
REVSTAT – Statistical Journal
Volume 19, Number 1, January 2021, 1–22

SKEWED PROBIT REGRESSION — IDENTIFIABILITY,
CONTRACTION AND REFORMULATION

Authors: Janet van Niekerk
– CEMSE Division, King Abdullah University of Science and Technology,

Kingdom of Saudi Arabia
Janet.vanNiekerk@kaust.edu.sa
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Abstract:

• Skewed probit regression is but one example of a statistical model that generalizes a simpler model,
like probit regression. All skew-symmetric distributions and link functions arise from symmetric
distributions by incorporating a skewness parameter through some skewing mechanism. In this
work we address some fundamental issues in skewed probit regression, and more genreally skew-
symmetric distributions or skew-symmetric link functions.
We address the issue of identifiability of the skewed probit model parameters by reformulating the
intercept from first principles. A new standardization of the skew link function is given to provide
and anchored interpretation of the inference. Possible skewness parameters are investigated and the
penalizing complexity priors of these are derived. This prior is invariant under reparameterization
of the skewness parameter and quantifies the contraction of the skewed probit model to the probit
model.
The proposed results are available in the R-INLA package and we illustrate the use and effects of
this work using simulated data, and well-known datasets using the link as well as the likelihood.
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1. INTRODUCTION

Skew-symmetric distributions have acclaimed fame due to their ability to model skewed
data, by introducing a skewness parameter to a symmetric distribution, through some skew-
ing mechanism. In the preceding decades, an abundance of skewed distributions has been
proposed from the basis of symmetric distributions, like the skew-normal [30, 3], skew-t [6]
and more generally skew-elliptical distributions [21]. In each of these skew distributions, an
additional parameter is introduced that indicates the direction of skewness or alternatively,
symmetry.

With the introduction of the additional parameter, the inferential problem can become
more challenging. The identifiability of the parameters and the existence of the maximum
likelihood estimators (MLEs) are issues to keep in mind. In the Bayesian paradigm, the choice
of a prior for the skewness parameter emerges. Either way, the inference of the skewness
parameter is crucial in evaluating the appropriateness of the underlying (skewed) model.

A continuous random variable X, follows a skew-normal (SN) distribution with location,
scale and skewness(shape) parameters ξ, ω and α, respectively, if the probability density
function (pdf) is as follows:

(1.1) g(x) =
2
ω

φ

(
x− ξ

ω

)
Φ

[
α

(
x− ξ

ω

)]
,

where α ∈ R, ω > 0, ξ ∈ R, and φ(·) and Φ(·) are the density and cumulative distribution
function (CDF) of the standard Gaussian distribution, respectively. Denote by G(x) the CDF
of the skew-normal density.

The parameterisation in (1.1) poses difficulties since the mean and variance depends on
α, as E[X] = ξ + ωδ

√
2/π and V [X] = ω2

(
1− 2δ2/π

)
, where δ = α/

√
1 + α2. This implies

that inference for α will also influence the inference for the mean and variance, since both
are functions of α.

A similar challenge arises in the binary regression framework where the skew-normal link
function is used as a generalization of probit regression, namely skewed probit regression. The
need for asymmetric link functions have been noted by [14]. In binary regression, asymmetric
link functions are essential in cases where the probability of a particular binary response
approaches zero and one at different rates. In this case, a symmetric link function will result
in substantially biased estimators with over(under)estimation of the mean probability of the
binary response, due to the different rates of approaching zero and one (see [16] for more
details on this issue). Skewed probit regression is an extension of probit regression, where
covariates are transformed through the skew-normal CDF instead of the standard normal
CDF.

Here, it might not be intuitive when the skewed link function is more appropriate than
the symmetric link function. The estimate of the skewness parameter could provide some
insights into this, only if the inference of the skewness parameter is reliable and interpretable.

Regarding the inference of the skewness parameter, α in (1.1), being it in the skewed
probit regression or the skew-normal distribution as the underlying response model (which
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are conceptually the same estimation setup), various works have been contributed, most
of them dedicated to the skew-normal response model framework. The identifiability of the
parameters in the skew-normal response model was investigated by [22] (and skew-elliptical in
general), [31] (for finite mixtures) and [13] (for extensions of the skew-normal distributions).
For binary regression, identifiability of the parameters was considered by [25] where some
issues concerning identifiability were raised. We address the identifiability problem from a
first principles viewpoint, so that the parameters are identifiable, even with weak covariates,
hence adding to [25].

