,n, bφn) 0.0272 0.0192 0.0078 0.0246 0.0438

Such intervals with confidence level 0.99 are presented in Table 3, where we stress the lower
values when n or ñ increase. So we have estimated (α0, α1) and φ separately likely without
loss of efficiency.

Table 3: Confidence intervals for the mean of ρest(α̂0,n, φ̂n) and for the mean of ρest(α̂1,n, φ̂n),
with confidence level γ = 0.99 and for different sample sizes n and ñ.

en = 35 en = 50

n = 500 n = 1000 n = 500 n = 1000

m0,n,en [0.0917, 0.1180] [0.0883, 0.1162] [0.0940, 0.1160] [0.0814, 0.1064]

m1,n,en [0.0113, 0.0412] [0.0165, 0.0412] [0.0137, 0.0354] [0.0132, 0.0397]

4.1.2. GEOMP2-INARCH(1) model

Let us consider now the GEOMP2-INARCH(1) model with true parameters α0 = 2,
α1 = 0.4 and p∗ = 0.1. As in the previous section, for different sample sizes n, we compute
the expected values, variances and covariances of α̂0,n, α̂1,n and p̂∗n (see Table 4, where in
the last column we present the true values of α0, α1 and p∗ as well as the entries b11, b22

and b12 of the asymptotic matrix V−1WV−1) and for samples of length n = 250, 750 and
2 000 we plot a multiple boxplot and for n = 2000 the histograms for 10 000 values of the
CLS+M estimators (in Figure 4) and similar conclusions to the previous case may be deduced.

Table 4: Expected values, variances and covariances for the CLS+M estimates
of the GEOMP2-INARCH(1) model with α0 = 2, α1 = 0.4, p∗ = 0.1
and different sample sizes n.

n 100 250 500 750 1 000

Eest(bα0) 2.1401 2.0705 2.0381 2.0265 2.0241 2
Eest(bα1) 0.3267 0.3655 0.3803 0.3875 0.3900 0.4

Eest( bp∗) 0.1171 0.1068 0.1038 0.1025 0.1019 0.1
n ·Vest(bα0) 54.8720 54.9255 57.1036 57.6511 58.7167 61.5325
n ·Vest(bα1) 2.7975 3.2809 3.6923 3.8768 3.9021 4.3979

n ·Vest( bp∗) 0.2011 0.0879 0.0867 0.0884 0.0886
n ·Covest(bα0, bα1) −1.4509 −3.4576 −4.8393 −5.3491 −5.5056 −7.0598
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Figure 4: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of α̂0 (on top), α̂1 (in the middle) and p̂∗ (below) when α0 = 2,
α1 = 0.4 and p∗ = 0.1 for a GEOMP2-INARCH(1) process. Superimposed is the
standard normal density function. The results are based on 10 000 replications.

Figure 5: Empirical CDF of the law of
√

n
(
p̂∗n−p∗

)
when α0 = 2, α1 = 0.4 and

p∗ = 0.1 for a GEOMP2-INARCH(1) model (in solid line) and the CDF
of the normal(0, 0.3) law (in dashed line).
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To show the adequacy of the normal for the empirical distribution of
√

n (p̂∗n−p∗), in Figure 5
we present the empirical cumulative distribution function of

√
n (p̂∗n−p∗) (represented in

solid line) and the cumulative distribution function of the normal(0, 0.3) law (in dashed line).
Analogously to the previous study, we can also presume that the estimators of α0, (resp., α1)
and p∗ are asymptotically uncorrelated.

4.2. Comparative analysis of the estimation procedures

To examine and compare the finite sample performances of the CLS+M, PQML+M
and CML methods, we consider two different NTA-INARCH(1) models with parameter values
α0 = 2, α1 = 0.2, φ = 2 and α0 = 5, α1 = 0.3, φ = 1, and two different GEOMP2-INARCH(1)
models with parameter values α0 = 2, α1 = 0.2, p∗ = 0.1 and α0 = 5, α1 = 0.3, p∗ = 0.6.
The sample sizes considered are n = 500 and 1 000 and the number of replications m =10 000.

For the maximization of the log-likelihood functions, we use the MATLAB function
fmincon where the estimates obtained using the CLS+M method were used as the initial
values and the constrained conditions are α0 > 0, 0 < α1 < 1, φ > 0 (for the NTA) and
0 < p∗ < 1 (for the GEOMP2). The performance of the estimators is evaluated by the mean
square error, i.e.,

1
m

m∑
k=1

(
θ̂j,k − θj

)2
, j = 1, 2, 3.

The results of the simulation experiments are presented in Tables 5 and 6 where the smallest
values of the mean square errors are highlighted in italics.

