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1. INTRODUCTION

The Kullback–Leibler (KL) divergence (also known as relative entropy) is a measure of
discrimination between two probability distributions. If the random variables X and Y have
probability density functions f and g, respectively, the KL divergence of f relative to g is
defined as

D (f ||g) =
∫
R

f (x) log
f (x)
g (x)

dx,

for x such that g(x) 6= 0. The function D (f ||g) is always nonnegative and it is zero if and
only if f = g a.s.

Let fθ belong to a parametric family with p-dimensional parameter vector θ ∈ Θ ⊂ Rp

and fn be a kernel density estimator of fθ based on n random variables {X1, ..., Xn} of
distribution of X. Basu and Lindsay [3] used KL divergence of fn relative to fθ as

(1.1) D
(
fn||fθ

)
=
∫
R

fn (x) log
fn (x)
f (x;θ)

dx,

and defined the minimum KL divergence estimator of θ as

θ̂ = arg inf
θ∈Θ

D
(
fn||fθ

)
.

Lindsay [19] proposed a version of (1.1) in discrete setting. In recent years, many
authors such as Morales et al. [21], Jiménez and Shao [17], Broniatowski and Keziou [6],
Broniatowski [5], Cherfi [7, 8, 9] studied the properties of minimum divergence estimators
under different conditions. Basu et al. [4] discussed in their book about the statistical inference
with the minimum distance approach.

Although the method of estimation based on D
(
fn||fθ

)
has very interesting properties,

the definition is based on f which, in general, may not exist.

Let X be a random variable with cumulative distribution function (c.d.f.) F (x) =
P (X ≤ x) and survival function (s.f.) F̄ (x) = 1− F (x). Based on n observations {x1, ..., xn}
of distribution F , define the empirical cumulative distribution and survival functions, respec-
tively, by

(1.2) Fn (x) =
n∑

i=1

i

n
I[x(i),x(i+1)) (x) ,

and

(1.3) F̄n (x) =
n−1∑
i=0

(
1− i

n

)
I[x(i),x(i+1)) (x) ,

where I is the indicator function and (−∞ = x(0) ≤) x(1) ≤ x(2) ≤ ··· ≤ x(n) (≤ x(n+1) = ∞)
are the order observations corresponding to the sample. The function Fn (F̄n) is known in
the literature as “empirical estimator” of F (F̄ ).
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In the case when X and Y are continuous nonnegative random variables with s.f.’s F̄
and Ḡ, respectively, a version of KL divergence in terms of s.f.’s F̄ and Ḡ can be given as
follows:

KLS
(
F̄ ||Ḡ

)
=
∫ ∞

0
F̄ (x) log

F̄ (x)
Ḡ(x)

dx− [E (X)− E (Y )] .

The properties of this divergence measure are studied by some authors such as Liu [20]
and Baratpour and Habibi Rad [1].

In order to estimate the parameters of a statistical model Fθ, Liu [20] proposed cu-
mulative KL divergence between the empirical survival function F̄n and survival function F̄θ
(we call it CKL

(
F̄n||F̄θ

)
) as

CKL
(
F̄n||F̄θ

)
=
∫ ∞

0

(
F̄n (x) log

F̄n (x)
F̄ (x;θ)

−
[
F̄n (x)− F̄ (x;θ)

])
dx

=
∫ ∞

0
F̄n (x) log F̄n (x) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx−

[
x̄− Eθ (X)

]
,

where x is the observed sample mean. The cited author defined minimum CKL divergence
estimator (MCKLE) of θ as

θ̂ = arg inf
θ∈Θ

CKL
(
F̄n (x) ||F̄θ

)
.

If we consider the parts of CKL
(
F̄n||F̄

)
that depends on θ and define

(1.4) g (θ) = Eθ (X)−
∫ ∞

0
F̄n (x) log F̄ (x;θ) dx,

then the MCKLE of θ can equivalently be defined by

θ̂ = arg inf
θ∈Θ

g (θ) .

Two important advantages of this estimator are that one does not need to have the
density function and that for large values of n the empirical estimator Fn tends to the dis-
tribution function F . Liu [20] applied this estimator in uniform and exponential models and
Yari and Saghafi [35] and Yari et al. [34] used it for estimating parameters of Weibull dis-
tribution; see also Park et al. [26] and Hwang and Park [16]. Yari et al. [34] found a simple
form of (1.4) as

(1.5) g (θ) = Eθ (X)− 1
n

n∑
i=1

h (xi) = Eθ (X)− h (x),

where h (x) = 1
n

∑n
i=1 h (xi), and

(1.6) h (x) =
∫ x

0
log F̄ (y;θ) dy.
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They also proved that

E (h (X)) =
∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

which shows that if n tends to infinity, then CKL
(
F̄n||F̄θ

)
converges to zero.