In the skew-normal response model, the bias of the MLEs is a well-known fact (see [34]
for more details). For small and moderate sample sizes, the MLE of the skewness parameter
could be infinite with positive probability and the profile likelihood function has a singularity
as the skewness parameter approaches zero, as noted early on by [3] (see also [26]). Some
approaches to alleviate this feature of the skew-normal likelihood function have been proposed,
including reparameterization of the model by [3] using the mean and variance (instead of
location and scale parameters), or using a Bayesian framework by [27] (default priors) and
[7] (proper priors). Also, [34] used the work of [19] to propose an adjusted (penalized) score
function for frequentist estimation of the skewness parameter. A penalized MLE approach
for all the parameters, including the skewness parameter, is presented by [5]. Bias-reduction
regimes were proposed by [28].

From a Bayesian viewpoint, various priors for the skewness parameter have been pro-
posed such as the Jeffrey’s prior [27], truncated Gaussian prior [1], Student t prior and
approximate Jeffery’s prior [7], uniform prior [2], probability matching prior [11], informative
Gaussian and unified skew-normal priors [12] and the beta-total variation prior [17]. All of
these Bayesian approaches, with the exception of the latter, are based on somewhat arbitrary
prior choices for mainly mathematical or computational convenience. These priors (as many
others) are not invariant under reparameterization of the skewness parameter. The beta-
total variation prior presented by [17] is based on the total variation from the symmetric
Gaussian model to the skew-normal model, viewing the skewness parameter as a measure of
perturbation. This prior is indeed invariant under one-to-one transformation of the skewness
parameter.

Amongst the many works on the skew-normal response model, it seems that the genesis
of the skew-normal model has been neglected. The skew-normal model was introduced by [3]
as an (asymmetric) extension of the Gaussian model. The motivation for this extension is
found in data. When data behaves like the Gaussian model, but the profile of the density is
asymmetric, the skew-normal model might be appropriate. Conversely, we need an inferential
framework wherein the skew-normal model would contract (or reduce) to the Gaussian model,
in the absence of sufficient evidence of non-trivial skewness. The priors mentioned before
do not provide a quantification framework with which the modeler can understand, and
subsequently control this contraction. To achieve this, we need to consider the model (either
skewed probit regression or the skew-normal response model) from an information theoretic
perspective. Then we can construct a prior with which the quantification of contraction (or
not) can be done, and used as a translation of prior information from the modeler to the
model.

In this paper we address some issues (identifiability, standardizing, skewness parame-
ters) prevalent in skewed-probit regression in Section 2 and construct the penalized complexity
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(PC) prior for the skewness parameter of the link function (which is translatable to the skew-
normal response model) in Section 4. This PC prior is implemented in the R-INLA [32] (see
also [33], [29]) package for general use by others. We use a numerical study to illustrate the
solutions proposed in Section 2 and apply the PC prior to simulated and real data in Sections
5 and Section 6. The paper is concluded by a discussion in Section 7 in which we sketch the
wider applicability of this work and contributions to the wider skew-symmetric family.

2. SKEWED PROBIT REGRESSION AND ISSUES

We consider skewed probit regression as an extension of probit regression, where the
link function is the skew-normal CDF instead of the standard normal CDF. We formulate
skewed probit regression that can include random effects like spline functions of the covariates,
spatial and/or temporal effects. For this paper, we assume the following structure. From a
sample of size n, the responses yyyn×1 are counts of successful trials out of Nn×1 trials and hence
we assume a Binomial distribution with success probability p. We gather all m covariates in
XXXn×m and use these to build an additive linear predictor, defined as ηηηn×1. So then,

yi ∼ Binomial(Ni, pi),

pi = G(ηi), i = 1, ..., n,(2.1)

where G(·) is the CDF of the Skew-Normal that depends on (ξ, ω, α). The linear predictor
ηi is an additive linear predictor defined as follows,

(2.2) ηi = β0 + βββ′XXXi +
K∑

k=1

fk(ZZZi),

where XXX and ZZZ are the covariates for the fixed and random effects, respectively, the functions
{fk(.)} are random effects like spatial, spline, temporal effects with hyperparameters θθθ.