Table 5: Mean estimates (in bold) and mean square errors (within parentheses)
for the NTA-INARCH(1) model with different sample sizes n.

n Method α0 = 2 α1 = 0.2 φ = 2 α0 = 5 α1 = 0.3 φ = 1

CLS+M
2.0071 0.1967 1.9832 5.0288 0.2956 0.9915
(0.0248) (0.0025) (0.0458) (0.1169) (0.0021) (0.0180)

500 PQML+M
2.0061 0.1971 1.9831 5.0259 0.2960 0.9912
(0.0239) (0.0023) (0.0459) (0.1123) (0.0020) (0.0181)

CML
2.0047 0.1977 1.9937 5.0249 0.2961 0.9928
(0.0233) (0.0022) (0.0174) (0.1115) (0.0020) (0.0141)

CLS+M
2.0023 0.1982 1.9906 5.0117 0.2979 0.9946
(0.0124) (0.0013) (0.0219) (0.0582) (0.0010) (0.0089)

1 000 PQML+M
2.0020 0.1983 1.9907 5.0103 0.2981 0.9945
(0.0120) (0.0012) (0.0221) (0.0558) (0.0010) (0.0090)

CML
2.0017 0.1985 1.9960 5.0105 0.2981 0.9948
(0.0116) (0.0011) (0.0085) (0.0552) (0.0010) (0.0072)

From this study we may conclude that the three methods seem to perform quite well,
although the CML gives slightly smaller mean square errors in most cases.
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Table 6: Mean estimates (in bold) and mean square errors (within parentheses)
for the GEOMP2-INARCH(1) model with different sample sizes n.

n Method α0 = 2 α1 = 0.2 p∗ = 0.1 α0 = 5 α1 = 0.3 p∗ = 0.6

CLS+M
2.0142 0.1898 0.1035 5.0269 0.2963 0.6033
(0.0964) (0.0058) (0.0002) (0.1219) (0.0021) (0.0009)

500 PQML+M
2.0070 0.1926 0.1036 5.0250 0.2966 0.6033
(0.0913) (0.0052) (0.0002) (0.1173) (0.0020) (0.0009)

CML
1.9967 0.1968 0.1013 5.0240 0.2967 0.6027
(0.0807) (0.0036) (0.0001) (0.1141) (0.0020) (0.0007)

CLS+M
2.0072 0.1959 0.1017 5.0100 0.2985 0.6020
(0.0481) (0.0030) (0.0001) (0.0600) (0.0011) (0.0004)

1 000 PQML+M
2.0032 0.1975 0.1018 5.0084 0.2988 0.6020
(0.0450) (0.0026) (0.0001) (0.0578) (0.0010) (0.0004)

CML
1.9995 0.1989 0.1006 5.0080 0.2988 0.6016
(0.0397) (0.0018) (0.0000) (0.0566) (0.0010) (0.0003)

5. REAL DATA EXAMPLE — COUNTS OF DIFFERENCES IN THE PRICES
OF ELECTRICITY IN PORTUGAL AND SPAIN

OMIE (http://www.omie.es) is the company that manages the wholesale electricity
market on the Iberian Peninsula. Electricity prices in Europe are set on a daily basis (every
day of the year) at 12 noon, for the twenty-four hours of the following day, known as daily
market. The market splitting is the mechanism used for setting the price of electricity on
the daily market. When the price of electricity is the same in Portugal and Spain, which
corresponds to the desired situation, it means that the integration of the Iberian market is
working properly.

In the following, we consider the time series that represents the number of hours in a
day in which the prices of electricity for Portugal and Spain are different. The data presented
in Figure 6 consists of 365 observations, starting from July 2016 and ending in June 2017.

Figure 6: Daily number of hours in which the price of electricity of Portugal and Spain are different,
starting from July 2016 and ending in June 2017.

Empirical mean and variance of the data are 1.4082 and 7.3027, respectively, indicating
that the true marginal distribution is overdispersed. Let us observe that this time series
exhibits also volatility clusters suggesting characteristics of conditional heteroscedasticity.

http://www.omie.es
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The partial autocorrelation function presented in Figure 7, suggests an order 1 dependence
and so a CP-INARCH(1) model may be a reasonable choice to fit the data within the
CP-INGARCH class. Despite the support bounding of this variable, the empirical analysis of
the data set observed allows us to infer that its distributional characteristics (see histogram
in Figure 7) are compatible with some compound Poisson laws.

Figure 7: Sample histogram, autocorrelations and partial autocorrelations.

