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Abstract:

e We address the problem of estimating the Weibull tail-coefficient which is the regular
variation exponent of the inverse failure rate function. We propose a family of estima-
tors of this coefficient and an associate extreme quantile estimator. Their asymptotic
normality are established and their asymptotic mean-square errors are compared.
The results are illustrated on some finite sample situations.
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1. INTRODUCTION

Let X4, Xo, ..., X, be a sequence of independent and identically distributed
random variables with cumulative distribution function . We denote by X1, <
... <X, their associated order statistics. We address the problem of estimating
the Weibull tail-coefficient 8 > 0 defined when the distribution tail satisfies

(A.1) 1—F(z) =exp (—H(z)) , H=(t) =inf {x, H(z) >t} =190(t) ,

where ¢ is a slowly varying function, i.e.,
((Az)/l(x) — 1 as x —oo forall A>0.

The inverse cumulative hazard function H ™ is said to be regularly varying at
infinity with index 6 and this property is denoted by H™ € Ry, see [7] for
more details on this topic. As a comparison, Pareto type distributions satisfy
(1/(1-F))~ € Ry, and v > 0 is the so-called extreme value index. Weibull
tail-distributions include for instance Gamma, Gaussian and, of course, Weibull
distributions.

Let (k,) be a sequence of integers such that 1 <k, <n and (7,) be a
positive sequence. We examine the asymptotic behavior of the following family
of estimators of 6:

R 1 ko

(1.1) b = 7 5 2 (108(Xn-is1,0) — 108(Xn k1))

Following the ideas of [10], an estimator of the extreme quantile z,, can be
deduced from (1.1) by:

log(1/pn) O 0
— =: X,— nTo .
log(n/kn) kb lin T

Recall that an extreme quantile x,,, of order p, is defined by the equation

(12) i’pn = Xnkn+17n<

1 —F(zp,) = DPn, with 0<p, <1/n.

The condition p, < 1/n is very important in this context. It usually implies that
Tp, is larger than the maximum observation of the sample. This necessity to
extrapolate sample results to areas where no data are observed occurs in relia-
bility [8], hydrology [21], finance [9], ... We establish in Section 2 the asymptotic
normality of 0,, and Zp,. The asymptotic mean-square error of some particu-
lar members of (1.1) are compared in Section 3. In particular, it is shown that

family (1.1) encompasses the estimator introduced in [12] and denoted by 677(12)

in the sequel. In this paper, the asymptotic normality of é,(f) is obtained under
weaker conditions. Furthermore, we show that other members of family (1.1)
should be preferred in some typical situations. We also quote some other estima-
tors of # which do not belong to family (1.1): [4, 3, 6, 19]. We refer to [12] for
a comparison with é,(f). The asymptotic results are illustrated in Section 4 on
finite sample situations. Proofs are postponed to Section 5.
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2. ASYMPTOTIC NORMALITY

To establish the asymptotic normality of én, we need a second-order con-
dition on ¢:

(A.2) There exist p <0 and b(xz) — 0 such that uniformly locally on A > 1

log(eé();)) ~ b(z) K,(\), when = — oo,

wPLdu.

with K,(\) = [}

It can be shown [11] that necessarily |b| € R,. The second order parameter
p < 0 tunes the rate of convergence of ¢(Az)/¢(z) to 1. The closer p is to 0,
the slower is the convergence. Condition (A.2) is the cornerstone in all proofs
of asymptotic normality for extreme value estimators. It is used in [18, 17, 5]
to prove the asymptotic normality of estimators of the extreme value index .

In regular case, as noted in [13], one can choose b(z) = = ¢'(x)/¢(z) leading to
re

F-11—e®) f(F~1(1—e®))

(2.1) b(z) = —9,

where f is the density function associated to F. Let us introduce the following
functions: for ¢ > 0 and p <0,

pp(t) = /OOOKp(l +5) e da,

00 T .
o2(1) :/O K2 (14 %) e dr — 20)

and let a, = po(log(n/k,))/T, —1. As a preliminary result, we propose an

~

asymptotic expansion of (6, — 6):

Proposition 2.1. Suppose (A.1) and (A.2) hold. If k,, — o0, ky/n — 0,
T, log(n/ky) — 1 and k& *b(log(n/kn)) — X € R then,

k}L/Q(én - 0) =
= 0n1 + 0o (log(n/kn))én + kL% 0an + kY2 b(log(n/ks)) (1 + op(1))

where &,1 and &, 2 converge in distribution to a standard normal distribution.