The aim of the present paper is to extend the definition of MCKLE to the case that
the random variable of interest has support in whole real line. In the process of doing so we
also investigate asymptotic properties of MCKLE and provide some examples.

Recently Park et al. [24] extended the cumulative Kullback–Leibler information to the
whole real line as

CRKL (F : G) =
∫ ∞

−∞
F̄ (x) log

F̄ (x)
Ḡ(x)

dx− [E (X)− E (Y )] ,

and

CKL (F : G) =
∫ ∞

−∞
F (x) log

F (x)
G(x)

dx− [E (Y )− E (X)] .

They proposed a general cumulative Kullback–Leibler information as

GCKLα (F : G) = αCKL (F : G) + (1− α) CRKL (F : G) , 0 ≤ α ≤ 1,

and studied its application to a test for normality in comparison with some competing test
statistics based on the empirical distribution function.

The rest of the paper is organized as follows: In Section 2, we propose an extension
of the MCKLE in the case when the support of the distribution is real line and present
some illustrative examples. In Section 3, we show that the proposed estimator belongs to
the class of generalized estimating equations (GEE). Asymptotic properties of MCKLE such
as consistency, normality are investigated in this section. Several examples are given in this
section. We have shown, among other examples, that when the underlying distribution is
generalized Pareto one can employ MCKLE to estimate the shape parameter of the model,
for a subset of parameter space, while the MLE does not exist in that subset. In Section 4,
we extend the results to the type I censored data.

2. AN EXTENSION OF MCKLE

In this section, we propose an extension of the MCKLE for the case when X is assumed
to be a continuous random variable with support R. It is known that [30]

Eθ |X| =
∫ 0

−∞
F (x) dx+

∫ ∞

0
F̄ (x) dx.

We first give an extension of CKL divergence for the case that the random variables
are distributed over real line R.
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Definition 2.1. Let X and Y be random variables on R with c.d.f.’s F and G, s.f.’s
F̄ and Ḡ and finite means E (X) and E (Y ), respectively. The CKL divergence of F̄ relative
to Ḡ is defined as

CKL
(
F̄ ||Ḡ

)
=
∫ 0

−∞

{
F (x) log

F (x)
G (x)

− [F (x)−G (x)]
}
dx

+
∫ ∞

0

{
F̄ (x) log

F̄ (x)
Ḡ (x)

−
[
F̄ (x)− Ḡ (x)

]}
dx

=
∫ 0

−∞
F (x) log

F (x)
G (x)

dx+
∫ ∞

0
F̄ (x) log

F̄ (x)
Ḡ (x)

dx− [E |X| − E |Y |] .

An application of the log-sum inequality and the fact that, for all x, y > 0 x log x
y ≥ x−

y, (equality holds if and only if x = y) show that the CKL is non-negative. Using the fact that
in log-sum inequality, equality holds if and only if F = G, a.s., one gets that CKL

(
F̄ ||Ḡ

)
= 0

if and only if F = G, a.s.

Let Fθ be the population c.d.f. with unknown parameter θ ∈ Θ ⊆ Rp and Fn be the
empirical c.d.f. based on a random sample X1, X2, ..., Xn from Fθ. Based on the above
definition, the CKL divergence of F̄n relative to F̄θ is defined as

CKL
(
F̄n||F̄θ

)
=
∫ 0

−∞
Fn (x) log

Fn (x)
F (x;θ)

dx+
∫ ∞

0
F̄n (x) log

F̄n (x)
F̄ (x;θ)

dx−
[
|x| − Eθ |X|

]
,

where |x| is the mean of absolute values of the observations. Let us also define

(2.1) g (θ) = Eθ |X| −
∫ 0

−∞
Fn (x) logF (x;θ) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx.

Now, we have the following definition which is an extension of CKL estimator in Liu approach:

Definition 2.2. Assume that Eθ |X| <∞ and g′′(θ) is positive definite. Then, under
the existence, we define MCKLE of θ to be a value in the parameter space Θ which minimizes
g(θ).

If X is nonnegative, then g (θ) in (2.1) reduces to (1.4). So the results of Liu [20],
Yari and Saghafi [35], Yari et al. [34], Park et al. [26] and Hwang and Park [16] yield as
special cases. It should be noted that by the law of large numbers Fn converges to Fθ and
F̄n converges to F̄θ as n tends to infinity. Consequently CKL

(
F̄n||F̄θ

)
converges to zero as

n tends to infinity.