Trying to obtain a suitable model for this count time series, we present a comparative
study between five CP-INARCH(1) processes, namely those associated to the Poisson ([4]),
the generalized Poisson ([15]), the Neyman type-A, the geometric Poisson and the negative
binomial ([13]) laws. Considering the slightly better performance observed in Section 3 for
the CML estimator, we begin by using this methodology to estimate the models parameters
and take a decision on the model fitting. The results, obtained with the help of MATLAB
software, are displayed in Table 7. So, based on the values of the log likelihood function, the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC), we conclude
that the GEOMP2-INARCH(1) model gives better fit than the other CP-INARCH(1) models
considered. The NB2 model follows closely and the Poisson model shows the worst adequacy.

Table 7: CML parameters estimates for several CP-INARCH(1) models. Standard errors
are shown in parentheses. The best values of the criteria −Log L, AIC and BIC
are emphasised in italics.

Model bα0,365 bα1,365
Additional −Log L AIC BICparameter

Poisson
0.9751 0.3055

786.3 1576.5 1584.3
(0.0008) (0.0018)

GP
0.8971 0.3608 bκ365 = 0.3736

524.6 1055.2 1066.9
(0.0012) (0.0018) (0.0073)

INARCH(1) NTA
0.9558 0.3192 bφ365 = 2.4368

524.7 1055.4 1067.1
(0.0051) (0.0125) (0.0502)

GEOMP2
0.9338 0.3349 bp∗365 = 0.3599

516.2 1038.4 1050.1
(0.0060) (0.0022) (0.0024)

NB2
0.9129 0.3496 bβ365 = 5.5659

519.8 1045.6 1057.3
(0.0078) (0.0031) (0.0968)
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The mean, variance and the first-order autocorrelation coefficient (FOAC) for the fitted
CP-INARCH(1) models are summarized in Table 8. The results are in accordance with the
previous conclusion as, although the similarity of the mean values, the variance and FOAC
values point to a GEOMP2 or NB2-INARCH(1) choice. The two other methodologies are
also considered to estimate the previous models and it should be noted in Table 9 the close
proximity between each of the three parameters and those obtained by the CML method in
the case of the GEOMP2 and also NB2 models. This conclusion is validated by the values
referred in Table 10 for the sample and estimated means, variances and FOAC values under
the two methods, particularly for the CLS+M one. Thus these methodologies seem to cap-
ture the same models as the powerful but distribution-demanding CML approach, which is
in line with the previous conclusions of the simulation study.

Table 8: Sample and estimated means, variances and FOACs under CP-INARCH(1) models.

Method Model Sample Poisson GP NTA GEOMP2 NB2

Mean 1.4082 1.4040 1.4034 1.4039 1.4040 1.4036
CML Variance 7.3027 1.5485 4.1125 5.3723 7.2064 8.9001

FOAC 0.349 0.3055 0.3608 0.3192 0.3349 0.3496

Table 9: Estimated parameters of several CP-INARCH(1) models based on CLS+M and
PQML+M approaches. Standard errors are shown in parentheses. (a) means all models.

Method Model
Additional
parameter

(a) bα0,365 = 0.9138 bα1,365 = 0.3490
Poisson (0.0862) (0.0564) —

CLS+M
GP (0.1493) (0.0928) 0.5319
NTA (0.1337) (0.0799) 3.5645
GEOMP2 (0.1392) (0.0845) 0.3594
NB2 (0.1445) (0.0889) 4.5645

(a) bα0,365 = 0.9751 bα1,365 = 0.3055
GP (0.0008) (0.0018) 0.5392

PQML+M NTA (0.0008) (0.0018) 3.7096
GEOMP2 (0.0008) (0.0018) 0.3503
NB2 (0.0008) (0.0018) 4.7096

Table 10: Sample and estimated means, variances and FOACs under CP-INARCH(1) models.

Method Model Sample GEOMP2 NB2

Mean 1.4082 1.4037 1.4037
CLS+M Variance 7.3027 7.2964 7.2958

FOAC 0.349 0.3490 0.3490

Mean 1.4082 1.4040 1.4040
PQML+M Variance 7.3027 7.2926 7.2929

FOAC 0.349 0.3055 0.3055
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The statistical study that was developed in this Section was naturally circumscribed to
the class of CP-INARCH(1) models considered here. However, this observed time series has
characteristics that can also be taken into account if the adjustment is done in other classes
of models, namely, in view of its histogram, the zero-inflated CP-INGARCH models ([7]).

