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Abstract:

e Record values are commonly seen in real life applications, and many important studies on record
values relate to Weibull distributions. Based on record values, we establish the minimum area
confidence region for the two-parameter Weibull distribution, which is shown to be superior to the
classical confidence regions for having smaller expected area.
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1. INTRODUCTION

Weibull distribution has wide applications in survival analysis, reliability engineering,
weather forecasting, hydrology, meteorology and insurance (e.g, Murthy et al. [16], Ye et al.
[26]). The cumulative distribution function (cdf) of the two-parameter Weibull distribution,
denoted by Weibull(53,n), is

where 3 > 0 is the shape parameter and n > 0 is the scale parameter. In particular, if § =1,
then the Weibull distribution simplifies as the exponential distribution Exp(n) with mean 7,
and it becomes the Rayleigh distribution when 8 = 2. In the case of § > 10, the shape of
Weibull distribution is close to that of the smallest extreme value distribution (e.g, Nelson
[17]).

Record values were first introduced by Chandler [11] as special order statistics from
random samples, which can be simply described as follows. (For more description, refer to
Ahsanullah [1] and Arnold et al. [2].) Let {X,, n=1,2,...} be an iid (independent and
identically distributed) sequence of continuous random samples. Observation X; is called an
upper record if X; > X; for each i < j. In addition, the record times sequence {U,, n > 1}
is defined by U; = 1 with probability 1 and U, = min{j : j > Up—1, X; > Xy, _, } for n > 2.
Thus, the sequence { Xy , n > 1} is called a sequence of upper record statistics. Lower record
statistics can be defined analogously.

Record values are commonly seen in real life applications, such as those in meteorol-
ogy, sports, economics and life tests (e.g., Ahsanullah [1] and Arnold et al. [2]), where joint
confidence region for unknown parameters is of great practical significance. In the recent
years, joint confidence regions based on records were investigated by many authors, and most
of their studies on record values are related to Weibull distributions. For references, see,
for example, Chan [10], Chen [12], Murthy et al. [16], Soliman et al. [21], Wu and Tseng
[25], Soliman and Al-Aboud [20], Asgharzadeh et al. [7], Asgharzadeh and Abdi [3, 4, 5],
Teimouri and Nadarajah [22], Wang and Shi [23], Jafari and Zakerzadeh [13], Wang and Ye
[24], Zakerzadeh and Jafari [27], and Zhao et al. [30].

In the next section, we discuss the classical methods to build joint confidence regions for
parameters of Weibull(/3,n) distribution, based on (upper) record values. Then the minimum
area confidence region (MACR) for ((3,n) based on records is established in Section 3 and
Section 4. Comparison of these confidence regions is given in Section 5, showing that the
proposed MACR is superior to the classical confidence regions for having smaller expected
area.

2.  CLASSICAL CONFIDENCE REGIONS BASED ON RECORDS

Let Xy, < Xy, < -+ < Xy,, be the upper record values coming from Weibull(53,7). For
simplicity, we write X, as R; and let Y; = (R;/n)” (i =1,2,...,n). ThenY; <Y < --- <Y,
are the first n upper record values from the standard exponential distribution. Arnold et al. [2]
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showed that 71, ..., 7, are iid from Exp(1), that is, Z1, ...,Znifig Exp(1), where Z; =Y; —Y;_;

(1=1,2,....,n; Yo =0). It follows that for j =1,2,....,n — 1,
. j R, Ry R;
() Uj=230,2i=2G1)" ~x3;, Vi=230 1% =2(("2)" = (Gl ~ X5,
and the two pivotal quantities are independent, where 2, denotes the chi-square
distribution with m degrees of freedom;

. V;/2(n—j j

() Uj+Vy =205 ~ o3, P07 = 25 1(8)° — 1] ~ Faj)a » and the two
pivotal quantities are independent (see Asgharzadeh and Abdi [4], Johnson et al.
[15], p. 350) where F},, ,, stands for the F-distribution with n; and ny degrees of

freedom.