In order to study the properties of the estimator, we first find a simple form of (2.1).
Let us introduce the following notations:

u (x) =
∫ 0

x
logF (y;θ) dy,

for x < 0, and

(2.2) s (x) = I(−∞,0) (x)u (x) + I[0,∞) (x)h (x) ,
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for x ∈ R, where h is defined in (1.6). Assuming that x(1), x(2), ..., x(n) denote the ordered
observed values of the sample and that x(k) < 0 ≤ x(k+1), for some value of k, k = 0, ..., n
(x(0) = −∞), then by (1.2) and (1.3), we have

∫ 0

−∞
Fn (x) logF (x;θ) dx =

k−1∑
i=1

i

n

x(i+1)∫
x(i)

logF (x;θ) dx+
k

n

0∫
x(k)

logF (x;θ) dx

=
1
n

k−1∑
i=1

i
[
u
(
x(i)

)
− u

(
x(i+1)

)]
+
k

n
u
(
x(k)

)
=

1
n

k∑
i=1

u
(
x(i)

)
.

Using the same steps, we have∫ ∞

0
F̄n (x) log F̄ (x;θ) dx =

1
n

n∑
i=k+1

h
(
x(i)

)
.

So, g (θ) in (2.1) gets the simple form

g (θ) = Eθ |X| −
1
n

k∑
i=1

u
(
x(i)

)
− 1
n

n∑
i=k+1

h
(
x(i)

)
= Eθ |X| −

1
n

n∑
i=1

s (xi) = Eθ |X| − s (x).(2.3)

If k = 0 (i.e., X is nonnegative), then g (θ) in (2.3) reduces to (1.5). It can be easily
seen that

E (s (X)) =
∫ 0

−∞
F (x;θ) logF (x;θ) dx+

∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

In the following, we give some examples.

Example 2.1. Let {X1, ..., Xn} be i.i.d. Normal random variables with probability
density function

φ (x;µ, σ) =
1√

2πσ2
exp

(
−1

2

(
x− µ

σ

)2
)
, x ∈ R, µ ∈ R, σ > 0.

In this case E (|X|) = µ
[
2Φ
(µ

σ

)
− 1
]
+ 2σφ

(µ
σ

)
, where Φ denotes the distribution function

of standard normal. For this distribution, h (x), u (x) and g (µ, σ) do not have closed forms.
The zeros of the gradient of g (µ, σ) with respect to µ and σ give respectively

2nΦ
(µ
σ

)
− n −

k∑
i=1
xi<0

log Φ
(
xi − µ

σ

)
+ k log Φ

(
−µ
σ

)

+
n∑

i=k+1
xi≥0

log Φ
(
µ− xi

σ

)
− (n− k) log Φ

(µ
σ

)
= 0,
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and

(2.4) 2nφ
(µ
σ

)
+

k∑
i=1
xi<0

∫ −µ
σ

xi−µ

σ

zφ (z)
Φ (z)

dz −
n∑

i=k+1
xi≥0

∫ xi−µ

σ

−µ
σ

zφ (z)
1− Φ (z)

dz = 0.

To obtain our estimators, we need to solve these equations numerically. For computa-
tional purposes, the following equivalent equation can be solved instead of (2.4).

2φ
(µ
σ

)
+
∫ −µ

σ

x(1)−µ

σ

Fn (µ+ σz)
zφ (z)
Φ (z)

dz −
∫ x(n)−µ

σ

−µ
σ

F̄n (µ+ σz)
zφ (z)

1− Φ (z)
dz = 0.

Figure 1 compares these estimators with the corresponding MLE’s. In order to compare
our estimators and the MLE’s we made a simulation study in which we used samples of sizes 10
to 55 by 5 with 10000 repeats, where we assume that the true values of the model parameters
are µtrue = 2 and σtrue = 3. It is evident from the plots that the MCKLE approximately
coincides with the MLE in both cases.
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Figure 1: µ̄/µtrue, S2 (µ̄), σ̄/σtrue and S2 (σ̄) as functions of sample size.

Example 2.2. Let {X1, ..., Xn} be i.i.d. Laplace random variables with probability
density function

f (x; θ) =
1
2θ

exp
(
−
∣∣∣x
θ

∣∣∣) , x ∈ R, θ > 0.
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We simply have MCKLE of θ as

θ̂ =

√
X2

2
.

This is exactly the moment estimator of θ.

3. ASYMPTOTIC PROPERTIES OF ESTIMATORS

In this section we study asymptotic properties of MCKLE’s. For this purpose, first we
give a brief review on GEE. Some related references on GEE are Huber [13], Serfling [31],
Qin and Lawless [29], van der Vaart [33], Pawitan [28], Shao [32], Huber and Ronchetti [15]
and Hampel et al. [12].

Throughout this section, we use the terminology from Shao [32]. We assume that
X1, ..., Xn represents independent random vectors, in which the dimension of Xi is di, i =
1, ..., n (supi di <∞). We also assume that in the population model the vector θ is a p-vector
of unknown parameters. The GEE method is a general method in statistical inference for
deriving point estimators. Let Θ ⊂ Rp be the range of θ, ψi be a Borel function from Rdi ×Θ
to Rp, i = 1, ..., n, and

sn(γ) =
n∑

i=1

ψi (Xi,γ) , γ ∈ Θ.