6. CONCLUSION

The class of integer-valued GARCH models, specified through the characteristic func-
tion of the compound Poisson law and denoted CP-INGARCH ([6]) unifies and enlarges
substantially the family of conditionally heteroscedastic integer-valued processes. With this
new class, we may capture simultaneously different kinds of conditional volatility and the
overdispersion characteristic often recorded in real count data. The probabilistic analysis of
these models, concerning stationarity and ergodicity properties as well as moments studies,
was the goal of previous works among which we may refer those established in [5] and [6].
The aim of this paper is to develop some statistical studies, regarding the parametric estima-
tion of the CP-INARCH models, that allow the use of this general class with real data and
show its true practical usefulness. We concentrate our study on the CP-INARCH models of
order one, and a two-step estimation methodology, involving the conditional least squares or
the Poisson quasi-maximum likelihood methods in a first step, and the moment’s estimation
method in the second one, has been introduced and developed. We point out the great ad-
vantage of this procedure regarding the more classical conditional maximum likelihood one,
as its application is independent from the specific conditional distribution of the process.
In fact, the simulation study presented allows concluding that the two-step methodology per-
formance is strongly competitive with that of the conditional maximum likelihood estimation.
We should also stress that the practical relevance of this wide class is clearly shown with the
real-data example presented which illustrates the better quality of the fitting performed by
new models emerged from that class.

Future developments of the present study should concern, particularly, the establish-
ment of the conjectured Gaussian asymptotic distribution of the additional parameter
estimator. The development of the parametric estimation of a more general CP-INGARCH
model should also be considered.
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A. APPENDIX — Proof of Theorem 2.1

To establish the results present in Theorem 2.1 let us begin by recalling the expression
of the following conditional moments:

E(Xt |Xt−1) = λt = α0 + α1Xt−1,

E(X2
t |Xt−1) = v0λt + λ2

t = α2
1X

2
t−1 + α1(2α0 + v0)Xt−1 + α0(α0 + v0),(A.1)

E(X3
t |Xt−1) = i Φ′′′

Xt|Xt−1
(0)

= d0λt + 3v0λ
2
t + λ3

t

= α3
1X

3
t−1 + 3α2

1(v0 + α0)X2
t−1 + α1(3α2

0 + 6v0α0 + d0)Xt−1

+ α0(d0 + 3v0α0 + α2
0).(A.2)

(a) Using the fact that for k ≥ 0, Γ(k) = αk
1f2, we get

µ(k) = E(XtXt+k) = Cov(Xt, Xt+k) + E(Xt)2 = f2

(
v0α

k
1 + α0(1 + α1)

)
.(A.3)

(b) To derive µ(k, l), 0 ≤ k ≤ l, we distinguish the following three cases:

Case 1: l > k. We have

µ(k, l) = E(XtXt+kXt+l)

= E
[
XtXt+kE(Xt+l |Xt+l−1)

]
= α0E(XtXt+k) + α1E(XtXt+kXt+l−1)

= α0µ(k) + α1µ(k, l − 1)

= α0µ(k) + α1

[
α0µ(k) + α1µ(k, l − 2)

]
= ···
= αl−k

1

[
µ(k, k)− f1µ(k)

]
+ f1µ(k).

Case 2: l = k > 0. We have

µ(k, k) = E
[
XtE(X2

t+k |Xt+k−1)
]

= α2
1E(XtX

2
t+k−1) + α1(2α0 + v0) E(XtXt+k−1) + α0(α0 + v0) E(Xt)

= α2
1µ(k − 1, k − 1) + α1(2α0 + v0) µ(k − 1) + α0(α0 + v0)f1

= ···
= α2k

1

[
µ(0, 0)− v0(2α0 + v0)f2

1− α1
− f1µ(0)

]
+

v0(2α0 + v0)f2α
k
1

1− α1
+ f1µ(0).

Case 3: l = k = 0. According to the relations between the moments and the
cumulants (e.g., formula (15.10.4) in [3, p. 186]) and Theorem 4.2 of [7], we have

µ(0, 0) = E(X3
t )

= κ3 + 3κ2µ + µ3

= f3

[
d0(1− α2

1) + 3v2
0α

2
1

]
+ 3v0f2f1 + f3

1

=
[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 +

2α0v0

1− α1
f2 + f1µ(0),
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since f1 = (1− α2
1)f2. So the above formula for µ(k, k) simplifies to

µ(k, k) = α2k
1

[[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 −

v2
0

1− α1
f2

]
+

v0(2α0 + v0)
1− α1

f2α
k
1 + f1µ(0)

= α2k
1 f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]

+
v0(2α0 + v0)

1− α1
f2α

k
1 + f1µ(0),

which also holds for k = 0. Replacing this expression in µ(k, l) above, it follows
that

µ(k, l) = αl−k
1

[[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1 +

v0(2α0 + v0)
1− α1

f2α
k
1

+ f1µ(0)− f1µ(k)
]

+ f1µ(k).