2.1. Issue 1 – Standardizing the link function

With the aim of standardizing the link function, [25] assumed ξ = 0, ω = 1, similar to
[9] and many others. Initially, the idea behind this choice feels intuitive since the skew probit
link is an extension of the probit link through the skewness parameter. However, the (0, 1)
parameter values of the probit link should not be naively copied to the skewed probit link.
The choice, ξ = 0, ω = 1 implicitly concedes that a skew-normal density (1.1) with mean

E[X] = α

√
2

π(1 + α2)
,

and variance

V [X] = 1− 2α2

π(1 + α2)
,

is used to calculate the probability of success, for all α. This essentially implies that for
different skewness parameter values, different means and variances are used. This way of
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standardizing is a parameter-based method, instead of the intended property-based method
like in the probit link. We do not expect the assumption ξ = 0, ω = 1 to work well since the
mean and variance are not anchored and can attain many values based on different values of
α.

We posit that the mean and the variance (properties of the link) should be fixed, like in
the probit case, instead of the skew-normal location and scale parameters. This is analogous
to the idea of the centered parametrization of the skew-normal density and mentioned by [8].

We propose the link function F (y|α) that is the CDF of the Skew-Normal density (1.1)
scaled to have zero mean and unit variance for all values of α. That is,

F (y|α) =
∫ y

−∞
f(x|α) dx

where

(2.3) f(x|α) =
2

ω(α)
φ

(
x− ξ(α)

ω(α)

)
Φ

[
α

(
x− ξ(α)

ω(α)

)]
,

ξ(α) = −ω(α)

√
2

π(1 + α2)
,

and

ω(α) =

√(
1− 2α2

π(1 + α2)

)−1

.

This provides an anchored link function with zero mean and unit variance, for all α. If this
standardization is not used then an arbitrary unknown scale is introduced to the model, with
no means of recovering it. By fixing the mean and variance, we have a better understanding
of the properties of the link and we do approach the probit case in the neighborhood of α = 0.

2.2. Issue 2 – The quantile intercept and identifiability of parameters

The identifiability of the parameters in skewed probit regression were first investigated
by [25]. They showed that without the presence of a continuous covariate, the intercept
β0, and skewness parameters are not identifiable. This is expected due to the traditional
definition of the skewed probit model (2.1) and (2.2). We rectify the formulation of the
skewed probit regression intercept, by introducing the quantile intercept, and subsequently
solve this issue of non-identifiability by returning to first principles.

In simple linear regression, the intercept is used to calculate the expected value of
the linear predictor without any effect from covariates. In probit regression, the intercept
contains information about the probability of the event, without the effects from covariates.
The value of the intercept should not provide any information about the other parameters in
the model.

However, when we introduce a skewness parameter to a symmetric family to formulate a
skew-symmetric link then we are fundamentally changing the meaning of what is traditionally
called the intercept of the linear predictor, i.e. β0 in (2.2).
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Consider probit regression with one centered covariate X,

p = Prob[Y = 1] = Φ(β0 + β1X).

Now if β1X = 0, then
q = Prob[Y = 1] = Φ(β0),

which implies that β0 is the qth quantile of the standard Gaussian distribution. There is
thus a one-to-one relationship between q and β0. When β1 6= 0, then Prob[Y = 1] changes
because of β1X, without affecting β0, because Φ remains the same function. In this sense, β0

is uninformative for β1.

Conversely, consider skewed-probit regression from (2.1) and (2.3),

p = Prob[Y = 1] = F (β0 + β1X|α).

Here, β0 should, in the same way, be uninformative for β1. This does not hold because the
dependence of α. We can ensure this, if

q = Prob[Y = 1] = F (β0|α)

is constant for varying α, which is the case if β0 is defined as the qth quantile of the distribution
with CDF F . Therefore, we reformulate β0 as

(2.4) β0(q, α) = F−1(q|α),

so β0 is the qth quantile of F (.|α). The quantile level q is now the unknown intercept-
parameter instead of β0.

Note that there is (generally) not a one-to-one relationship between β0 and q since the
qth quantile depends on α. In this new formulation, the intercept as defined implicitly by q,
provides no information about β1 and parameters of F (ηi|α) are identifiable. We return in
5.3 to a numerical study of this issue.

This formulation might seem surprising at first sight, but in the case of a symmetric
link, the intercept is the quantile of a distribution with fixed (no) skewness. In the case of
the probit or identity links for example, this formulation will reduce to the usual intercept
parameter since in these cases there is a one-to-one relationship between β0 and q.

In terms of implementation in R-INLA, the new formulation of the skew normal model
in terms of q is available and subsequently, the prior distribution for q can be derived from
a corresponding informative N(µ0, τ0) prior for β0 in the case where α = 0. This will ensure
that the probit and the skewed-probit models have comparable priors for their respective
“intercept” parameters.