If θ̂ ∈ Θ is an estimator of θ which satisfies sn(θ̂) = 0, then θ̂ is called a GEE estimator.
The equation sn (γ) = 0 is called a GEE. Most of the estimation methods such as likelihood
estimators, moment estimators and M-estimators are special cases of GEE estimators. Usu-
ally GEE’s are chosen such that

(3.1) E [sn (θ)] =
n∑

i=1

E [ψi (Xi,θ)] = 0.

If the exact expectation does not exist, then the expectation E may be replaced by an
asymptotic expectation. The consistency and asymptotic normality of the GEE are studied
under different conditions (see, for example Shao [32]).

3.1. Consistency and asymptotic normality of the MCKLE

Let θ̂n be MCKLE which minimizes g in (2.3) with s as defined in (2.2). Here, we
show that the MCKLE’s are special cases of GEE. Using this, we show the consistency and
asymptotic normality of MCKLE’s.

Theorem 3.1. MCKLE’s, by minimizing g in (2.3), are special cases of GEE estima-

tors.
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Proof: In order to minimize g in (2.3), we get the derivative of g, under the assumption
that it exists,

∂

∂θ
g (θ) =

∂

∂θ
Eθ |X| −

1
n

n∑
i=1

∂

∂θ
s (xi) = 0,

which is equivalent to GEE sn (θ) = 0 where

(3.2) sn (θ) =
n∑

i=1

[
∂

∂θ
Eθ |X| −

∂

∂θ
s (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.3) ψ (x,θ) =
∂

∂θ
Eθ |X| −

∂

∂θ
s (x) .

Now E [sn (θ)] = 0, since

(3.4) E

[
∂

∂θ
s (X)

]
=

∂

∂θ
Eθ |X| ,

that can be proven by some simple algebra. This proves the result.

Corollary 3.1. In the special case when the support of X is R+, MCKLE is an special

case of GEE estimators, where

(3.5) sn (θ) =
n∑

i=1

[
∂

∂θ
Eθ (X)− ∂

∂θ
h (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.6) ψ (x,θ) =
∂

∂θ
Eθ (X)− ∂

∂θ
h (x) .

The MCKLE’s are consistent estimators under mild conditions. To see this, let for each
n θ̂n be an MCKLE or equivalently a GEE estimator, i.e., sn

(
θ̂n

)
= 0, where sn is defined as

(3.2) or (3.5). Suppose that ψ defined in (3.3) or (3.6) is a bounded and continuous function
of θ. Let also

Ψ (θ) = E [ψ (X,θ)] ,

where we assume that Ψ′ (θ) exists and is full rank. Then, from Proposition 5.2 of Shao [32]
and using the fact that (3.1) holds, θ̂n

p→ θ.

Asymptotic normality of a consistent sequence of MCKLE’s can be established under
some conditions. We first consider the special case where θ is scalar and X1, ..., Xn are i.i.d.

Theorem 3.2. Let θ̂n be a consistent MCKLE of θ. Then

√
n
(
θ̂n − θ

)
d→ N

(
0, σ2

F

)
,

where σ2
F = A/B2, with

A = E

[
∂

∂θ
s (X)

]2

−
[
∂

∂θ
Eθ |X|

]2

,

and

B =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.
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Proof: Using Theorem 3.1 we have E [ψ (X,θ)] = 0. So if we consider ψ defined in
(3.3), we have

E [ψ (X,θ)]2 = Var [ψ (X,θ)]

= Var
[
∂

∂θ
Eθ |X| −

∂

∂θ
s (X)

]
= Var

[
∂

∂θ
s (X)

]
= E

[
∂

∂θ
s (X)

]2

−
[
∂

∂θ
Eθ |X|

]2

,

where the last equality follows from (3.4). On the other hand

Ψ′ (θ) =
∂2

∂θ2Eθ |X| − E

[
∂2

∂θ2 s (X)
]
,

and

E

[
∂2

∂θ2 s (X)
]

=
∫ 0

−∞

∫ 0

x

∂2

∂θ2 logF (y;θ) dyf (x;θ) dx

+
∫ ∞

0

∫ x

0

∂2

∂θ2 log F̄ (y;θ) dyf (x;θ) dx

=
∫ 0

−∞


∂2

∂θ2F (y;θ)

F (y;θ)
−

[
∂

∂θ
F (y;θ)

F (y;θ)

]2
F (y;θ) dy

+
∫ ∞

0


∂2

∂θ2 F̄ (y;θ)

F̄ (y;θ)
−

[
∂

∂θ
F̄ (y;θ)

F̄ (y;θ)

]2
 F̄ (y;θ) dy

=
∂2

∂θ2Eθ |X| −
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx−
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

So

Ψ′ (θ) =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Now, using Theorem 5.13 of Shao [32], σ2
F is given as

σ2
F =

E(ψ2(X,θ))
[Ψ′(θ)]2

.