As

f1µ(0)− f1µ(k) = v0f1f2 −
v0α0

1− α1
f2α

k
1 ,

we finally obtain, for any 0 ≤ k ≤ l,

µ(k, l) =
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

l+k
1 +

v0(α0 + v0)
1− α1

f2α
l
1

+ v0f1f2α
l−k
1 + f1µ(k).

(c) In what concerns the fourth-order moments µ(k, l,m) with 0 ≤ k ≤ l ≤ m, we
proceed in a similar way as above and distinguish the following four cases:

Case 1: m > l. As above we have

µ(k, l,m) = E(XtXt+kXt+lXt+m)

= αm−l
1

[
µ(k, l, l)− f1µ(k, l)

]
+ f1µ(k, l).

Case 2: m = l > k. For this case, using formula (A.1), we obtain

µ(k, l, l) = E
[
XtXt+kE(X2

t+l |Xt+l−1)
]

= α2
1µ(k, l − 1, l − 1) + α1(v0 + 2α0) µ(k, l − 1) + α0(v0 + α0) µ(k).

Replacing µ(k, l − 1), using µ(0) =
(
v0 + α0(1 + α1)

)
f2 and replacing µ(k), we

obtain

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k) + µ(k) µ(0)

− f2v0

[
f2

(
v0 + α0(1 + α1)

)
+

(v0 + 2α0) (v0 + α0)
(1− α1)2

]
α2l−k

1

− f1

[
f1µ(0) +

v0(v0 + 2α0)
1− α1

f2

]
α

2(l−k)
1 +

v0 + 2α0

1− α1

[
µ(k, l)− f1µ(k)

]
− v0 + 2α0

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2l
1 .
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So, replacing µ(0), recalling µ(0, 0) and taking into account that f1

1−α1
= (1+α1)f2,

we get

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k)− µ(k) f2

[
α0 + (v0 + α0)α1

]
− f2v0

(1− α1)(1− α2
1)

[
v2
0(1 + α1) + v0α0(4 + 3α1) + 3α2

0(1 + α1)
]
α2l−k

1

− f1

{
µ(0, 0)−

[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 +

v2
0f2

1− α1

}
α

2(l−k)
1

+
v0 + 2α0

1− α1
µ(k, l)− v0 + 2α0

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2l
1 .(A.4)

Case 3: m = l = k > 0. From formula (A.2) we have

µ(k, k, k) = E
[
XtE(X3

t+k |Xt+k−1)
]

= α3
1µ(k − 1, k − 1, k − 1) + 3α2

1(v0 + α0) µ(k − 1, k − 1)

+ α1(d0 + 6v0α0 + 3α2
0) µ(k − 1) + α0(d0 + 3v0α0 + α2

0) µ.

Replacing µ(k − 1, k − 1) and thereafter µ(k − 1), we deduce

µ(k,k,k) = α3
1µ(k − 1, k − 1, k − 1)

+ 3(v0 + α0)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1

+
v0f2

1− α1

[
3α1(v0 + α0)2 + 3α1(v0 + α0)α0 + (d0 + 6v0α0 + 3α2

0)(1− α1)
]
αk

1

+ f1f2

{
3α2

1(v0 + α0)
(
v0 + α0(1+ α1)

)
+ (d0 + 6v0α0 + 3α2

0) α1(1−α1) (1+α1)

+ (d0 + 3v0α0 + α2
0) (1− α1) (1− α2

1)
}

.

Making some calculations and then recalling the expression of µ(0, 0), we obtain

µ(k, k, k) = α3
1µ(k − 1, k − 1, k − 1)

+ 3(v0 + α0)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1

+
v0f2

1− α1

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v2
0α1

]
αk

1

+ f1(1− α3
1) µ(0, 0).

Replacing successively the expression of µ(k − j, k − j, k − j), j = 1, ..., k − 1,
it remains

µ(k,k,k) = α3k
1

{
µ(0, 0, 0)− 3(v0 + α0)

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
] f3

1− α1

− v0f2

(1−α1)(1−α2
1)

[
3α2

0(1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2
0α1

]
−f1µ(0,0)

}
+

3(v0 + α0)f3α
2k
1

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]

+
v0f2α

k
1

(1−α1)(1−α2
1)

[
3α2

0(1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2
0α1

]
+ f1µ(0,0).(A.5)
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Replacing µ(0, 0), highlighting f3