To build a joint confidence region for 3 and 7, we have from (ii) that

J . Bn
i [F2(”_j)’2j(a1) S [(RT)B —1] < F2(n—j),2j(042)] =Vi—a

forj=1,2,....,n—1, and

P [x%ml) <ol < x§n<a2>] Vi —

where o) = 1% ap = V=Y F o (p) is the p quantile of Fy, ,, and x2,(p) is the
p quantile of x2,. Then one type of the classical level 1 — a confidence region for (3,7) is
given by (Asgharzadeh and Abdi [4])

log[1 + n];'jFZ(n—j),Qj(al)] log[1 + nT_-jFQ(n—j)gj(OQ)]

<B< 7
oy A oa(Ra/B) =0 Tos(l/Ry)
2 1 2 1
Bl gy == g oy

where j =1,2,...,n—1, and each A; produces a level 1 — o confidence region for (3,7).
Based on Monte Carlo simulation, Asgharzadeh and Abdi [4] observed that Alzyand Az,
provide the smallest confidence areas in most cases, where || denotes the largest integer
value smaller than z.

Noticing that U =281 log(Rn/R;) ~ X3,_5 and V = 2(R,,/n)? ~ x3,,, which are
independent, Jafari and Zakerzadeh [13] derived another type of the classical level 1 — «
confidence region for (3,n):

X%n—2(a1) <B< X%n—2(a2)
2> i log(R/Ri) = 7 23000 log(Rn/Ri)’
(2.2) B: , )
1 1
Ry 5 <n<Ryl—5——]%,
Gole) Gl
where a; = 1_V21_°‘ and ap = IT1=% By simulation study, Jafari and Zakerzadeh [13]

concluded that the expected area of the confidence region in (2.2) is smaller than that in
(2.1) proposed by Asgharzadeh and Abdi [4].
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3. A BASIC THEOREM ON THE MACR

Let T =T(X) be a sufficient statistic of parameter § = (3,n) with pdf (probability
density function) f(¢;0), where t € T(X) , 8 € ©. Here, X denotes the random sample with
sample space X, and O is the parameter space.

According to the Sufficiency Principle in mathematical statistics (e.g., Bickel and Dok-
sum [8], Casella and Berger [9]), we only need to consider the confidence region C(T") based
on sufficient statistic ' = T'(X), without loss of information from the sample X. The purpose
of using the sufficient statistic to simplify or reduce the sample X to T'= T'(X), so that we
have T'(X) = © to be used in the following theorem. This theorem creates the MACR for
under some restriction, where |C| denotes the area of any confidence region C.

Theorem 3.1. Suppose that for any 6 € ©,

1. T =T(X) is a sufficient statistic of § with pdf f(t;8), such that T'(X) = ©;
There exists some p(f) > 0, such that f(T;0) = f(T;0)/p(0) is a pivotal quantity;

3. The confidence region Cy(T') is defined by

Co(T)={0: f(T;0) >k, 6 <O},

where k > 0 is the critical value determined by P[0 € Cy(T)] =1 — « for any a €
(0,1).

Then Cy(T) is the level 1 — ae MACR of 0, under restriction

(3.1) / dt < r(0)|C(0)|

0cC(t)

for any C(T') and 6 € ©, where ri(0)= [ dt/|C(0)].
9eCh(t)

Proof: Let C(T) be any level 1 — « confidence region of 6, satisfying [ dt < r(6)|C(6)].
9eC(t)
Then for any 6 € O,

l—a < Pl9ec(T) = / £(£:0) — kp(8)]dt + kp(6) / dt.