Similar to Theorem 3.2 it can be shown in the case that θ ∈ Θ ⊆ Rp is vector and
X1, ..., Xn are i.i.d., under the conditions of Theorem 5.14 of Shao [32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = 1
nB

−1AB−1 with

A =
[
∂

∂θ
s (X)

] [
∂

∂θ
s (X)

]T
−
[
∂

∂θ
Eθ |X|

] [
∂

∂θ
Eθ |X|

]T
,
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and

B =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

] [
∂

∂θ
F (x;θ)

]T
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.

Remark 3.1. In Theorem 3.2 (and the result stated just after that for p dimensional
parameter) if we assume that the support of X is nonnegative A and B are given, respectively,
by

(3.7) A = E

[
∂

∂θ
h (X)

]2

−
[
∂

∂θ
Eθ (X)

]2

,

B =
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx,

and

(3.8) A = E

[
∂

∂θ
h (X)

] [
∂

∂θ
h (X)

]T
−
[
∂

∂θ
Eθ (X)

] [
∂

∂θ
Eθ (X)

]T
,

B =
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx.

Now, following Pawitan [28], we can find sample version of the variance formula for the
MCKLE as follows. Given x1, ..., xn let

J = Ê [ψ (X,θ)]2

=
1
n

n∑
i=1

ψ
(
xi, θ̂

)
ψT
(
xi, θ̂

)
=
{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=

bθ

−
{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=

bθ

,(3.9)

and

I = −Ê ∂

∂θ
ψ (X,θ)

= − 1
n

n∑
i=1

∂

∂θ
ψ
(
xi, θ̂

)
= − ∂2

∂θ2Eθ |X|
∣∣∣∣
θ=

bθ
+

∂2

∂θ2 s (x)

∣∣∣∣∣
θ=

bθ

.(3.10)

Using notations defined in (3.9) and (3.10) we have

V̂ −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where

(3.11) V̂n =
1
n
I−1JI−1,
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provided that I is invertible matrix, or equivalently g (θ) has infimum value on parameter
space Θ. In particular when the support of X is R+, J and I are given, respectively, by

(3.12) J =
{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=

bθ

−
{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=

bθ

,

and

(3.13) I = − ∂2

∂θ2Eθ (X)
∣∣∣∣
θ=

bθ
+

∂2

∂θ2h (x)

∣∣∣∣∣
θ=

bθ

.

In Theorem 3.2, the estimator V̂n is a sample version of Vn, see also Basu and Lindsay
[3]. It is also known that the sample variance (3.11) is a robust estimator which is known
as the ‘sandwich’ estimator, with I−1 as the bread and J as the filling [14]. In likelihood
approach, the quantity I is the usual observed Fisher information.

Example 3.1. Let {X1, ..., Xn} be i.i.d. exponential random variables with probabil-
ity density function

f (x;λ) = λe−λx, x > 0, λ > 0.

We simply have MCKLE of λ as

λ̂ =
√

2

X2
.

This estimator is a function of linear combinations of X2
i ’s, and so by strong law of large

numbers (SLLN), λ̂ is strongly consistent for λ.

Now, using the central limit theorem (CLT) and delta method or using Theorem 3.2,
one can show that

√
n
(
λ̂− λ

)
d→ N

(
0,

5λ2

4

)
,

and the asymptotic bias of λ̂ is of order 1
n : E

(
λ̂− λ

)
= 15λ

8n . It is well known that the MLE

of λ is λ̂m = 1/X̄ with asymptotic distribution

√
n
(
λ̂m − λ

)
d→ N

(
0, λ2

)
,

and the asymptotic bias of λ̂m is of order 1
n : E

(
λ̂m − λ

)
= λ

n .

Notice that using asymptotic bias of λ̂, we can find some unbiasing factors to improve
our estimator. Since the MLE has inverse Gamma distribution, the unbiased estimator of λ
is λ̂um = (n− 1) /nX̄ [10]. In Liu approach an approximately unbiased estimator of λ is

(3.14) λ̂u =
8n

8n+ 15

√
2

X2
.

Figure 2 compares these estimators. In order to compare our estimator and the MLE,
we made a simulation study in which we used samples of sizes 10 to 55 by 5 with 10000
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repeats, where we assumed that the true value of the model parameter is λtrue = 5. The plots
in Figure 2 show that the MCKLE has more bias than the MLE. It is evident from the plots
that the MCKLE in (3.14) which is approximately unbiased is very close to the unbiased
MLE in the sense of biased and variance.