Similar distributional representations exist for various estimators of the
extreme value index v. They are used in [16] to compare the asymptotic properties
of several tail index estimators. In [15], a bootstrap selection of k, is derived
from such a representation. It is also possible to derive bias reduction method
as in [14]. The asymptotic normality of 6, is a straightforward consequence of
Proposition 2.1.
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Theorem 2.1. Suppose (A.1) and (A.2) hold. If k,— oo, k,/n — 0,
T, log(n/ky) — 1 and kv/*b(log(n/kn)) — X € R then,

kL2 (én — 0 — b(log(n/kn)) — Han) 9 N(0,67) . 0

Theorem 2.1 implies that the Asymptotic Mean Square Error (AMSE) of 6,,
is given by:
~ 2 42
(2.2) AMSE(6,) = (Gan—i-b(log(n/kn))) + -
n
It appears that all estimators of family (1.1) share the same variance. The bias
depends on two terms b(log(n/k,)) and fa,. A good choice of T,, (depending
on the function b) could lead to a sequence a,, cancelling the bias. Of course,
in the general case, the function b is unknown making difficult the choice of a
“universal” sequence T,,. This is discussed in the next section.

Clearly, the best rate of convergence in Theorem 2.1 is obtained by choosing
A # 0. In this case, the expression of the intermediate sequence (k) is known.

Proposition 2.2. If k, — o0, k,/n — 0 and ke b(log(n/kyn)) — XA # 0,
kp ~ <)\>2 = AQ(log(n))_sz(log(n))
" b(log(n)) ’

where L is a slowly varying function.

The “optimal” rate of convergence is thus of order (log(n))~?, which is
entirely determined by the second order parameter p: small values of |p| yield slow
convergence. The asymptotic normality of the extreme quantile estimator (1.2)
can be deduced from Theorem 2.1:

Theorem 2.2. Suppose (A.1) and (A.2) hold. If moreover, k, — oo,
kn/n — 0, Ty log(n/kn) — 1, ki/*b(log(n/kn)) — 0 and

(2.3) 1 < liminfr, < limsup7, < oo
then,
1/2 .
LI (xp” - rff“") LA N(0,6%) .
log 7, \ zp,

3. COMPARISON OF SOME ESTIMATORS

First, we propose some choices of the sequence (7)) leading to different
estimators of the Weibull tail-coefficient. Their asymptotic distributions are pro-
vided, and their AMSE are compared.
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3.1. Some examples of estimators

— The natural choice is clearly to take

T, = TV = po(log(n/ky))

in order to cancel the bias term a,. This choice leads to a new estimator of 6
defined by:

k
- 1 1 &
o) = —————~ — log(Xn—it1,n) — log(Xn—k,+1,n) ) -
o (log(n/kn)) kn ;( ’ )
Remarking that
pp(t) = et/ eyt du
1

provides a simple computation method for p(log(n/ky,)) using the Exponential
Integral (EI), see for instance [1], Chapter 5, pages 225-233.

— Girard [12] proposes the following estimator of the Weibull tail-coefficient:

kn
922) Z(lOg( n—i+1n) — 108(Xn—k,+1,n) /Z logy(n/i) 10g2(”/kn)> )
=1

where logy(z) = log(log(z)), x > 1. Here, we have
kn
1 log(i/ky,)
T, = 2 T 1-—].
& ' g ( log(n/k ))

(2)

It is interesting to remark that 7, is a Riemann’s sum approximation of
po(log(n/ky)) since an integration by parts yields:

fo(t) = /0 11og(1 - logt(:”)> dx

— Finally, choosing T, as the asymptotic equivalent of ug(log(n/ky)),

T, = T® =: 1/log(n/ky)

leads to the estimator:

o

n

0®) = log "/’“ Z(log n— i+1,n)—log(Xn—kn+1,n>>~
=1

For ¢ =1,2,3, let us denote by :UI(J) the extreme quantile estimator built

on 97(1) by (1.2). Asymptotic normality of these estimators is derived from Theo-
rem 2.1 and Theorem 2.2. To this end, we introduce the following conditions:
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(C.1) knp/n—0,
(C.2) log(k,)/log(n) — 0,
(C.3)  kn/n— 0 and kY/*/log(n/ky) — 0.