2.3. Issue 3 – Skewness-related parameters

It is well-known that the skew-normal likelihood has a (double) singularity in the neigh-
bourhood α ' 0 [3]. Various adaptations of maximum likelihood estimation and some Bayes
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estimators have been proposed as solutions to this singularity. [23] used the Fisher informa-
tion to propose a reparameterization that uses α3 as the skewness parameter since this solves
the double singularity problem in the likelihood. In our venture to derive the PC prior for
the skewness, we derived the Kullback-Leibler divergence (KLD) from the skew-normal link
to the probit link and noticed the same feature as mentioned in [23]. This resemblance is
expected since the Fisher information metric is the Hessian of the KLD.

From (2.3), the KLD for small |α| can be found to be

KLD(α) =
∫

f(x|α) log
f(x|α)

f(x|α = 0)
dx

=
π2 + 16− 8π

6π3
α6 − 144π + 3π3 − 38π2 − 168

6π4
α8

+
−42240π − 2560π3 + 16176π2 + 129π4 + 39936

120π5
α10 +O(α12)

≈ c1α
6 + c2α

8 + c3α
10.(2.5)

Interestingly, the behavior of α around α = 0 does not have the usual asymptotics (consis-
tency rate of

√
n) since the leading term is α6. This implies that the estimator of α in the

neighbourhood α ' 0, has a consistency rate n
1
6 but a skewness parameter γ = α3, such that

α = sign(γ) 3
√
|γ|, will have the normal asymptotics in the sense that the estimator of γ will

be
√

n consistent.

Even though γ has the usual asymptotic behaviour, the estimate of it is hard to inter-
perate since it does not relate easily to an interpretable property. We can instead focus on
the more intepretable (standarised) skewness of the skew-normal distribution, γ1, which is a
monotone function of γ

(2.6) γ1 =
(4− π)

(√
2δ2

π

)3

2(1− 2δ2

π )
3
2

,

where δ = α√
1+α2

(and γ = α3). The skewness takes values in the interval −0.99527 < γ1 <

0.99527, which is correct up to five digits.

The question arises if we should formulate a prior for α, γ or the skewness γ1. If priors
are assigned more ad-hoc parameters, this question poses a challenge. The PC prior is in-
variant under reparameterizations [35], implying that this framework will produce equivalent
priors for α, γ and γ1. They are equivalent in the inferential sense, and will produce the same
posterior inference.

3. SKEW-NORMAL MEAN REGRESSION

In this section we focus on skew-normal regression, although these issues also exist in
more general skew-symmetric regression models.

In the preceeding section we mentioned the different parameters that can be used to
capture the skewness in the skewed probit model, and the proposals pertain to the skew-
normal regression model as well.
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Most works on skew-normal regression propose a regression model for the location
parameter, ξ, from (1.1). This generalization of Gaussian regression seems straightforward
but when we keep in mind that the location parameter of the Gaussian is equal to the mean,
then we can see that regressing through the location parameter of the skew-normal is not
practical. In the spirit of generalizing Gaussian regression to skew-normal regression, we
should formulate the regression model based on the mean. Hence for yi ∼ SN(ξ, ω, α) from
(1.1),

E[Yi] = ηi,(3.1)

with ηi from (2.2), instead of ξi = ηi. Note that here we do not reformulate the intercept
as in Section 2.2 for skewed probit regression, since the identity link function is used. We
illustrate the proposed skew-normal regression model in Section 6.

4. PENALIZING COMPLEXITY PRIOR FOR THE SKEWNESS PARAM-
ETER

The work of [35] introduced the notion of penalizing complexity priors for parameters
and provided the framework for deriving priors that quantify the contraction from a complex
model to a simpler model. These PC priors are especially helpful and very needed in cases
where priors have traditionally been chosen due to mathematical convenience, or convention
(see [24] for more details on the performance of PC priors). PC priors have been used in
various fields of research, for example [36] derived the PC priors for autoregressive models
while [20] derived PC priors for Gaussian random fields.

In this section we derive the PC prior for α due to the invariance of the PC prior under
reparameterization of the skewness parameter. The derivations of the PC prior for γ and γ1

follows then directly from a change-of-variable exercise.