9ecC(t) 9eC(t)

It follows from P[0 € Cy(T)] = 1 — « that

0 < PlfeC(T)] - P8 € CW(T)]

= di(0) + kp(0) | / dt — / dt]

6eC(t) 0eCy(t)
< kp()ri(0)[|C(0)] — |Cr(0)]],
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where

dk(e):</dt / dt)[f(t;
9 Cr (1)

eC(t) 0eC),

6) —
= < / - )[f(t;

PeC(t)NCk(t)  OeCk(t)NC(t)

kp(6)]dt
6)

— kp(0)]dt <0

where C' denotes the complementary set of C, and f(¢;0) — kp(6) > or <0 if § € Cy(t)

or 0 € Ci(t). It follows that |C'(0)] — |Cr(6)] > 0 or |Cr(8)| < |C(8)| for any 6 € ©, which,
together with T'(X') = ©, implies that |Cy(T)| < |C(T)| for any T'. The proof is complete. [

This theorem extends the basic theorems in Zhang [28, 29], which are valid for building
the MACRs of parameters for normal and exponential distributions, but are not for the
Weibull(3, n) distribution. By Theorem 3.1, Cx(T') is the level 1 — v optimal confidence region
of 0, minimizing the area of any level 1 — « confidence region C(T') under the restriction in
(3.1). This restricted condition may look complicated, but the MACR C(T") does satisfy
this condition, due to

/ dt = ry(0)|Cx(0)].

0eC (1)

Moreover, there is no need to check which C(T") is under the restriction. The situation is like
that of using Lehmann-Scheffé theorem to build the UMVUE (uniformly minimum variance
unbiased estimator), without need to check which estimator is unbiased (e.g., Bickel and
Doksum [8], Casella and Berger [9]).

A similar theorem was established in Jeyaratnam [14]. The minimum volume confidence
region built by Jeyaratnam is based on a pivotal quantity T'(X, €) such that for each x, T'(x, 6)
is a one-to-one map on © whose Jacobian J does not depend on 6, and it is optimal for any
level 1 — « confidence region based on the special pivotal quantity.

4. FORMULATION OF THE MACR BASED ON RECORDS

Based on n record values Ry < Ry < --- < R,, from Weibull(3, ), we now apply Theo-
rem 3.1 to derive the MACR for parameter § = (3,7n). Let

n—1
Z = log(Ru/Ry).
=1

Then (Z, Ry,) is a sufficient statistic for (3,7n), according to Wang and Ye [24]. Being its equiv-
alent statistic, T = (Z,log R,,/Z) is also sufficient for (3, 7). By Section 2, U = 287 ~ x2,
and V= 2(%)5 ~ X3,,, which are independent. Thus, (U, V') has pdf fxgn_Q(u) fxgn(v), u,v >0,
and the pdf of T' = (T1,T») is

tito

, t1 >0,

f(t1,t2§/8777) =5, (Qﬁtl)fxgn [2(6 5]’53((717’1))

t1,t2)

.
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where f,2 (z) (F\2 (7)) denotes the pdf (cdf) of X2, U=28T,V =2(2 717 2)# and Jacobian
O(u,v t t
| = 470 ()

Treating R = (R, Ro, ..., Ry) as the random sample X in Section 3, we can see that
T = (Z,log R,/Z) is a sufficient statistic for § = (3,7n), satisfying the conditions 1 and 2 in
Theorem 3.1, where the pivotal quantity is

t1to t1t2

Flo 23 B.m) = fig, (2000 f g, 1205207 (260) -2~

)ﬁ t1 > 0.

Hence, the level 1 — a MACR for (8,n) is Cx(T) = {(6,n) : f(Ty, Ty; B,n) > k} or

(4.1) CK(T) = {(B.m) = 9(BZ) + h((Rn/)") < ka},

where g(z) =2 — (n — 1)logz and h(y) = y — nlogy are both convex functions, and k, is a
critical value to be determined.

Let k(x) = ko — g(2), k=ky — hypin and Amin = h(n). Then the confidence region in
(4.1) can be equivalently expressed as

687 fﬂ,
Ck( ) { g( ) <
h((Rn/n) ) < k(ﬁZ),

for computational purpose. From the property of convex function, g(87) < k is equivalent to
ki < BZ < ks with g(k1) = g(kz) = b, and h((Ra/m)°) < k(3Z) means k11 (82) < (Ro/n)? <
k12(8Z) with h(k11(82)) = h(k12(8Z)) = k(8Z). Finally, the level 1 — o« MACR for (3, 7) in
(4.1) can be written as

kl/ZSﬁS k2/Z>

(4.2) Cy(T) = 1
Ry /[k12(82)]7 < n < Ry/[k11(82)]7,

CﬂH

where g(z) = z — (n — 1)logz with g(k1) = g(ko) = k, h(y) = y — nlogy with h(k11(82)) =
h(k12(8Z)) = k(8Z), and the critical value k, is determined by