Our result is the following;:

Corollary 3.1. Suppose (A.1) and (A.2) hold together with k, — oo
and k/* b(log(n/ky)) — 0. For i =1,2,3:

i) If (C.i) hold then

K2 (09 —6) L N(0,67) .
ii) If (C.i) and (2.3) hold, then

172, .(d)
n (”"f’ 1> < N(0,6?) .

log 7, \ zp,,

In view of this corollary, the asymptotic normality of 9}(}) is obtained under

weaker conditions than 652 and OA,(IS), since (C.2) implies (C.1). Let us also high-
light that the asymptotic distribution of éﬁf) is obtained under less assumptions
than in [12], Theorem 2, the condition ]@11/2/ log(n/ky) — 0 being not necessary
here. Finally, note that, if b is not ultimately zero, condition ke 2b(log(n/ kn))—0
implies (C.2) (see Lemma 5.1).

3.2. Comparison of the AMSE of the estimators

We use the expression of the AMSE given in (2.2) to compare the estimators
proposed previously.

Theorem 3.1. Suppose (A.1) and (A.2) hold together with k, — oo,

log(ky)/log(n) — 0 and ks b(log(n/ky)) — A€R. Several situations are possi-
ble:

n

i) b is ultimately non-positive. Introduce a=—4 lim b(log n)l € [0,+00].

n—00 0og kn

If o > 0, then, for n large enough,
AMSE (0?)) < AMSE(6V) < AMSE(69) .
If o < 0, then, for n large enough,

AMSE(01) < min(AMSE (), AMSE(8))) .
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ii) b is ultimately non-negative. Let us introduce (3 = 2xli_)rgoxb(x) € [0, +o0].

If B > 0 then, for n large enough,
AMSE(0$)) < AMSE(6V) < AMSE(6) .
If B < 0 then, for n large enough,

AMSE(0) < min(AMSE(02), AMSE(8))) .

It appears that, when b is ultimately non-negative (case ii)), the conclu-
sion does not depend on the sequence (k). The relative performances of the
estimators is entirely determined by the nature of the distribution: 9A7(11) has the
best behavior, in terms of AMSE, for distributions close to the Weibull distribu-
tion (small b and thus, small 3). At the opposite, éﬁf”) should be preferred for
distributions far from the Weibull distribution.

The case when b is ultimately non-positive (case 1)) is different. The value
of a depends on k,, and thus, for any distribution, one can obtain o = 0 by
choosing small values of k, (for instance k, = —1/b(logn)) as well as « = +o0 by
choosing large values of k,, (for instance k,, = (1/b(logn))? as in Proposition 2.2).

4. NUMERICAL EXPERIMENTS

4.1. Examples of Weibull tail-distributions

Let us give some examples of distributions satisfying (A.1) and (A.2).

Absolute Gaussian distribution: |N(u,0?)|, o > 0.

From [9], Table 3.4.4, we have H (z) = 2%4(x), where § = 1/2 and an
asymptotic expansion of the slowly varying function is given by:

o logzx
é(-:v) = 21/20' — W

+0(1/x) .

Therefore p = —1 and b(z) =log(z)/(4x) + O(1/z). b is ultimately positive,
which corresponds to case ii) of Theorem 3.1 with = +o00. Therefore, one
always has, for n large enough:

(4.1) AMSE (69)) < AMSE(8V) < AMSE(6?) .
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Gamma distribution: I'(a, A), a, A > 0.

We use the following parameterization of the density
f(z) A %7 exp (—Az)
= — xXp (— .
I'(a) P

From [9], Table 3.4.4, we obtain H(z) = 2/(z) with § = 1 and

We thus have p = —1 and b(z) = (1—a)log(z)/x + O(1/z). If a > 1, b is ulti-
mately negative, corresponding to case i) of Theorem 3.1. The conclusion depends
on the value of k,, as explained in the preceding section. If a < 1, b is ultimately
positive, corresponding to case ii) of Theorem 3.1 with 5 = +o0. Therefore,
we are in situation (4.1).