Using [35] and (2.5), define the uni-directional distance from the skew-normal to the
Gaussian density as,

d(α) =
√

2KLD(α)

≈
√

2(c1α6 + c2α8 + c3α10) .(4.1)

The penalizing complexity prior for the skewness parameter α is then formed by assigning an
exponential prior with parameter θ to the distance. The parameter θ incorporates information
from the user to control the tail behavior and thus the rate of contraction towards the probit
link function. The penalizing complexity prior follows then directly, as

π(α) =
1
2
θ exp [−θd(α)]

∣∣∣∣∂d(α)
∂α

∣∣∣∣
≈ θ

2
√

2(c1α6 + c2α8 + c3α10)

∣∣2(6c1α
5 + 8c2α

7 + 10c3α
9)

∣∣
× exp

[
−θ|α3|

√
2(c1 + c2α2 + c3α4)

]
(4.2)

for small values of |α|. The user-defined parameter θ is used to govern the contraction towards
probit regression, e.g., for small pU > 0,

Prob(d(α) > U) = pU = exp(−θU)
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which gives θ = −log pU/U . There is no explicit expression for the penalizing complexity
prior of α in general, but the prior can be computed numerically. The prior for γ1 is available
in the R-INLA package [32] with prior = "pc.sn" and parameter param = θ. We use the γ1

reparameterization, since γ1 quantifies the skewness as a property with good interpretation.

The PC priors of α and γ1 are illustrated in Figure 1 for θ = 5, on the α and γ1 scales.
In Figure 2 various values for θ are considered to provide an intuition about the effect of θ.
From this Figure it is clear that larger values of θ results in higher contraction rates with
little mass away from 0. The posterior inference of the skewness is not sensitive to the value
of θ for moderate and large samples. In the case of small samples, a very large value of θ will
contract the Bayes estimator towards 0 at a fast rate.

Figure 1: PC prior (4.2) for θ = 5 on the α scale (left) and the γ1 scale (right).

Figure 2: PC prior (4.2) for various θ’s on the α scale (left) and the γ1 scale (right).
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From Figure 1 we can see the shape of the PC prior for α is quite peculiar, but has a
clear interpretation in terms of a prior on the distance. It just shows that if we assign priors
to parameters, like α, instead of to a property, like γ1, it is highly improbable that we could
think of a density function for the parameter that has good translatable properties. Another
interesting note is that from the prior density of α around α = 0, we can see that most priors
of α proposed in literature actually results in underfitting, instead of the usual overfitting,
since they assign too much density to the neighborhood around α = 0. Conversely, the PC
prior of γ1 is as expected with a mode at the value for the probit link.

5. SIMULATION STUDY

In this section we present condensed results from a simulation study with the aim to
show the results proposed in this work for experiments with a large and small number of
trials. The setup is to simulate linear predictors ηi = β0(α, q) + β1xi, where xi ∼ N(0, 0.5) for
i = 1, ..., n. The success probabilities are then pi = F (ηi|α) from (2.1) and subsequently the
response variable yi, wherere yi ∼ Bin(Ni, pi). To investigate the performance of the PC prior
for the skewness, we consider the PC prior as well as a weak Gaussian prior. Throughout
this simulation study, we assume θ = 5 for the PC prior and a weak Gaussian prior with
parameters (0, 102) for the skewness.

5.1. Large number of trials

For an experiment that consists of a large number of trials, we consider four simulation
scenario’s which can be summarized as:

1. q = 1
3 , β1 = 1, γ1 = 0(α = 0), Ni = 200;

2. q = 0.25, β1 = −1, γ1 = 2
3(α = 10), Ni = 200;

3. q = 0.30, β1 = 1, γ1 = 1
3(α = 2), Ni = 200;

4. q = 0.10, β1 = −1, γ1 = −1
3(α = −2), Ni = 200.

In each case we consider the PC prior as well as the Gaussian prior for the skewness γ1, and
weakly informative Gaussian priors for the fixed effects.

5.1.1. Results

The fixed effects were recovered well and here we focus on the skewness γ1. From Table 1
it is clear that the PC prior (and the Gaussian prior) performs as expected since the sample
size and number of trials are large. In Figure 3 the posterior results for the skewness are
summarised with coverage probability and median length of the credible interval. The results
for other scenarios are similar and omitted here. From this (and many other) simulation
studies, we conclude that for a large number of trials the skewed-probit link works well and the
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inference is accurate. It is clear that the PC prior does not contract towards the probit model
when the data presents strong support for the skewed probit model (scenarios 2, 3 and 4).