1−α2
1
, noting that f2 = (1− α3

1)f3 and f3

1−α2
1

=

f4(1 + α2
1) and developing the calculations, we finally get

µ(k,k,k) =

{
µ(0, 0, 0)− f4

[
4v0d0 − 3v3

0 + 3v0(d0 − v2
0)α1 + v0(3v2

0 + d0)α2
1

+ v0(6v2
0 − d0)α3

1 + 3v0(2v2
0 − d0)α4

1 + v0(9v2
0 − 4d0)α5

1

+ α0(1 + α2
1)
[
3v2

0 + 4d0 + (3v2
0 + 4d0)α1 + (15v2

0 − 4d0)α2
1 + (12v2

0 − 4d0)α3
1

]
+ 6v0α

2
0(1+α2

1)(1+α1)(1+α1+α2
1) + α3

0(1+α2
1)(1+α1)2 (1+α1+α2

1)
]}

α3k
1

+ 3
v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2k

1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)

f2

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v2
0α1

]
αk

1 .(A.6)

Case 4: m = l = k = 0. Once again, according to the relations between the
moments and the cumulants, we obtain

µ(0, 0, 0) = E(X4
t )

= κ4 + 3κ2
2 + 6κ2µ

2 + 4κ3µ + µ4

= f4

{
c0 + (3v3

0 + 4v0d0 − c0)α2
1 + (6v0d0 − c0)α3

1 + (15v3
0 − 10v0d0 + c0)α5

1

+ α0(1 + α2
1)
[
3v2

0 + 4d0 + (3v2
0 + 4d0)α1 + (15v2

0 − 4d0)α2
1 + (12v2

0 − 4d0)α3
1

]
+ + 6v0α

2
0(1 + α1)(1 + α2

1)(1 + α1 + α2
1) + α3

0(1 + α1)2(1 + α2
1)(1 + α1 + α2

1)
}

.

So the formula (A.6) for µ(k, k, k) studied in case 3 simplifies to

µ(k, k, k) = f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α3k

1

+ 3
v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2k

1 + f1µ(0, 0)

+
v0

(1−α1)(1−α2
1)

f2

[
3α2

0(1+α1) + 3v0α0(2 +α1) + d0(1−α1) + 3v2
0α1

]
αk

1 .

Inserting into the formula (A.4) for µ(k, l, l) stated in case 2, we obtain

µ(k, l, l) = f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α2l+k

1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]}

α
2(l−k)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
v0 + 2α0

1− α1
µ(k, l)− f2 µ(k)

[
α0 + (v0 + α0)α1

]
.
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So it follows that we have

µ(k, l,m) = αm−l
1

[
µ(k, l, l)− f1µ(k, l)

]
+ f1µ(k, l)

= αm−l
1

[
f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α2l+k

1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]}

α
2(l−k)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
v0 + α0

1− α1
µ(k, l)− f2 µ(k)

[
α0 + (v0 + α0)α1

]]
+ f1µ(k, l),

which holds for all 0 ≤ k ≤ l ≤ m.



230 E. Gonçalves, N. Mendes-Lopes and F. Silva

B. APPENDIX — Proof of Corollary 2.1

To establish the results present in Corollary 2.1 we use the general relations between
joint moments and joint cumulants (see [2], p. 5):

(a) The second-order central moments and cumulants of X, for any s ≥ 0, are given
by

µ̃(s) = κ(s) = Cov(Xt, Xt+s) = v0α
s
1f2.

(b) The third-order central moments and cumulants, for any l ≥ s ≥ 0, are given by

µ̃(s, l) = κ(s, l)

= f3α
l
1

[
v2
0(1 + α1 + α2

1)−
{

v2
0(1 + α1 − 2α2

1)− d0(1− α2
1)
}

αs
1

]
.

(c) In what concerns the fourth-order cumulants we have, for m ≥ l ≥ s ≥ 0,

κ(s, l, m) = αm−l
1

[
α2l+s

1 f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
+

2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1 − α1

[
d0(1 − α2

1) − v2
0(1 + α1 − 2α2

1)
]}

α
2(l−s)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−s

1

+
v0 + α0

1− α1
µ(s, l)− f2 µ(s)

[
α0 + (v0 + α0)α1

]]
+ f1µ(s, l) − f1µ(s, l)

− f1

([
d0(1−α2

1) − v2
0(1+α1−2α2

1)
]
f3αm+l−2s

1 +
v0(v0 +α0)

1−α1
f2 αm−s

1

+ v0f1f2 αm−l
1 + f1µ(l − s) − f1f2

(
v0αl−s

1 + α0(1 + α1)
)

+
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

m+l
1

+
v0(v0 + α0)