Weibull distribution: W(a, \), a, A > 0.

The inverse failure rate function is H (x) = Az"/®, and then 6 =1/a,
{(z)=A for all z>0. Therefore b(x) =0 and we use the usual convention p=—oc.
One may apply either i) or ii) of Theorem 3.1 with o = § = 0 to get for n large
enough,

(4.2) AMSE () < min(AMSE(é,?)),AMSE(én3>)) .

4.2. Numerical results

The finite sample performance of the estimators éﬁﬂ), 9&2) and 91(13) are inves-
tigated on 5 different distributions: I'(0.5,1), I'(1.5,1), |N(0,1)|, W(2.5,2.5) and

W(0.4,0.4). In each case, N =200 samples (X}, ;)i=1,.. n of size n =500 were
simulated. On each sample (X, ;), the estimates égg(k), é,?g(k) and éS’l) (k) are

computed for k = 2,...,150. Finally, the associated Mean Square Error (MSE)
plots are built by plotting the points

1 o[ 50) 2
<k, NZ(en{i(k)—e) ) . j=1,2,3.

=1

They are compared to the AMSE plots (see (2.2) for the definition of the AMSE):

. 2 2
(k, (eag>+b(log(n/k))> +9k> , j=1,2,3,

and where b is given by (2.1). It appears on Figure 1-Figure 5 that, for all
the above mentioned distributions, the MSE and AMSE have a similar quali-
tative behavior. Figure 1 and Figure 2 illustrate situation (4.1) corresponding
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to ultimately positive bias functions. The case of an ultimately negative bias
function is presented on Figure 3 with the I'(1.5,1) distribution. It clearly ap-

pears that the MSE associated to HAS) is the largest. For small values of k, one
has MSE(0S") < MSE(?) and MSE(6S"Y) > MSE(6{?) for large value of k.
This phenomenon is the illustration of the asymptotic result presented in
Theorem 3.1i). Finally, Figure 4 and Figure 5 illustrate situation (4.2) of asymp-

totically null bias functions. Note that, the MSE of é,(}) and 57(12) are very similar.
As a conclusion, it appears that, in all situations, 97(@1) and 9&2) share a similar

behavior, with a small advantage to é,(ll). They provide good results for null and

negative bias functions. At the opposite, éS’) should be preferred for positive bias

functions.

5. PROOFS

For the sake of simplicity, in the following, we note k for k,. We first give
some preliminary lemmas. Their proofs are postponed to the appendix.

5.1. Preliminary lemmas

We first quote a technical lemma.

Lemma 5.1. Suppose that b is ultimately non-zero. If k — oo, k/n — 0
and k'/?b(log(n/k)) — X € R, then log(k)/log(n) — 0.

The following two lemmas are of analytical nature. They provide first-order
expansions which will reveal useful in the sequel.

Lemma 5.2. For all p <0 and q € N*, we have
oo |
K1 14—E e dr ~ L as t—o00.
o ° t ta

Let o) = ,ug(log(n/kn))/T,gi) -1, fori=1,2,3.
Lemma 5.3. Suppose k — oo and k/n — 0.

i) T log(n/k) — 1 and af = 0.
ii) 72 log(n/k) — 1. If moreover log(k)/log(n) — 0 then al? ~ log(k)/(2k).
iii) 7V log(n/k) =1 and a!¥ ~ —1/log(n/k).
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The next lemma presents an expansion of 6,,.

Lemma 5.4. Suppose k — oo and k/n — 0. Under (A.1) and (A.2), the
following expansions hold:

0, = ;n(QUS)) + b(log(n/k)) U£p)(1+OP(1))) )

where

k—1
U<P):12K Lyt p<0
" k i—1 g Enflﬁ»l,n 7 N

and where E,,_j,11 ,, is the (n —k+1)-th order statistics associated to n indepen-
dent standard exponential variables and {F}, ..., Fy_1} are independent standard
exponential variables and independent from Fy,_j 41 p.-

The next two lemmas provide the key results for establishing the asymptotic
distribution of #,. Their describe they asymptotic behavior of the random terms
appearing in Lemma 5.4.