λ λtrue

n

10 15 20 25 30 35 40 45 50 55

1.
00

1.
05

1.
10

1.
15

MLE

MCKLE

UMLE

UMCKLE

S2(λ)

n

10 15 20 25 30 35 40 45 50 55

1
2

3
4

MLE

MCKLE

UMLE

UMCKLE

Figure 2: λ̄/λtrue and S2
(
λ̄
)

as functions of sample size.

Remark 3.2. In Example 2.2, note that |X| has exponential distribution. So, using
Example 3.1, one can easily find asymptotic properties of θ̂ in Laplace distribution.

Example 3.2. Let {X1, ..., Xn} be i.i.d. two parameter exponential random variables
with probability density function

f (x;µ, σ) =
1
σ
e−(x−µ)/σ, x ≥ µ, µ ∈ R, σ > 0.

If µ ≥ 0, then we have

g (µ, σ) = µ+ σ +
1

2nσ

n∑
i=1

(xi − µ)2

and MCKLE of µ and σ are, respectively,

µ̂ = X −
√
X2 −X

2
, σ̂ =

√
X2 −X

2
,

which are also ME’s of (µ, σ). These estimators are functions of linear combinations of Xi’s
and X2

i ’s, and hence by SLLN, (µ̂, σ̂) are strongly consistent for (µ, σ).
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Now, by CLT and delta method or using Theorem 3.2, one can show that

V −1/2
n

(
µ̂− µ
σ̂ − σ

)
d→ N2 (0, I2) ,

where

Vn =
σ2

n

[
1 −1
−1 2

]
.

On the other hand if µ < 0, then we get

g (µ, σ) = 2σ exp
(µ
σ

)
− µ− σ +

1
nσ

 n∑
i=k+1
xi≥0

x2
i

2
− µ

n∑
i=k+1
xi≥0

xi


+
σ

n

 k∑
i=1
xi>0

Li2

(
exp

(
−xi − µ

σ

))
− k · Li2

(
exp

(µ
σ

)) ,
where Li2 (·) is the dilogarithm function. In this case, the MCKLE of µ and σ can be found
numerically.

In the following example, we show that in generalized Pareto distribution while the
MLE of the shape parameter of the model does not exist one can use MCKLE to estimate
the shape parameter.

Example 3.3. Suppose that {X1, ..., Xn} are i.i.d. from generalized Pareto distribu-
tion (GPD) with c.d.f.

F (x;σ, k) =

{
1− (1− kx/σ)1/k , if k 6= 0,

1− e−x/σ, if k = 0,

where σ > 0, k ∈ R, 0 ≤ x <∞ for k ≤ 0 and 0 ≤ x ≤ σ/k for k > 0. For this distribution
the MLE of the shape parameter k does not exist for k ∈ (1,∞) [11]. Let σ be fixed. After
some algebra we get

gn (k) =
σ

k + 1
− 1
n

n∑
i=1

h (xi) , − 1 < k ≤ σ/x(n),

where

h (x) =



− σ

k2

[
kx

σ
+
(

1− kx

σ

)
log
(

1− kx

σ

)]
, k 6= 0,

σ

x
,

−x
2

2σ
, k = 0,

−x
2

σ
, k =

σ

x
,

and MCKLE estimator k̂ can be found numerically. It should be noted that in this case, for
k ≤ −1, k̂ does not exist. Recently Zhang [37] considered the estimation of for k based on
the likelihood method and empirical Bayesian [36], [38]. Denoting the Zhang’s estimator by



Parameter Estimation Based on Cumulative Kullback–Leibler Divergence 125

k̂Zhang, the cited author shows that the performance of k̂Zhang is better than other existing
methods for −6 ≤ k ≤ 1/2. In order to compare our estimator (k̂MCKLE) and Zhang’s esti-
mator k̂Zhang, we evaluated them using simulated samples of sizes 15, 20, 50, 100, 200, 500 and
1000 with 10000 replicates, considering different true values of the population parameter as
k = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 1, 3, 5 and 7. Tables 1 and 2 compare bias and root mean
squared error (RMSE) of estimators, respectively. It is evident from Table 1 that for all values
k > 0.25, k̂MCKLE has less bias than k̂Zhang. Also for k = 0.25, n = 15, 20, 500, 1000, the per-
formance of our estimator is better than the Zhang’s estimator. On the other hand, it is seen
from Table 2 that except for k = −0.75, n = 100, 200, 500, 1000, and k = −0.5, n = 500, 1000,
for all values of k, k̂MCKLE has less RMSE than k̂Zhang.