1—a = P[(B,n) € Crp(T)]

= Plg(BZ) + h(( n/77) ) < kol
= /0 / Af\z 2ac ) f gn(2y)dacdy
(@)+h(y <ka

k2 pkiz(x
- / / Ft, o (20) 1, (2y)drdy
k1 Jkii(z

- /k 2y (20)[Fg (ki) — Fyg (2kn(2))]da,

where kg > gmin + Amin and h(k11(2z)) = h(ki2(z)) = ko — g(x). A short R code (R Core Team
[18]) for computing ko, ki, ko2, ki11(x), ki2(x) in (4.2) is given in Appendix A, where the last
integral in the above equation is computed by using Simpson’s rule for numerical integration
(the interval [k, ko] is split up into 1000 subintervals).
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5. COMPARISON OF CONFIDENCE REGIONS

In the statistical literature, the commonly used measure of accuracy for a confidence
region is its volume (area). Clearly, the smaller the volume (area), the more accurate the
confidence region. To compare the MACR in (4.1) or (4.2) with the classical confidence
regions in (2.1) and (2.2), we now discuss their areas as follows.

Given the sample data of upper record values: R = (R, Ro,..., Ry,), the area of the
classical confidence region in (2.1) is

log[1+ 257 Fy(n—j) 0 (22)]

L 108(Rn /) 2 % B 2 %
D T T L e e et
IOg(Rn/Rj)

where the integral can be computed by using Simpson’s rule for numerical integration.

Similarly, the area of the classical confidence region in (2.2) is

x%n,z(az) 5 5
2™ _log(Rn/R;) 1 1
|B| = 5y Rall )P = (= )7ldp,
Goolen) TN (an) X3, (a2)

237 log(Rn/R;)

and the area of the MACR in (4.1) or (4.2) is

k2/2 1 1 1 1
CW(T)| = /k G~ ) 8

R, [* 1 z 1 z
= 7 ks [(k'll(l'))z _(k‘lg(l'))z

Monte Carlo simulation is conducted to compute the expected areas of confidence re-
gions in (2.1), (2.2) and (4.1). Since 7 is the scale parameter of Weibull(3,7), we can set
n =1 without loss of generality. We generate N = 1000 independent upper record values
RO = (Rgz),Rg), ...,RSLZ)) from Weibull(3, 1), where ¢ =1,2,..., N. Then Zfil |C(RW)|/N
is used to simulate F|C(R)|, the expected area of C(R).

Table 1 lists the expected areas of confidence regions in (2.1), (2.2) and (4.1), where
A, stands for the smallest-area confidence region in (2.1), B represents the confidence region
n (2.2), and Cy(7T) is the MACR in (4.1). We see from Table 1 that the MACR is always
the best for having the smallest expected area.

Example 5.1. Roberts [19] gave the monthly maximal of one-hour average concen-
tration of sulfur dioxide in pphm (parts per hundred million) from Long Beach, California,
for the years 1956 to 1974. The related upper record values for the month of October is 26,
27, 40 and 41, where n = 4 and R4 = 41.
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Table 1: Expected areas of confidence regions for (3,n) with n = 1.