Lemma 5.5. Suppose k — oo and k/n — 0. Then, for all p < 0,

P L 1
,Uzp(En—k"Flvn) ~ O'p(En—k"f'Ln) ~ W )

Lemma 5.6. Suppose k — oo and k/n — 0. Then, for all p <0,
k1/2

v (), (E d 1) .
(i) % M0

5.2. Proofs of the main results

Proof of Proposition 2.1: Lemma 5.6 states that for p <0,
k1/2

= (uw_ _
O-P(Enfk+1,n) <Unp Mp(Enle»l’n)) = &lp) .

where &,(p) < N(0,1) for p <0. Then, by Lemma 5.4
k'2(0,—0) =
E’I’L* n En* n
_ o oo Tk+1, )£n(0) PRVCY o Tk+1, )1>

FRYRYE: b(log(n/k)) (UP(Enz:nk-&-l,n) 5}:1(/:[;) 4 NP(EEk—i-l,n)) (1 4 Op(l)) ‘
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Since T}, ~ 1/log(n/k) and from Lemma 5.5, we have
kY2(0,—60) =

PR Y G(W - 1> + k2 b(log(n/k)) (1 + op(1)) .

n

where &, 1 4N (0,1). Moreover, a first-order expansion of pg yields

po(Bn—kt1n) _loe(n M(()l)(ﬁn)
—uo(log(n/k)) =1+ (En—k—i—l,n log( /k:)) 1o (log (/)

where Tn € ]min(En—k—‘rl,m log(n/k))7 maX(En—k—I—l,m log(n/k)) [ and

Do = [ oo [
t) = — log(1+ — dr =: — t)dx .
w0 = G [ee(1+ 7 )e e = 4 [ pan i
Since for t > T > 0, f(.,t) is integrable, continuous and
of(x,t) T -1 _ e~
Ot)| _ 214 2) e o
‘ ot t2(+t ¢ =TT
we have that

Wy [Tx o e\,
py (t) = /0t2(1+t> e “dx .

Then, Lebesgue Theorem implies that ,u(()l)(t) ~ —1/t* as t — oco. Therefore,

u(()l) is regularly varying at infinity and thus

ue () p oo (los(n/k) 1
po(log(n/k))  po(log(n/k)) log(n/k) ~

Since k'2(E, g1, — log(n/k)) < N(0,1) (see [12], Lemma 1), we have

IU'O(Enkarl,n) . k71/2

> o(log(n/)) —  log(n /)

gn,Q )

where &, 2 i»./\/’((),l). Collecting (5.1), (5.2) and taking into account that
T, log(n/k) — 1 concludes the proof. O

Proof of Proposition 2.2: Lemma 5.1 entails log(n/k) ~ log(n). Since
b| is a regularly varying function, b(log(n/k)) ~ b(log(n)) and thus, k2 ~
A/b(log(n)). O

Proof of Theorem 2.2: The asymptotic normality of #,, can be de-
duced from the asymptotic normality of 6, using Theorem 2.3 of [10]. We are
in the situation, denoted by (S.2) in the above mentioned paper, where the limit
distribution of #,, /x,, is driven by 6,,. Following, the notations of [10], we denote
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by a, = k,l/ % the asymptotic rate of convergence of én, by B, = fa, its asymptotic
bias, and by £ = N(0,6?) its asymptotic distribution. It suffices to verify that

(5.3) log(my,) log(n/k) — oo .

To this end, note that conditions (2.3) and p, < 1/n imply that there exists
0 < ¢ <1 such that

log(Tn) > C(Tn — 1) > c( log(n) _ 1) — IOg(k)

log(n/k) “log(n/k) ’

which proves (5.3). We thus have

]Cl/Q 2o
r—-fan (xp" — Tﬁ“") 4, N(0,6%) .

logr, " Tp,

Now, remarking that, from Lemma 5.2, po(log(n/k)) ~ 1/log(n/k) ~T,, and
thus a, — 0 gives the result. O

Proof of Corollary 3.1: Lemma 5.3 shows that the assumptions of
Theorem 2.1 and Theorem 2.2 are verified and that, for i=1, 2, 3, kl/Za,(f)—> 0. O

Proof of Theorem 3.1:

i) First, from (2.2) and Lemma 5.3 iii), since b is ultimately non-positive,

(3)