1− α1
f2α

m
1 + f1f2v0α

m−l
1 + f1µ(l) − f1µ(l) +

v0(v0 + α0)
1− α1

f2α
m
1

+
[
d0(1−α2

1)− v2
0(1+α1−2α2

1)
]
f3α

m+s
1 + v0f1f2α

m−s
1 +f1µ(s)−f1µ(s)

)
−
(

f2

[
v0α

s
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−l
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

l
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−s
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

m
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

l−s
1 + α0(1 + α1)

]
− f2

1

)
+ f2

1

(
f2

[
v0α

m
1 + α0(1 + α1)

]
+ f2

[
v0α

m−s
1 + α0(1 + α1)

]
+ f2

[
v0α

m−l
1 + α0(1 + α1)

]
− 3f2

1

)
,

where we highlight, using bold, expressions whose sum equals zero.
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So, taking into account that

−f2 µ(s)
[
α0 + (v0 + α0)α1

]
αm−l

1 =
[
−f1

α0 + v0

1− α1
µ(s) + v0f2 µ(s)

]
αm−l

1

and

−
(

f2

[
v0α

s
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−l
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

l
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−s
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

m
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

l−s
1 + α0(1 + α1)

]
− f2

1

)
+ f2

1

(
f2

[
v0α

m
1 + α0(1 + α1)

]
+ f2

[
v0α

m−s
1 + α0(1 + α1)

]
+ f2

[
v0α

m−l
1 + α0(1 + α1)

]
− 3f2

1

)
=

= −v2
0f

2
2

[
αm−l+s

1 + 2αm+l−s
1

]
+ v0f

2
1 f2

[
αm−l

1 + αm−s
1 + αm

1

]
we obtain, by replacing µ(s, l),

κ(s,l,m) = αm
1 f4

[{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3α0d0 − c0)α2

1

+ (7v0d0−6v3
0− c0)α3

1 +3v0(d0−2v2
0)α

4
1 +(6v3

0−6v0d0 + c0)α5
1

}
αl+s

1

+ v0(1 + α1 + α2
1 + α3

1)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
(2αl

1 + αs
1)

+ v0(1+α1+α2
1)(1+α2

1)
[
(1+α1)v2

0 +
(
d0(1−α1)+v2

0(2α1−1)
)
αl−s

1

]]
,

for any m ≥ l ≥ s ≥ 0.
Finally, the fourth-order central moments of X are given by

µ̃(s, l, m) = κ(s, l, m) + v0α
s
1f2v0α

m−l
1 f2 + v0α

l
1f2v0α

m−s
1 f2 + v0α

l−s
1 f2v0α

m
1 f2

= κ(s, l, m) + v2
0f

2
2 αm−l+s

1 + 2v2
0f

2
2 αm+l−s

1 .
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C. APPENDIX — Covariance matrix of the asymptotic distribution of
CLS estimators in CP-INARCH model

To obtain the entries of the covariance matrix V−1WV−1, let us begin by deducing
the inverse of V:

V−1 =
(1−α1)(1−α2

1)
v0α0


α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
− α0

1−α1

− α0

1− α1
1

=


1+

α0

v0
(1+α1) − 1

v0
(1−α2

1)

− 1
v0

(1−α2
1)

(1−α1)(1−α2
1)

v0α0

.

Furthermore, considering ut(α) = Xt − g(α, Xt−1),

E
[
f(Xt−1) · u2

t (α)
]

= E

[
f(Xt−1) · E

[
(Xt − α0 − α1Xt−1)2 |Xt−1

]]
= E

[
f(Xt−1) · V

[
Xt − α0 − α1Xt−1 |Xt−1

]
+ 0
]

= E

[
f(Xt−1) · V

[
Xt |Xt−1

]]
= E

[
f(Xt−1) · v0(α0 + α1Xt−1)

]
,

because of the conditional compound Poisson distribution, and then

W =


E

(
u2

t

∂g

∂α0

∂g

∂α0

)
E

(
u2

t

∂g

∂α0

∂g

∂α1

)
E

(
u2

t

∂g

∂α1

∂g

∂α0

)
E

(
u2

t

∂g

∂α1

∂g

∂α1

)


=

 E
[
1 · v0(α0 + α1Xt−1)

]
E
[
Xt−1 · v0(α0 + α1Xt−1)

]
E
[
Xt−1 · v0(α0 + α1Xt−1)

]
E
[
X2

t−1 · v0(α0 + α1Xt−1)
]


=
v0α0

1−α1


1

v0α1 + α0(1+α1)
1−α2

1

v0α1 + α0(1+α1)
1−α2

1

v0α0(1+2α1)
(1−α1)(1−α2

1)
+

α2
0

(1−α1)2
+

α1

(
d0 + (3v2

0−d0) α2
1

)
(1−α2

1)(1−α3
1)