. B
11—« n Region
0.25 0.5 1.0 1.2 1.5 2.0 3.0 5.0

A 403.8 1792  6.110 5.250  4.788  4.275  4.054  3.911
5| B 336.7  14.93 5347 4660 4.127 3.876  3.620  3.565
Cr(T) 315.1  14.01  5.113 4403 3.890 3.569  3.415  3.364
Ay 214.6  10.17 2982 2,525 2253 2.064 1926  1.893
10 | B 140.0 6.644 2384 2123  1.881 1.756  1.648  1.618
Cr(T) 108.7  6.392 2232 1.889  1.793  1.651  1.549  1.546
A 1524 6.399 1970 1.717 1503 1.364 1.283  1.264
0.90 15 | B 73.04 4232 1491 1291 1174 1.122  1.068  1.069
Cr(T) 67.13 4129 1464 1.267 1.128 1.075 1.031 1.003
A 108.1  4.788 1434 1233 1110 1.028 0973  0.952
20 | B 55.59 2741  1.067 0.962 0900 0.854 0.788  0.780
Cr(T) 4546  2.605 1.035 0908 0876 0.789  0.767  0.744
As 76.49 2806 0906 0.812 0.741 0.666 0.635  0.629
30 | B 37.69 1712 0.684 0.617 0.571  0.539 0.521  0.518
Cr(T) 21.18 1505 0.659 0.601 0.550 0.517 0.491  0.494
A 697.9  27.58 8.752  7.528 6.373 5800 5417  5.228
5| B 578.3 2250 7254  6.413  5.559  5.167  4.787  4.743
Cr(T) 509.4 21.82 6919 6.050 5.258  4.756  4.471  4.408
Ay 420.0 13.81  4.003 3.490 3.108 2.673 2.538  2.520
10 | B 228.6 8852 3.135 2772 2490 2289 2184  2.142
Cr(T) 198.0  8.648 2931  2.668  2.342  2.129  2.048  2.004
A 336.2  9.370 2.714 2326  2.006 1.817 1.682  1.670
0.95 15 | B 138.0 6.083 2.057 1.756  1.615  1.494  1.412  1.393
Cr(T) 111.1 5490 1.911 1.685  1.530  1.420 1.311  1.299
A 179.8 7.024 1998 1.694 1.457 1.356 1.271  1.251
20 | B 78.08 4305 1429 1275 1.195 1.097 1.038  1.022
Cr(T) 70.62  3.659 1328 1.218 1.112 1.034 0988  0.965
A, 112.8 3929 1278 1.093 0987 0.890 0.845 0.830
30 | B 50.17 2,508 0925 0.825 0.766 0.714 0.693  0.675
Cr(T) 39.10 2265 0911  0.780 0.722  0.676 0.646  0.643
A, 3731 7142 16.96 13.87 11.68 9.785  8.808  8.413
5 | B 2566 56.98  14.70  12.25 10.13 8881  8.004  7.626
Cr(T) 1541 45.17  11.68 10.10 8757 7.533  6.943  6.690
A 1022 29.63 7443 5990 5.039 4394  4.002  3.943
10 | B 568.6  19.05  5.510 4.588  4.046  3.675  3.424  3.349
Cr(T) 4345 16.75  5.099  4.293 3.778 3.368  3.147  3.054
A, 750.5 19.30 4.685  3.835  3.263 2.866  2.687  2.600
0.99 15 | B 367.2  11.27  3.356 2927 2,561 2321 2225  2.178
Cr(T) 309.7 10.25 3.104 2.684 2396 2.160 2.013  2.002
A 4774 1345 3479 2863 2507 2159  1.993  1.946
20 | B 212.1  7.883 2496 2174 1.889 1.741 1.634  1.600
Cr(T) 179.1 7291 2292 1968 1.772  1.624 1533  1.482
A 306.3 8.630 2.204 1.892 1.597 1.460 1.330  1.300
30 | B 1159  4.887 1497 1370 1.239 1.141 1.070  1.068
Cr(T) 79.47 4170 1471 1290 1.125 1.044 1.002  0.981

Chan [10] showed that Weibull(/3, ) is a reasonable model for the data set. Then the
level 95% MACR for (,7) in (4) is given by