(54)  AMSE(6) — AMSE(6) = _e(a;3>)2<9+2b(10g(”/’f>)> 0

Second, from (2.2),

(55)  AMSE(0®) - AMSE(OD) = 0(a)? <9 P bﬁog(g/’“») ‘

If b is ultimately non-zero, Lemma 5.1 entails that log(n/k) ~ log(n) and conse-
quently, since |b| is regularly varying, b(log(n/k)) ~ b(log(n)). Thus, from Lemma
5.3 i),

(5.6) ~ 4b(logn)

k
o
aq(,?) log(k)
Collecting (5.4)—(5.6) concludes the proof of i).
ii) First, (5.5) and Lemma 5.3 ii) yields

(5.7) AMSE(0?) — AMSE(6)) > 0,
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since b is ultimately non-negative. Second, if b is ultimately non-zero, Lemma 5.1
entails that log(n/k) ~ log(n) and consequently, since |b| is regularly varying,
b(log(n/k)) ~ b(log(n)). Thus, observe that in (5.4),

5 b(log(n/k;))

(5.8) o

~ —2b(logn)(logn) — =3 .

Collecting (5.4), (5.7) and (5.8) concludes the proof of ii). The case when b
is ultimately zero is obtained either by considering o =0 in (5.6), or 8 =0 in

(5.8). O
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APPENDIX: PROOF OF LEMMAS

Proof of Lemma 5.1: Remark that, for n large enough,

‘kl/z b(log(n/k))’ <

kY2 b(log(n/k)) —A( SN < 1A,

and thus, if b is ultimately non-zero,

(5.9)

1 log(k) _ log(1+]\) log|b(log(n/k))|
0= 2 log(n/k) = log(n/k) log(n/k) '

Since |b] is a regularly varying function, we have that (see [7], Proposition 1.3.6.)

log ‘b(log(w)) | .
log()

as T — o0 .

Then, (5.9) implies log(k)/log(n/k) — 0 which entails log(k)/log(n) — 0. O

Proof of Lemma 5.2: Since for all z,t > 0, tK,(14+z/t) < z, Lebesgue

Theorem implies that

00 T q 00 T q
lim <th<1 + )) e Tdy = / lim (th<1 + )> " dx
t—oo Jg t o t—oo t

oo
= / 2le ™ dx = ¢!,
0

which concludes the proof. O
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Proof of Lemma 5.3:

i) Lemma 5.2 shows that po(t) ~1/t and thus 7 log(n/k) — 1.
By definition, a%l) =
ii) The well-known inequality —z2/2 < log(1 +2) —x < 0, x > 0 yields

1

k
1 1
. e < - —
(5.10) =3 Tog(n/k) & E: g?(k/i) < log(n/k)T, E log(k/i) <

Now, since when k — o0,

k 1 L 1
! 1
z ;logQ(k/i) —>/0 log?(z)dr =2 and Z ;log(k/z’) — —/0 log(x)dz =1,

it follows that 7} log(n/k) — 1. Let us now introduce the function defined on

(0,1] by:
1
We have:
o) = —T%Q)(Tﬁ — o (log(n/k)) )
L= 1
- s {i g e - [oa)
1 Al oGy L Uk
= [, G nw) s [
Since

Ful®) = £uli/B)+ ¢ = i/0) SO0 + [ (1= 2) (P @) do

ik

where f,(Lp ) is the pth derivative of f,,, we have:

k=1 r(it1)/k
o = %Z / (t — i/ k) £D (/) dt

™ 5 i/k

(i+1)/k pt L
/ / (t — ) £ (z) da dt + —y fn(t)dt
/k i/k Té ) 0

TL

= U + Uy 4+ V3.



Comparison of Weibull Tail-Coefficient Estimators 179

Let us focus first on the term Wq:
1 1 =
- - = E s
\Ijl TT(LQ) 242 g fn (7,/]43)

. (x) e+~ (2)< me (i/#) /f“) )

2k:TT(12) 1/k
1 (1) /k
_ _ D)y — £ (5
= g (B = 5.0/m) Mygz); /i/k (59 @)~ £ /R ) da
= U1 — Vo

Since T\? ~ 1/log(n/k) and log(k)/log(n) — 0, we have:

1 log(k) log(k)
Uy =1 8 )
YT g Og< +10g(n/k)> 2k

(1+o0(1)) .