 ,

since

E
[
v0(α0 + α1Xt−1)

]
= v0

[
α0 + α1

α0

1− α1

]
=

v0α0

1− α1
,

E
[
Xt−1v0(α0 + α1Xt−1)

]
= v0

[
α2

0

1− α1
+

α1α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)

]

=
v0α0

1− α1
· v0α1 + α0(1 + α1)

1− α2
1

,
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E
[
X2

t−1 · v0(α0 + α1Xt−1)
]

=

= v0

[
α2

0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
+

α1α0

(1− α1)3

(
d0 + (3v2

0 − d0)α2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

)]

=
v0α0

1− α1

[
v0α0(1− α1) + 3v0α0α1

(1− α1)2 (1 + α1)
+

α2
0(1− α1) + α2

0α1

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]

=
v0α0

1− α1

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]
,

using again the expressions stated in Theorem 2.1.

Now, the product of V−1W is given by
1 +

α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0

(1− α2
1)

(1− α1)(1− α2
1)

v0α0

 ·

·


1

v0α1 + α0(1 + α1)
1− α2

1

v0α1 + α0(1 + α1)
1− α2

1

v0α0(1 + 2α1)
(1− α1)(1− α2

1)
+

α2
0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

 =

=


a11 a12

a21 a22

 =


1− α1

v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

α1(1− α1)
α0

1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

 ,

since

a11 = 1 +
α0(1 + α1)

v0
− 1− α2

1

v0

v0α1 + α0(1 + α1)
1− α2

1

= 1− α1,

a12 =
(

1 +
α0

v0
(1 + α1)

)
v0α1 + α0(1 + α1)

1− α2
1

− 1− α2
1

v0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]

=
v0α1

1− α2
1

+
α0

1− α1
+

α0α1

1− α1
+

α2
0(1 + α1)

v0(1− α1)
− α0(1 + 2α1)

1− α1
− α2

0(1 + α1)
v0(1− α1)

−
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

=
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)
,

a21 = −(1− α2
1)

v0
+

(1− α1) (1− α2
1)
(
v0α1 + α0(1 + α1)

)
v0α0(1− α2

1)

= −(1− α2
1)

v0
+

α1(1− α1)
α0

+
(1− α2

1)
v0

=
α1(1− α1)

α0
,



234 E. Gonçalves, N. Mendes-Lopes and F. Silva

a22 = −
(1− α2

1)
(
v0α1 + α0(1 + α1)

)
v0(1− α2

1)

+
(1− α1) (1− α2

1)
v0α0

[
v0α0(1 + 2α1)

(1− α1) (1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1) (1− α3
1)

]

= −α1 −
α0(1 + α1)

v0
+ 1 + 2α1 +

α0(1 + α1)
v0

+
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

= 1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)
.

So, the asymptotic covariance matrix is such that

V−1WV−1 =


b11 b12

b21 b22



=
v0α0

1− α1


1− α1

v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

α1(1− α1)
α0

1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

 ·

·


1 +

α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0

(1− α2
1)

(1− α1) (1− α2
1)

v0α0

 ,

where

b11 =
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b22 = (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)
.

In fact, we have

b11 =
v0α0

1− α1

[
(1− α1)

(
1 +

α0

v0
(1 + α1)

)
− 1

v0
(1− α2

1)

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

)]

=
α0

1− α1

[
v0(1− α1) + α0(1− α2

1)− v0α1 + α0α1(1 + α1)

+
α1

(
d0 + (3v2

0 − d0)α2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]
=
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=
α0

1− α1

[
α0(1 + α1) +

v2
0(1− 2α1)(1 + α1 + α2

1) + α1

(
d0 + (3v2

0 − d0)α2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]

=
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 =
v0α0

1− α1

[
−(1− α1) (1− α2

1)
v0

+
(1− α1) (1− α2

1)
v0α0

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

)]

= −α0(1− α2
1) + v0α1 − α0α1(1 + α1)−

α1(1 + α1)
(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b21 =
v0α0

1− α1

[
α1(1− α1)

α0

(
1 +

α0(1 + α1)
v0

)
− 1− α2

1

v0

(
1 + α1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)]

= v0α1 + α0α1(1 + α1)− α0(1 + α1)− α0α1(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b22 =
v0α0

1−α1

[
−α1(1−α1)(1−α2

1)
v0α0

+
(1−α1)(1−α2

1)
v0α0

(
1 + α1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)]

= −α1(1− α2
1) + α1(1− α2

1) + (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)

= (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0) α2
1

)
v0α0(1 + α1 + α2

1)

)
.
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