Ci(T) = {(B,7) : 0.89793 — 310g(0.89793) + (41/n)° — 4B1log(41/n) < ku}

with area 154.908, where k, = 1.297, k1 = 0.451 and kg = 9.640 are obtained by using the
R code in Appendix A.
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The level 95% confidence regions for (8,7n) in (2.1) are
Ar = {(B,n) : 0.5826 < 8 < 11.9955, 41(0.1029)% < 1 < 41(1.1318)7 ),
Ay = {(B,n) : 0.1646 < 8 < 6.4905, 41(0.1029)5 < 5 < 41(1.1318)7 ],
As = {(B,1) : 0.1720 < § < 58.9824, 41(0.1029)7 < n < 41(1.1318)7},
with areas 195.118, 166.671 and 369.396 respectively.
The level 95% confidence region for (4,7n) in (2.2) is
B ={(8,n):0.5305 < 3 < 9.0277, 41(0.1020)% < 5 < 41(1.1318)7}

with area 172.502. The plots of the confidence regions for MACR, As and B are displayed in
Figure 1, where the MACR has the smallest area and better shape.

— MACR

80
|
w

- YSCR

60

eta
40
1

beta

Figure 1: 95% confidence regions MACR, Az, B and YSCR for (8, 7).

For comparison, consider the confidence region (YSCR) of (8,7) in Chen [12] for a
complete sample X = (X1, X2, ..., X;,). Here the original data set of X is (n = 19)

26,14, 27,15,16,16, 11, 10, 14, 12, 15, 40, 29, 13, 20, 41, 31, 28, 11.
Then Chen’s level 95% confidence region (YSCR) for (3, 7) is
1.9056 < 3 < 6.6327,

20 X 2500, X[
(—e ) << (—r5m5 )%
60.0972 21.2138

which has area 34.2436 and is also plotted in Figure 1. Clearly, the YSCR. is much more
accurate, but it is based on a complete sample with n = 19.

=
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A. APPENDIX: R code for computing k., ki, k2, k11(x), k12(z) in (4.2)

Compute the critical value k, ki1, k2, k11(x), k12(x) at level Pk=1-c.
n= sample size

<- function(n,c) {a <- (n-1)*(1-log(n-1))+n*(1-log(n)); b <- 50
<- function(x) x-(n-1)*log(x)

<- function(y) y-nxlog(y)

Step 1: find k1 < k2 so that g(k1l)=g(k2)=k-h(n).

k1k2 <- function(n,k) {a <- 0; b <- n-1

kk<- k-(n-n*log(n))

for (i in 1:50) if (g((a+b)/2)<kk) b <- (a+b)/2 else a <- (atb)/2
k1 <- (a+b)/2; a <- n-1; b <- n+100

for (i in 1:50) if (g((atb)/2)<kk) a <- (at+b)/2 else b <- (atb)/2
k2 <- (a+b)/2; c(k1,k2)}

# Step 2: find k11(x) < k12(x) so that h(k11(x))=h(k12(x))=k-g(x).
k11k12 <- function(n,k,x) {a <- 0; b <- n

kk<- k-g(x)

for (i in 1:50) if (h((a+b)/2)<kk) b <- (a+b)/2 else a <- (a+b)/2
k1lx <- (a+b)/2; a <- n; b <- n+100

for (i in 1:50) if (h((a+b)/2)<kk) a <- (a+b)/2 else b <- (at+b)/2
k12x <- (a+b)/2; c(klix,k12x)}

# Step 3: find k so that Pk=1-c.

Int<- function(n,k) {N <- 1000

K <- k1k2(n,k)

H <- (K[2]-K[1])/N; df <- 2*(n-1)

P <- function(x) {

KK <-k11k12(n,k,x)
2*dchisq(2*x,df) * (pchisq(2*KK[2] ,2*n) -pchisq(2+KK[1],2*n))}

x1 <- K[1]+((1:N)-0.5)*H ; x2 <- K[1]+(1:(N-1))*H

s1<-0; s2<-0

for (j in 1:N) si<- si+P(x1[j])

for (j in 1:(N-1)) s2<- s2+P(x2[j])

Pk <- H/6%x(P(K[1])+P(K[2])+4*s1+2xs2); c(Pk,K) }

for (i in 1:100) {

R <- Int(n, (a+b)/2)

if (R[1]<1-c) a <-(a+b)/2 else b<-(a+b)/2}

k <- (a+b)/2; 1list(k=k,k1=R[2],k2=R[3])}

H# B0 H H H
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