Furthermore, since, for n large enough, fq(zg) (x) >0 for = € [0,1],

TR = CEe
M ((4 _ My
O < V¥, < QkTT(ZQ) ;/1/19 (fnl ((Z—i-l)/k) £ (Z/k)) dx
= o (W - A asm)

B 1 1 k log(k) \
pyErTe) ( log(n/k) " log(n/k) <“log<n/k->> )
r log(k)
=)
log(k)

(5.11) U = — 5% (1+0(1)) .

Thus,

Second, let us focus on the term Ws. Since, for n large enough, f,sz) (z) > 0 for
z € [0,1],

0< Ty < % kz /(H—l //m e
(5.12)
= g (A w = sam) = o EE) .
Finally,

1 Uk oot 1 1/k log(t
Uy — - g(t) dt + (2)/ <fn(t)—|—g<))> dt =: W31+ V3o,
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and we have:

S S Y _ loath) L,
U3y = e TR I k(l g(k) +1) - (1+o0(1)) .

Furthermore, using the well known inequality: [log(1+ x) — | < 22/2, = > 0,

we have:
1 Uk og(t) \?
Vs ol < dt
[Fsa] < 2T£2)/o (log(n/k)

)
1 1
= 1 R P ((10g(k))* + 2108(k) + 2)

(log(k)”  _ O(mg(k)) |

™ 2klog(n/k) k
since log(k)/log(n) — 0. Thus,

log(k)
k

We conclude the proof of i) by collecting (5.11)—(5.13).

(5.13) Uy =

(1+0(1)) .

iii) First, TP log(n/k) = 1 by definition. Besides, we have

a® Ko (108?(”/]‘5))

e
7Y
= log(n/k) po (log(n/k)) —
& x
- [ log(14+ —2 Ve odr — 1
[ estositon (14 4o e i
e e] 1 0 .732 1
= xe Tdr — = —¢e¢ ®dr - 1+R, = ——F—~+R,,
/0 2/0 log(n/k) log(n/k)

where

S) x x z? —x
Bn = /0 log(n/k) <1°g<1 * log(n/k)> " log(n/k) 2(log(n/k))2>e “

Using the well known inequality: |log(1+z) —z + 22/2| < 23/3, x > 0, we have,

1 5 e = )

which finally yields 'Y ~ —1/log(n/k). 0

Proof of Lemma 5.4: Recall that

?% Z(log n—itin) — 10g(Xn—k+17n)) )
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and let iy, ..., By, be ordered statistics generated by n independent standard
exponential random variables. Under (A.1), we have

k—

A d 1
en = Tig Z: IOgH (En i+1, n) IOgH (En k+1 n))

J 145 )

n i+1,n n i+1,n
= —|0- og 10g< > .
T, ( k g E,_ k:+1n> Z E,_ k:—i—ln) )
Define x, = Ey_ 41,0 and Nip = Ep—iyin/En—gt1,n. It is clear, in view of [12],

Lemma 1 that z, £ 5 and Xin 1. Thus, (A.2) yields that uniformly in

i=1,..,k—1:
1
K ( n— z-l—ln)
1 n k+1,n

The Rényi representation of the Exp(1) ordered statistics (see [2], p. 72) yields

(5.14) { En itin } d {1 n Fr_ira }
En—kt1,n i=1,...,.k—1 En—kvin i=1,...k—1 7

where {F ;_1, ..., Fy—1,,—1} are ordered statistics independent from E,,_j; , and
generated by k — 1 independent standard exponential variables {Fi, ..., Fx_1}.
Therefore,

k—1

~ g 1 1 F;
b, £ —(0-S log(1+—"—
Tn< k z; og< +En—k+1,n>

d 1 1 k—1 1 .
i N n—i+1, n>+ loul 1
Tn ( k i=1 ( n k+1,n ( p( >> n k+1, n A >

k—1
1 F;
+ (1 + 0p(1)) b(Ep— - K(1+Z> :
( p( )) ( n k—&-l,n) A ; p En—k—i—l,n
Remarking that Ky(x) = log(z) concludes the proof. O