Table 1: Biases of k̂MCKLE and k̂Zhang for the GPD.

k −0.75 −0.5 −0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.0478 0.3084 0.0271 0.2136 −0.0002 0.1472 −0.0401 0.1041 −0.1005 0.0761
20 0.0185 0.2714 0.0055 0.1801 −0.0113 0.1189 −0.0366 0.0810 −0.0789 0.0573
50 0.0126 0.1840 0.0066 0.1039 −0.0003 0.0581 −0.0086 0.0346 −0.0217 0.0219

100 0.0051 0.1420 0.0023 0.0698 −0.0012 0.0337 −0.0054 0.0180 −0.0097 0.0103
200 0.0044 0.1135 0.0025 0.0490 0.0002 0.0209 −0.0028 0.0103 −0.0052 0.0056
500 0.0014 0.0845 0.0008 0.0293 −0.0001 0.0100 −0.0013 0.0043 −0.0024 0.0021

1000 0.0010 0.0687 0.0007 0.0200 0.0002 0.0057 −0.0006 0.0023 −0.0012 0.0010

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 −0.1852 0.0566 −0.4162 0.0306 −1.8133 0.0014 −3.5561 0.0001 −5.4191 2×10−5

20 −0.1452 0.0412 −0.3430 0.0201 −1.6568 0.0002 −3.3632 −6×10−6 −5.2066 6×10−6

50 −0.0499 0.0136 −0.1687 0.0033 −1.2339 −0.0004 −2.8083 −1×10−5 −4.5742 3×10−8

100 −0.0208 0.0055 −0.0979 −0.0004 −0.9988 −0.0002 −2.4627 −6×10−7 −4.1576 2×10−10

200 −0.0089 0.0025 −0.0620 −0.0012 −0.8251 −0.0001 −2.1764 2×10−9 −3.7953 3×10−12

500 −0.0025 0.0005 −0.0396 −0.0012 −0.6514 −8×10−6 −1.8621 2×10−11 −3.3789 4×10−15

1000 −0.0008 0.0001 −0.0303 −0.0010 −0.5518 −2×10−7 −1.6659 5×10−13 −3.1068 < 10−16

Table 2: RMSE’s of k̂MCKLE and k̂Zhang for the GPD.

k −0.75 −0.5 −0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.4672 0.3968 0.4040 0.3267 0.3425 0.2730 0.2893 0.2264 0.2618 0.1852
20 0.4071 0.3496 0.3543 0.2826 0.3030 0.2324 0.2565 0.1893 0.2272 0.1516
50 0.2504 0.2382 0.2167 0.1808 0.1851 0.1409 0.1573 0.1074 0.1352 0.0803

100 0.1753 0.1863 0.1510 0.1354 0.1278 0.1014 0.1073 0.0736 0.0919 0.0527
200 0.1235 0.1501 0.1060 0.1043 0.0889 0.0743 0.0732 0.0514 0.0616 0.0356
500 0.0785 0.1154 0.0674 0.0758 0.0565 0.0498 0.0460 0.0322 0.0374 0.0216

1000 0.0550 0.0957 0.0472 0.0597 0.0395 0.0364 0.0319 0.0227 0.0255 0.0149

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.2824 0.1498 0.4592 0.0948 1.8238 0.0131 3.5606 0.0021 5.4216 0.0004
20 0.2363 0.1198 0.3837 0.0715 1.6671 0.0077 3.3676 0.0010 5.2091 0.0001
50 0.1277 0.0587 0.2060 0.0287 1.2436 0.0016 2.8124 0.0001 4.5764 9×10−7

100 0.0842 0.0367 0.1313 0.0158 1.0073 0.0008 2.4662 2×10−5 4.1595 3×10−9

200 0.0564 0.0239 0.0889 0.0093 0.8321 0.0003 2.1794 3×10−8 3.7969 1×10−10

500 0.0336 0.0139 0.0568 0.0049 0.6561 0.0001 1.8641 2×10−10 3.3800 1×10−13

1000 0.0228 0.0093 0.0422 0.0031 0.5550 8×10−6 1.6673 2×10−10 3.1075 6×10−16
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4. AN EXTENSION OF MCKLE TO THE TYPE I CENSORED DATA

In this section, we extend MCKLE for the case when the data are collected in censored
type I scheme, in continuous case. Some authors such as Lim and Park [18], Cherfi [8],
Baratpour and Habibi Rad [2], Park and Shin [27], Park et al. [22] Park and Lim [23] and
Park and Pakyari [25] studied some forms of KL divergences in different censored data cases.
Let T1, ..., Tn be i.i.d. nonnegative continuous random variables from a c.d.f. F , p.d.f. f and
survival function F̄ . In a variety of applications in biostatistics and life testing, we are only
able to observe X = min (T ,C) where C is the constant censoring point. The density function
of X can be written as

fC (x) =


f (x) , 0 < x < C,

F̄ (C) , x = C,

0, o.w.