Table 1: Coverage probability (CP) and median length of the credible interval (MLCI)
for the skewness γ1 under the PC and Gaussian (G) priors, for large Ni.

Scenario
PC prior Gaussian prior

CP MLCI CP MLCI

111 95 0.28 94 0.35

222 96 0.28 97 0.34

333 95 0.31 95 0.34

444 95 0.32 95 0.35

Figure 3: Median of 95% credible intervals for the different scenario’s with the
true skewness (dashed line): Scenario 1, 2 (top left to tight), 3 and 4
(bottom left to right).
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5.2. Small number of trials

Here we focus our attention on samples of size 200 of binary trials, and the scenario’s
we consider are:

1. q = 1
2 , β1 = 1, γ1 = −2

3(α = −10), Ni = 1;

2. q = 1
2 , β1 = 1, γ1 = 0(α = 0), Ni = 1.

We consider the PC prior as well as the Gaussian prior for the skewness parameter, and
weakly informative Gaussian priors for the fixed effects.

5.2.1. Results

From Table 2 it is clear that the skewness is not recovered well for a small number of
trials. In the case of the PC prior, the coverage is poor but the credible intervals are still
relatively narrow. For the Gaussian prior, the coverage is high mainly due to the very wide
credible intervals. For a small number of trials or binary trials, the skewness is hard to capture.

Table 2: Coverage probability (CP) and median length of the credible interval (MLCI)
for the skewness γ1 under the PC and Gaussian (G) priors, for small Ni.

Scenario
PC prior Gaussian prior

CP MLCI CP MLCI

111 65 0.41 90 1.24

222 95 0.33 90 1.45

Figure 4: 95% credible intervals for γ1 with ni = 1 and γ1 = − 2
3 (left) or γ1 = 0 (middle).

Coverage probabilities for γ1 under scenario 1 as Ni increases (right).
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Even though the nominal coverage for the Gaussian prior is still high from Table 2, the median
length of the credible interval implies that the credible intervals span most of the support
of γ1. However, the PC prior contracts to zero with relatively narrow credible intervals and
exhibits poor coverage for γ1 6= 0. It is evident that the skewness is hard to estimate with a
small number of trials. This is not unexpected since in binary data, we only observe a success
or failure for each subject and subsequently the data does not provide sufficient information
about the skewness. We need repetitions in the data to learn more about the skewness.
We can see in Figure 4 that the PC prior contracts to zero if there is not enough evidence for
the skewed link, but the Gaussian prior proposes an arbitrary value for the skewness from
most of the range of γ1 (possibly with the wrong sign as in Figure 4). In this case, using the
skewed-probit link for binary data might not be useful.

5.3. Confounding and the effect of the quantile intercept

In this section we look at the effect of not using the new quantile intercept. We used a
simulated dataset, similar to the preceeding section, with q = 0.4, β1 = 0.1, γ1 = −2

3 . In this
setup the linear predictor is close to zero, for a centered covariate, the confounding between
the classical intercept and the skewness parameter is clear. In Figure 5 the median of the 95%
credible intervals of the skewness (for 500 repetitions) as well as the true value of the skewness
are presented. On the left we have the case of the quantile intercept and on the right, the
classical intercept. By using the classical intercept, as in the case of GLM, the skewness is
not estimated correctly in the sense that the direction is not even recovered. It is clear that
the quantile intercept solves the confounding of the intercept of the linear predictor, with the
skewness of the link.

Figure 5: Median credible intervals for the skewness γ1 using the quantile intercept
vs the classical intercept.
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6. APPLICATIONS

In this section we illustrate the use of skewed probit regression with the PC prior using
two well-known datasets, the beetle mortality data [10] (binomial response with multiple
trails) and the UCI Cleveland heart disease data [18] (Bernoulli response). We also present
the analysis of the Wines data to illustrate the use of this work in the skew-normal likelihood.

6.1. Beetle mortality data

In this well-known dataset from [15] the number of adult flour beetles killed by differing
dosages of poison is modelled based on the centered dosage value. We use the proposed skewed
probit model with the PC prior and the quantile intercept. We also fit a probit model and
compare the fitted values of both with the observed data. These, together with the 95%
credible intervals are presented in Figure 6. We note that the skewed probit model seem
to fit the observed data better than the probit model, and the 95% credible interval for
the skewness of the skewed probit model from Table 3 does not include 0. The marginal
log-likelihood for the skewed probit model is −21.75 versus −23.93 from the probit model.
The difference between the marginal log-likelihoods does not provide a convincing argument
in favor of the skewed probit model, as opposed to the probit model.