Proof of Lemma 5.5: Lemma 5.2 implies that,

P 1 P 1
E — ~ ~Y s
IU’P( n k‘+1yn) En—k—l—l,n log(n/k)

since Ey_p11,/log(n/k) L1 (see [12], Lemma 1). Next, from Lemma 5.2,

0o (Bnki1n) = 2 (1+o0p(1)) - m(1+OP(1))
1 1
= m(1+@(1)) = (log(n/k))2(1+0p(1)) ,

which concludes the proof. O
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Proof of Lemma 5.6: Remark that
k‘l/2

Up(En—k+1,n)

E—1/2 k-1 F B )
= 0p(Buiia) 2 Kp<1+> — tp(En—tt1,n) | = p1/2 Lol Enzhin)

Up(En—k+1,n i—1 En—k-{—l,n Up(En—k+1,n)

(Ur(zp) - Mp(En—kH,n)) =

Let us introduce the following notation:

Thus,

k,l/2

7 Errrim) (Ur(f) - Mp(En—kH,n)) = Sn(En—g+1.)(1+0(1)) +0p(1) ,

from Lemma 5.5. It remains to prove that for x € R,
P<Sn(En—k+1,n) < 1:) —®(x) —» 0 as n — 0o,
where ® is the cumulative distribution function of the standard Gaussian distri-

bution. Lemma 5.2 implies that for all e € ]0, 1], there exists T. such that for all
t>Te,

(5.15) %(1—5) < E((Kp<1+};1>>q> < %(Hs).

Furthermore, for x € R,
P(Su(Bnpi1n) <7) = D(a) =

T
- /0 (P(Sn(t) <z)- @(x)) hn(t) dt +/
= A, + B, ,

o

£

where h, is the density of the random variable E,_j1,. First, let us focus on
the term A,. We have,

|An’ < 2P(E1n—k:—i-1,n < TE) .

Since Ep,_ 11,/ log(n/k) £ (see [12], Lemma 1), it is easy to show that A, — 0.
Now, let us consider the term B,,. For the sake of simplicity, let us denote:

F; .
{Y}; = Kp<1 + t) — pp(t), = 1,...,k—1}.
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Clearly, Y1, ..., Y1 are independent, identically distributed and centered random
variables. Furthermore, for t > T,

E(vil?) < E((KP (1 + Z?) + up(t)>3>
= w( (14 2)) )+ o+ a2 (1 (14 22) ) Yt
+ 3E(Kp <1 + I?)) (1p(1))*

1
< ﬁcl(qvg) < oo,

from (5.15) where Ci(q,¢) is a constant independent of ¢. Thus, from Esseen’s
inequality (see [20], Theorem 3), we have:

sup|P(Sn(t) < z) — @(x)‘ < Cy Ly, ,

where Cs is a positive constant and

From (5.15), since ¢ > T,

(0,(1)% = E((Kp<1 + ?>>2> - (E(Kp<1+ ?)))2 > %203(5) ,

where C3(¢) is a constant independent of ¢. Thus, L, < (k—1)"Y2Cy(q,¢)
where Cy(q,¢) is a constant independent of ¢, and therefore

|Bn| < Culg,e€) (k_l)_l/QP(En—k-i-l,nZTe) < Cul(g,¢) (k—l)_1/2 — 0,

which concludes the proof. O



184 Laurent Gardes and Stéphane Girard

0.04 0.05
| |

0.03
|

MSE

0.02
|

0.01
|

0.00
|

0 50 100 150

0.05
|

0.04
|

AMSE
0.02 0.03
| |

0.01
|

0.00
|

0 50 100 150

Figure 1: Comparison of estimates 05" (solid line), 6% (dashed line) and %)
(dotted line) for the |[N(0,1)| distribution. Up: MSE, down: AMSE.
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Figure 2: Comparison of estimates 05" (solid line), 6% (dashed line) and %)
(dotted line) for the I'(0.5,1) distribution. Up: MSE, down: AMSE.
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Figure 3: Comparison of estimates oL (solid line), S (dashed line) and %)
(dotted line) for the I'(1.5,1) distribution. Up: MSE, down: AMSE.
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Comparison of estimates 05" (solid line), IS (dashed line) and S
(dotted line) for the W(2.5,2.5) distribution. Up: MSE, down: AMSE.
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Figure 5: Comparison of estimates i (solid line), S (dashed line) and %)
(dotted line) for the W(0.4,0.4) distribution. Up: MSE, down: AMSE.