It is known that

(4.1) Eθ (X) =
∫ C

0
F̄ (x) dx.

The authors in Lim and Park [18] and Park and Shin [27] presented two censored
versions of KL divergence of density gC relative to fC , respectively, by

I∗ (g, f : C) =
∫ C

−∞
g (x) log

g (x)
f (x)

dx+ F (C)−G (C) ,

and

K(−∞,C) (g : f) =
∫ C

−∞
g (x) log

g (x)
f (x)

dx+ (1−G (C)) log
1−G (C)
1− F (C)

,

which is nonnegative and is monotone in C. Park and Lim [23] defined CKL for censored
data as

CKLC

(
Ḡ||F̄

)
=
∫ C

0
Ḡ (x) log

Ḡ (x)
F̄ (x)

−
[
Ḡ (x)− F̄ (x)

]
dx.

They also defined the CKLC of Fn relative to F as

CKLC

(
F̄n||F̄θ

)
=
∫ C

0
F̄n (x) log

F̄n (x)
F̄ (x;θ)

−
[
F̄n (x)− F̄ (x;θ)

]
dx

=
∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx

+
∫ C

0
F̄ (x;θ) dx−

∫ C

0
F̄n (x) dx,

and considered it in type II censorship. Here we apply CKLC for type I censored data.
Using (4.1) we get

CKLC

(
F̄n||F̄θ

)
=
∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx+ Eθ (X)− x̄.
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Consider the parts of CKLC

(
F̄n||F̄θ

)
that depends on θ and define

(4.2) g (θ) = Eθ (X)−
∫ C

0
F̄n (x) log F̄ (x;θ) dx.

Then the MCKLE of θ is defined as

θ̂ = arg inf
θ∈Θ

CKLC

(
F̄n||F̄θ

)
= arg inf

θ∈Θ
g (θ) ,

provided that Eθ (X) <∞ and g′′(θ) is positive definite; see also Park and Lim [23].

If C →∞, then g (θ) in (4.2) reduces to (1.4) and results in non-censored case yield as
special case.

In order to study the properties of the estimator, following non-censored case, we have
simple form of g (θ) as (1.5), with h as (1.6).

Let θ̂n be MCKLE in censored case by minimizing g in (4.2). Here, MCKLE is also an
special case of GEE with ψ (x,θ) as (3.6), and under the conditions given in non-censored
case the MCKLE in censored case is also consistent. Asymptotic normality of a consistent
sequence of MCKLE can be established under the conditions imposed in non-censored case.
We first consider the special case where θ is scalar and X1, ..., Xn are i.i.d. continuous random
variables.

Theorem 4.1. For each n, let θ̂n be an MCKLE or equivalently a GEE estimator.

Then (
θ̂n − θ

)
d→ N

(
0, σ2

F

)
,

where σ2
F = A/B2, with A as (3.7) and

B =
∫ C

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Proof: The proof is similar to non-censored case.

The next theorem shows asymptotic normality of MCKLE, when θ ∈ Θ ⊆ Rp is vector
and X1, ..., Xn are i.i.d. and continuous.

Theorem 4.2. Under conditions of Theorem 5.14 of Shao [32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = B−1AB−1, with A as (3.8) and

B =
∫ C

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.

Proof: The proof is similar to non-censored case and hence it is omitted.
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Remark 4.1. In Theorems 4.1 and 4.2, if C →∞ (no censoring), then results in non-
censored case yield as special cases.

Now, following Pawitan [28], similar to non-censored case the sample version of the
variance formula for the MCKLE in censored case is as (3.11), with I and J as (3.12) and
(3.13).

Example 4.1. Let {X1, ..., Xn} be i.i.d. type I censored Exponential random vari-
ables with probability density function

fC (x) =


λe−λx, 0 < x < C,

e−λC , x = C,

0, o.w.

where λ > 0. After some algebra, we have

g (λ) =
1
λ

(
1− e−λC

)
+
λ (n− r)

2n
C2 +

λ

2n

r∑
i=1

x2
(i) =

1
λ

(
1− e−λC

)
+
λ

2
x2,

and λ̂ can be found numerically as a decreasing function of x2, and hence, by using strong law
of large numbers (SLLN), it is strongly consistent. Figure 3 shows λ̂ as a decreasing function
of x2.
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2
4

6
8

10
12

14

x2

λ̂

C=0.2

C=0.4

C=0.6
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C=1

Figure 3: λ̂ as a decreasing function of x2.

Now, using Theorem 4.1, one can show that
√
n
(
λ̂− λ

)
d→ N

(
0, σ2

F

)
,

where

σ2
F =

λ2
(
5− e−2λC (λC + 1)2 − e−λC

(
λ3C3 + 3λ2C2 + 4λC + 4

))
(2− e−λC (λ2C2 + 2λC + 2))2

.

If C →∞ (no censoring), then we obtain the results in non-censored case.
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