Table 3: Posterior estimates for the beetle mortality data.

Effect Estimate 95% credible interval

Quantile of the intercept (q) 0.643 (0.572; 0.703)

Dosage 19.132 (16.074; 22.316)

Skewness (γ1) −0.456 (−0.848;−0.053)

Figure 6: Fitted and observed proportions (– Skewed Probit, - - Probit) with 95% credible intervals.
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6.2. Heart disease data

We will use the Cleveland data obtained by Robert Detrano from the V.A. Medical
Center, Long Beach and Cleveland Clinic Foundation.

The response is a binary observation indicating the occurrence of a > 50% diame-
ter narrowing in an angiography. Various covariates are available in this data and we will
use a subset of these namely, gender (male/female), type of chest pain (1 – typical angina,
2 – atypical angina, 3 – non-anginal pain, 4 – asymptomatic), resting blood pressure, the
slope of the peak exercise ST segment (1 – upsloping, 2 – flat, 3 – down sloping), the number
of colored vessels by fluoroscopy and the results from the thallium heart scan (3 – normal,
6 – fixed defect, 7 – reversable defect). We centered the two continuous covariates, resting heart
rate and the number of colored vessels by fluoroscopy. Further details can be found in [18].

There are 297 subjects with complete information in the dataset of which 137 expe-
rienced the event of > 50% diameter narrowing in an angiography. We fit a skewed-probit
regression model to explain the probability of the event based on the values of the covariates
similar to [25]. In [25] divergent results were obtained based on different estimation frame-
works, namely maximum likelihood estimation, bootstrap bias correction, Jeffrey’s prior,
generalized information matrix prior and Cauchy prior penalized frameworks. The incon-
sistent results could be attributed to the issues we mentioned in this paper, since all these
estimation methods were developed for the skewed-probit regression model without the good
standardization, based on the skewness parameter α and defined using the classical intercept.

Also, there is a lack of information on the skewness in binary data. The consequence
is thus that various values of the skewness could be supported. This case is a prime example
that illustrates the need for the PC prior of the skewness, so that we prefer zero skewness
a priori (probit regression) and use the data to advocate for non-trivial skewness (skewed
probit regression).

Here, we can use the PC prior (4.2) for the skewness and the quantile intercept from
Section 2.2. All quantitative covariates are centered. The results are given in Table 4.

Table 4: Results for the Cleveland heart disease data.

Posterior mean 95% credible interval

Quantile Intercept (q) 0.045 (0.006; 0.184)

Gender (male) 1.025 (0.605; 1.461)

Type of chest pain (2) 0.198 (−0.538; 0.942)

Type of chest pain (3) −0.074 (−0.732; 0.590)

Type of chest pain (4) 1.288 (0.673; 1.920)

Resting heart rate 0.016 (0.005; 0.027)

Slope of the peak exercise (2) 1.027 (0.637; 1.452)

Slope of the peak exercise (3) 0.791 (0.059; 1.540)

Number of colored vessels 0.704 (0.477; 0.945)

Skewness (γ1) 0.02 (−0.214; 0.235)
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From the estimate of γ1 in Table 4 we deduce that the skewness is not supported
by the data and a probit regression model could be sufficient. We did the analysis using
probit regression and the inference is very similar. This result of zero skewness coincides with
the skewness estimates in [25] using the MLE, bootstrap correction, generalized information
matrix and cauchy prior penalization approaches. The posterior densities (and prior densities
in dashed) of the skewness, γ1, and quantile intercept, q, are presented in Figure 7.

Figure 7: Posterior (prior – dashed) density of the skewness γ1 (left) and quantile
intercept q (right) with the corresponding point estimates (vertical line).

We also see that being a male, having asymptomatic chest pain, higher resting heart
rate, a flat or downwards slope of the peak exercise ST segment and more colored vessels by
fluoroscopy, all contribute to a higher probability of the event under investigation, i.e. > 50%
diameter narrowing in an angiography.

The posterior densities (and prior densities in dashed) of the fixed effects are presented
in Figure 8.

We calculated the marginal log-likelihoods for the probit and skewed-probit models to
be−150.62 and−158.41, respectively, indicating that the probit model is preferred by the data.
Both models achieved a correct classification percentage of 84.55%, on a 50% holdout sample.

6.3. Wines data

This section illustrates the new results when the response variable is continuous and
assumed to follow a skew-normal distribution. As mentioned in Section 3, the results derived
in this paper hold for skewed-probit models, as well as skew-normal regression models. We use
the wines dataset from [4], where the acidity of the wine is assumed to follow a skew-normal
distribution as illustrated in Figure 9, where we see the tail behaviour is correctly captured
by the fitted Gaussian density, but not the skewness. The mean acidity (not the location
parameter) is modelled using the type of wine, sugar content and pH level as covariates (after
backwards elimination). We assign PC priors for the precision [35] as well as skewness (4.2).
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Figure 8: Posterior (prior – dashed) densities of the fixed effects with
the corresponding point estimate (vertical line).
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The results are given in Table 5. The marginal log-likelihood for the skew-normal model is
−722.21 and for the Gaussian model it is −724.59.

Table 5: Results for the wines data.

Posterior mean 95% credible interval

Intercept 77.053 (73.824; 80.252)

Wine (Grignolino) 5.088 (0.478; 9.693)

Wine (Barbera) 23.613 (19.003; 28.280)

Sugar 3.118 (1.150; 5.080)

pH −8.350 (−10.122;−6.574)

Skewness (γ1) 0.439 (0.128; 0.702)

Precision for the data 0.008 (0.006; 0.009)

Figure 9: Histogram with model-based Gaussian curve and skew-normal curve.
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7. DISCUSSION

The use of skew-symmetric distributions or links is popular due to the perceived flex-
ibility inherited through the extra parameter that controls the skewness. The skew normal
skewness parameter in particular, poses various challenges in the inference thereof. As we set
out with the initial aim to derive the penalizing complexity prior for the skewness, we real-
ized that there are various other issues that we could not found addressed in the literature.
It is apparent that with the generalizing to skew-symmetric distributions and links from the
symmetric counterparts, various fundamental concepts have gone amiss.

Here we rectify the formulation of the intercept in the linear predictor of all skew-
symmetric links, firstly to ensure that it behaves as an intercept and secondly due to the
confounding with the skewness parameter and fixed effects. We also show that the popular
method of standardizing the skewed link function by inheriting the parameter values of the
symmetric link, fundamentally changes the way the link function maps the data to the linear
predictor, and we provide an anchored standardization approach. We believe that many of the
contradicting works in this area can be attributed to the inappropriate use of the classical
intercept and parameter-based standardization, instead of property-based standardization.
In skew-symmetric regression models, we formulate the regression model based on the mean,
instead of the location parameter.

After the fundamental corrections to the formulation of the skewed-probit link, the
penalizing complexity prior for the skewness was derived. One particular advantage of this
prior is that it is invariant to reparameterizations of the skewness parameter. In light of
this, we implemented the PC prior for the skewness in R-INLA [32] for use by others. We
noted, expectedly, that binary data (or with few trials) does not provide information about
the skewness, and we thus advise against the use of the skewed-probit link for data with a
small number of trials. We advocate the use of the PC prior even more feverently because of
this feature, since the PC prior will contract to the simpler probit link instead of providing
an incorrect unreliable estimate of the skewness. Other inferential frameworks might not be
able to ensure this contraction in the absence of convincing evidence from the data about the
necessary skewness, and could lead to unfounded complicated models.

We hope that the issues raised and addressed here will improve the inference of the
skewed probit model (and more broadly the skew-symmetric links and likelihoods) and pro-
vide insights into the fundamental considerations necessary when distributions or links are
generalized.
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A. APPENDIX

We give here a small example for how to do skew probit regression in R-INLA.
In the code below, the unusual statement is remove.names="(Intercept)" which remove
the intercept in the formula after doing the expansion of factors in the model. We need
this as we replace the traditional intercept with the quantile intercept in the link, and the
expansion of factors depends on the presence or not, of an intercept in the model.

library(INLA)

n = 200

Ntrials = 200

x = rnorm(n, sd = 0.5)

eta = x

skew <- 0.5

prob = inla.link.invsn(eta, skew = skew, intercept = 0.75)

y = rbinom(n, size = Ntrials, prob = prob)

r = inla(y ~ 1 + x,

family = "binomial",

data = data.frame(y, x),

Ntrials = Ntrials,

control.fixed = list(remove.names = "(Intercept)",

prec = 1),

control.family = list(

control.link = list(model = "sn",

hyper = list(

skew = list(param = 10)))))

summary(r)
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